PHYSICAL REVIEW B 76, 064529 (2007)

Microscopic theory of superconductor-constriction-superconductor Josephson junctions in a
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Self-consistent solutions of microscopic Eilenberger theory are presented for a two-dimensional model of a
superconducting channel with a geometric constriction. Magnetic fields, external ones, as well as those caused
by the supercurrents are included and the relevant equations are solved numerically without further assump-
tions. Results concerning the influence of temperature, geometric parameters, of k=\;/§j, and of external
magnetic fields on the Andreev bound states in the weak link and on the current-phase relation are presented.
We find that the Andreev bound states within the junction obtain peculiar substructure when a finite supercur-
rent flows. As long as the London penetration depth is comparable to or bigger than the extension of the
constriction, the Josephson effect is independent of «. Furthermore, the weak link is very insensitive to external

magnetic fields. Features restricted to a self-consistent calculation are discussed.
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I. INTRODUCTION

Since their discovery, Josephson effects play a central role
in the investigation of the superconducting state because of
their fundamental as well as technical relevance. Josephson
effects occur whenever two extended superconducting banks
are weakly coupled and can be observed, among many other
systems, across a geometric constriction of a superconductor
with lateral dimensions much smaller than the coherence
length. This kind of Josephson junction, usually referred to
as ScS junction, has promising properties for highly sensitive
magnetometers.! Recent progress in microfabrication tech-
nique allows to pattern high quality niobium thin films with
structures small enough for constriction-type Josephson
junctions.”3 At the same time, a ScS Josephson junction is a
useful basis for theoretical considerations because only the
properties of the superconductor and its geometry are rel-
evant.

Superconducting point contacts serve as a simplified
model for ScS junctions and have been investigated by many
authors. An overview of many useful results for the ac and
dc Josephson effect can be found in the reviews by Likharev*
and Golubov et al.’> The most general result was derived by
Zaitsev® and includes a large number of conduction channels
as well as asymmetry and non-BCS structure of the elec-
trodes.

Microscopic theory for the dc Josephson effect in a model
mesoscopic constriction has been presented in Refs. 7 and 8
with the restriction to a small number of conducting channels
in the constriction. This model clarified the relevance of An-
dreev bound states for the supercurrents in the junction. Ana-
lytic solutions of microscopic theory for the dc Josephson
effect in a ballistic superconducting microconstriction have
been presented in Ref. 10. In this approach, the influence of
the constriction length on the critical current has been calcu-
lated self-consistently for temperatures close to T..

As already stated by Kulik!' and Ishii,'>'? a more detailed
physical picture of Cooper pair tunneling in Josephson junc-
tions involves Andreev reflection'*! at the interfaces be-
tween the weak link and the electrodes. Due to this picture,
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Andreev bound states in Josephson junctions represent elec-
tron and hole waves that bounce back and forth between the
two electrodes constructively, transferring one Cooper pair in
every cycle. Thus, Cooper pair transfer across Josephson
junctions is mediated by Andreev bound states. With this
view in mind, detailed knowledge of the local density of
states (LDOS) in the vicinity of the weak link is essential.
This fact has led to the consideration of the LDOS in differ-
ent types of Josephson junctions: among others, see Refs. 7
and 8 for ScS, Refs. 11-13 for SNS, Refs. 16-19 for SNS
and SIS, and Ref. 20 for SNS and SFS with s- and d-wave
pairing symmetry (N=normal conductor, I=isolator, and F
=ferromagnet).

In the present paper, we examine a two-dimensional
model of a ScS Josephson junction in order to investigate the
dependence of the dc Josephson effect on temperature and on
geometric parameters, as well as the influence of magnetic
fields, external ones, and those generated by the supercur-
rents flowing in the junction. Therefore, we will numerically
solve microscopic Eilenberger theory self-consistently for a
conventional (s-wave) superconducting junction in the clean
limit. In order to achieve electromagnetic self-consistency as
well, we employ a convenient method to calculate the mag-
netic field evoked by the supercurrents. This will allow us to
derive transport properties for a realistic geometry at arbi-
trary temperature and arbitrary external magnetic field. Fur-
thermore, the method used to solve microscopic Eilenberger
theory self-consistently including magnetic fields presented
in this paper can be applied to more complex geometries and
thus might be of more general interest.

The paper is organized as follows. In the next section, we
introduce our geometric model. In Sec. III, we present the
theoretical background for our calculations and explain how
we solve the relevant equations. In Sec. IV, we compare our
results to previous ones in order to test our methods. In Sec.
V, we present representative results and explain how the Jo-
sephson effect emerges in ScS junctions. In the following,
we consider the influence of the temperature and geometric
parameters (Sec. VI), of k=\;/&,, (Sec. VII), and of external
magnetic fields (Sec. VIII). Finally, in Sec. IX, we close with
some concluding remarks.

©2007 The American Physical Society
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FIG. 1. Two-dimensional model for a ScS Josephson junction
consisting of a long channel (width W=1¢, throughout the paper)
with a constriction. The constriction is defined by the parameters /
and w. Our calculations have been carried out for a section of the
channel with length L=2&, (dark gray area) and fixed phase differ-
ence of the order parameter A¢@=¢r— ;. The magnetic field is
oriented perpendicular to the image plane (along the z axis).

II. MODEL GEOMETRY

For the calculations presented in this paper, we use a two-
dimensional model of a ScS Josephson junction, as depicted
in Fig. 1. The geometry consists of a long superconducting
channel which is narrowed down by a constriction. We will
calculate all relevant quantities on a section of the channel
enclosing the constriction with length L=2&, [§
=fivp/A(T=0) is the coherence length]. On the left and
right ends of this section, the phase of the order parameter
will be set to ¢, g. The width of the channel will be set to
W=1§, throughout the paper while the constriction is defined
by the parameters / and w as can be seen in the figure. The

external magnetic field By=Bé, is oriented perpendicular to
the two-dimensional structure.

Since we assume the Fermi surface to be cylindrical with
the symmetry axis parallel to the z direction, we can restrict
our calculations to the xy plane. The results are applicable to
films of arbitrary thickness with an appropriate value for the
London penetration depth.?! Our results correspond to the
symmetry plane at half the extension of the sample in the z
direction and, accordingly, magnetic fields are oriented par-
allel to é..

II1. QUASICLASSICAL EILENBERGER THEORY
A. Self-consistency equations

Our calculations are based on quasiclassical Eilenberger
theory??> which we solve self-consistently including the mag-
netic vector potential. To obtain Josephson weak link behav-
ior, it is essential to calculate the order parameter self-
consistently. A self-consistent solution contains local
modulations of the order parameter amplitude and can thus
yield local suppression of superconductivity. Local suppres-
sion of superconductivity in turn constitutes a Josephson
weak link.

To solve quasiclassical Filenberger theory self-
consistently, we have to find solutions for the order param-

eter A(7) and the supercurrent fs(f) which satisfy the follow-
ing two self-consistency conditions:
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A(P) =27VN(OO)ksT >,

0<e,<w,

U(F’EF’isn»FS’ (1)

J(D=dmeNOKgT 2 (Up- g(Fkpie)es.  (2)

0<e,<w,
These two equations, the gap equation and the current equa-
tion, contain the components of the quasiclassical propagator
f(7(x),kp,ie,) and g(7(x),k,ie,) which, in turn, can be ex-
pressed in terms of two complex quantities a(x) and b(x)

called the Riccati amplitudes:?*2*
N 2a(x)
9k > ] )= . 3
FE) ki) 1+ a(x)b(x) (3)
s N7 1 —alx)b(x)
g(r(x),kF,lsn)z— _ (4)

T+ aWb)’

The Riccati amplitudes a(x) and b(x) are solutions to the
Riccati differential equations

hvpda(x) +[28, + AT(F(x))a(x)]a(x) - A(A(x)) =0,
(5a)

fivpdb(x) = [28, + A(F(x))b(x)]b(x) + AT((x)) = 0.
(5b)

The Riccati differential equations have to be solved along
real space trajectories 7(x) pointing in the direction of the
Fermi wave vector v p(kz) using the modified Matsubara fre-
quencies &g,

iE, = ie, + “Op- A(), 6)
C

g,=2n+ 1)mkgT. (7)

The function A(F(x))=|A(7(x))|e’*"™ in the Riccati equa-
tions is the complex order parameter. The gradient of the
order parameter phase V¢ (7) together with the magnetic vec-

tor potential A(7) constitutes the gauge-invariant superfluid
velocity v,(7),

0,7 = Hﬁviﬁ(f) - gfi(a). (8)
m C

In the following subsection, we will describe the procedure

how we calculate the magnetic vector potential X(F) The
distribution of the order parameter phase ¢(7) follows from
the solution of the gap equation which, together with the
current equation (2), minimizes free energy. Thus, the way
we calculate the magnetic vector potential makes use of the
freedom of gauge, but after choosing a certain way to calcu-

late A(7), the order parameter phase is uniquely defined by
the self-consistent solution of the gap and the current equa-
tion.

To obtain stable solutions, the Riccati equation for a(x)
has to be integrated along v, whereas the Riccati equation
for b(x) in the opposite direction. Appropriate initial values
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for the integration of the Riccati differential equations can be
constructed by dropping the gradient terms. For g,>0, this
yields

A(= )
—0) = s 9
) §,+ B+ [A(- ) .

AT
b(+ o) = ’2(4_#_ (9b)
&, + V& + |A(+ )

For the evaluation of the right hand side of the gap and the
current equation, the components of the quasiclassical propa-
gator f(7(x),kp,ie,) and g(FA(x),kr,ie,) constructed with the
Riccati amplitudes according to Egs. (3) and (4) have to be
averaged over the Fermi surface of the superconducting ma-
terial (denoted with (- - -)pg). As stated above, we assume the
Fermi surface to be cylindrical with the symmetry axis along
the z direction. Finally, these averaged quantities have to be
summed over all Matsubara frequencies &, smaller than the
cutoff w,.. For our calculations, we use a cutoff of w,
=50kgT, which is sufficiently large for the results to be in-
dependent of ..

Apart from the left and right ends of the channel section,
all other boundaries of the geometry are assumed to be im-
penetrable. Thus, we can apply the general boundary condi-
tions for the Riccati amplitudes given by Shelankov and
Ozana® in a very simple form. Vanishing transmissibility
leads to specular reflection of the trajectories (outgoing angle
is equal to incident angle) and to the conservation of the
Riccati amplitudes.

The optical behavior of the trajectories makes it necessary
to implement a two-dimensional raytracing procedure. De-
pending on position and angle, this leads to multiple reflec-
tions of the trajectories within the geometry. A similar ray-
tracing procedure for the Riccati equations has been used in
Ref. 26 to calculate the local density of states at polygonal
boundaries of d-wave superconductors. In our case, the tra-
jectories can be terminated either if the left or right channel
end has been reached or if the length of the trajectory is
sufficient for the results of the integration to be independent
of the initial values.

To solve the above equations, we discretize the area of the
channel section and solve the equations at the grid nodes.
Numerical costs can be reduced significantly by a local
variation of the grid width. In the direct vicinity of the con-
striction, a rather fine grid is needed whereas less nodes are
sufficient in the channel.

B. Magnetic fields

To account for magnetic fields, the two self-consistency
equations (1) and (2) have to be completed by the Maxwell
equation

- > 4.
V X B=—j; (10)
C

and the definition of the magnetic vector potential
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V X A=B. (11)

The total magnetic vector potential has two contributions.

First, there is the contribution A, which represents the exter-
nally applied magnetic field. Second, the supercurrents flow-

ing in the junction cause a magnetic vector potential A,.
Combining both yields the total magnetic vector potential

- - -

A=Ay +A,. (12)

Choosing Coulomb gauge (VA =0), it follows from Egs. (10)
and (11) for the contribution evoked by the supercurrents that

> 4.

~AA,=—,. (13)
C

In order to solve this Poisson equation for the magnetic vec-

tor potential A., we use the two-dimensional Green’s func-
tion of the Laplacian. This leads to

1 e e T
A(f)——— — In|r =7 j(F") - d*F". (14)
2

Free space boundary conditions for r—oc are contained in
the Green’s function whereas the behavior in the vicinity of
the sample is determined by the self-consistency conditions
(1) and (2), see Sec. III D. In a two-dimensional discretiza-
tion of the geometry, this integral can easily be solved ana-
lytically for each grid cell and then summed over all cells.

In order to have consistent behavior of the magnetic vec-
tor potential at the connection to the long channel, we as-
sume the currents to be constant away from the constriction
(for |x|=L) and also integrate over these in Eq. (14).

After calculating the magnetic vector potential A_.(r) from
the supercurrents via Eq. (14), we make use of the freedom

of gauge. The phase gradients of the order parameter 6¢(7‘)

together with the total magnetic vector potential A(7) lead to
the final form of the supercurrents [see Eq. (8)]. This implies
that the resulting phase gradients depend on the form of the
magnetic vector potential and vice versa. To minimize both
the phase gradients and the magnetic vector potential, we

shift the vector potential A.(7) to minimal absolute values.
This can be done via a simple homogeneous offset which

neither changes the corresponding magnetic field B=VXA
nor conflicts with the Poisson equation (13). Minimizing the
absolute values of the phase gradient and the magnetic vector
potential leads to more robust convergence of the iterative
procedure which we use to solve the gap and the current
equation. This iterative procedure will be described in detail
in Sec. III D.

To complete the total magnetlc vector potentlal we in-

clude external magnetic fields BO Byé. via AO——Boye
which complies with the Coulomb gauge chosen for the

magnetic vector potential A and which minimizes absolute
values.
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C. Boundary conditions for the order parameter

In the problem considered in the present work, two factors
leading to pair breaking are relevant. First, a phase difference
is applied which leads to a transport current and thus sup-
presses superconductivity. Second, the external magnetic
field leads to screening currents and pair breaking. In order
to apply correct boundary conditions at the connection to the
channel, these two effects have to be clearly separated.

Since we study Josephson junction behavior, the maxi-
mum transport current will be given by the Josephson critical
current which is much lower than the critical current of a
massive superconducting lead. Thus, the transport current
will not significantly lower the gap amplitude in the channel,
far away from the constriction. For vanishing external mag-
netic field, it is therefore a very good approximation to use
the temperature dependent bulk gap amplitude A.(7) as
boundary condition at the left and right ends of the section of
the channel enclosing the constriction. Furthermore, for van-
ishing external magnetic field, the phase is homogeneous
over the cross section of the channel and a phase difference
can easily be applied by setting the phase boundary condi-
tions to ¢p=+AP/2.

The situation changes in the presence of an external mag-
netic field. The magnetic field leads to screening currents and
lowers the gap amplitude in the channel. To gain correct
behavior for higher magnetic fields, it is thus essential to
include the lowering of the gap amplitude in the channel.
With an external magnetic field, we thus proceed in two
steps. First, we self-consistently calculate the amplitude and
phase of the order parameter for zero transport current (cor-
responding to zero phase difference) without any boundary
conditions at the left and right section ends. This will give us
the correct self-consistent solution with screening but with-
out transport currents and allows for a lowering of the gap
amplitude as well as for variations of the phase over the
cross section of the channel. In the second step, we use the
amplitude and phase of the order parameter found at the left
and right section ends in the first step as boundary conditions
for finite transport current. Therefore, the phase has to be
shifted by —A /2 at the left section end and by +A /2 at the
right section end whereas the amplitude has to be retained.
Herewith, the pair-breaking influence of the external mag-
netic field and the screening currents is included for all am-
plitudes of the transport current. This two-step procedure has
to be repeated for every value of the magnetic field.

The gradients of the order parameter phase 6¢(7) to-
gether with the magnetic vector potential A(7) constitute the
gauge-invariant superfluid velocity v,(r) given in Eq. (8).
The current-phase relation thus has to be expressed in terms
of the gauge-invariant phase difference y with

2 (B - -
vy=Ap-—| Adl, (15)
Do)y

where ®y=hc/2e is the flux quantum, and L and R indicate
the left and right section ends, respectively.
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D. Iterative procedure

Let us now comment on how we gain the self-consistent
solutions for the order parameter A(r), the supercurrents

]?S(F), and the magnetic vector potential A(r). The self-
consistency equations (1) and (2) serve as iteration rules with
which we improve an initial guess on a discrete grid. In each
iterative step, we first have to solve the Riccati equations (5)
for all Matsubara frequencies 0 <eg, < w, and all Fermi ve-
locities vy at every grid node. Second, we construct
f(F(x),kp,ie,) and g(A(x), kg, i€,) from the solutions for a(x)
and b(x) via (3) and (4) and plug these into the gap (1) and
current equation (2). Third, we calculate the magnetic vector
potential A.(7) caused by the supercurrents via Eq. (14) and

construct the total magnetic vector potential A according to
Eq. (12). With the new configurations for A(r), j(r), and

A(7), we can attempt the next iterative cycle.

This iterative procedure has to be repeated until conver-
gence. Two criteria can be utilized to determine the level of
self-consistency of the solution. It is straightforward to ob-

serve the change of the functions A(7), ;S(F) and A(7) in
every iterative step and to continue until it is sufficiently
small. Since the rate of convergence in a single iteration can
be very small, a more significant approach is to verify cur-
rent conservation which provides a stringent test of
self-consistency.?”-?8

In the formulation of the microscopic Eilenberger equa-
tions used in the present work, the order parameter in the gap
equation retains a complex quantity. Thus, iterating the gap
equation yields both the amplitude and the phase distribution
of the order parameter self-consistently. The magnetic vector
potential is calculated from the currents and the external
magnetic field in every iteration and the system of equations
is thus solved entirely self-consistent including the magnetic
vector potential.

At first sight, the free space Green’s function (14) for the
magnetic vector potential does not provide boundary condi-
tions for the surface of the geometry. Since the Green’s func-
tion (14) is embedded in a self-consistent calculation, the
compliance with the boundary conditions is ensured by the
gap (1) and the current equation (2). A self-consistent solu-

tion of the Eilenberger equations automatically leads to st
=0 and respects the boundary conditions at the surface of the

superconductor (7i- j,=0 with the surface normal 7). Since, in
the self-consistent calculation, the magnetic vector potential
depends on the currents and vice versa, the correct behavior

of the magnetic vector potential including VA=0 follows.
Embedding the Green’s function (14) in the self-consistent
calculation thus liberates us from the explicit formulation of
boundary conditions for the magnetic vector potential.

It should be noted that an iterative algorithm usually pro-
duces stable solutions. As discussed in Ref. 8 unstable solu-
tions corresponding to saddle points of the free energy can
only be reached with more elaborate methods. However,
since we are only interested in stable solutions, an iterative
approach is controllable and straightforward.

E. Local density of states

Once a self-consistent configuration of the order param-
eter, the supercurrents, and the magnetic vector potential has

064529-4



MICROSCOPIC THEORY OF SUPERCONDUCTOR-...

been found, the normalized local density of states follows via

N(E,r)

o) =" (Im[g(7 kpie, — E+id)ps  (16)

with the definitions of g and {: - -)pg introduced above.’

F. Normalization

All quantities with the dimension of an energy will be
normalized to kT .. The characteristic length scale we use to
normalize all lengths is &,=fv/A.(T=0). Total currents (in-
tegrated over the cross section of the channel) will be given
in terms of J, = jior/ eN(0)v skgT, & With vp=|0].

With «k=\;/§, and the London penetration depth )\Zz

=4m(e/c)’N(0)vy, we use é:é/[(l)o/(l.7647rf(2))] and A
Applying these normalizations, Eq. (13) becomes

S 13
_AAL':_ZJS' (17)
K

Thus, it is obvious that for reasonably large values of «, the
magnetic vector potential evoked by the currents can be ne-
glected and electromagnetic self-consistency becomes unim-
portant. Nevertheless, for smaller values of «, magnetic
fields become increasingly important and have to be included
in the calculations.

IV. COMPARISON WITH EARLIER RESULTS

As a first test of our approach and our numerical code, we
compare our results with those of Ginzburg-Landau theory
presented in Chap. 4.4 of Tinkham’s textbook.?” There, one
can find results for the critical current of a thin wire or film.
In order to compare our results with these calculations, we
remove the constriction (I=0,w=W/2) and consider tem-
peratures close to T.. Additionally, we have to change our
boundary conditions slightly in order to allow for suppres-
sion of superconductivity in the channel at high transport
current densities. This can easily be done via periodic bound-
ary conditions at the left and right ends of the channel sec-
tion. After these minor changes, our program is ready to
consider a long thin wire or film and our results perfectly
match those from Ginzburg-Landau theory. The same results
for the critical current can also be achieved by a simple Dop-
pler shift calculation,* i.e., solving the bulk gap and current
equation with a homogeneous phase gradient

h. =
i§,,=is,,—§vp-V¢>(x). (18)

This consideration provides a second verification.

As a third test, we compare our results with those for a
ballistic superconducting microconstriction obtained by Za-
reyan et al.'® In their work, Zareyan et al. analytically solved
quasiclassical Eilenberger theory for a ballistic narrow super-
conducting channel connecting two bulk electrodes for tem-
peratures close to T... If we remove the constriction from our
geometry (I=0,w=W/2) and use our standard boundary
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conditions for the left and right section ends described in
Sec. III, we can numerically reproduce the results given by
Zareyan et al.

V. JOSEPHSON EFFECT IN ScS JUNCTIONS

In this section, we show results without magnetic fields in
order to explain in detail how the Josephson effect in a ScS
junction emerges. As mentioned above, neglecting the mag-
netic fields caused by the supercurrents corresponds to k
=0

In order to explain the Josephson effect in a ScS junction
in detail, we fix the geometric parameters (I=w=0.05&,) as
well as the temperature (7=0.5T,). In Fig. 2, we show the
amplitude (a) and the phase (b) of the order parameter for
different values of the phase difference as well as the
current-phase relation (c¢). Additionally, we show the LDOS
in the center of the constriction in (d).

With increasing phase difference, increasing supercurrents
flow across the junction. The current concentration in the
constriction leads to high local current densities and causes a
suppression of the order parameter amplitude. This suppres-
sion of the order parameter amplitude in turn limits the cur-
rent that can flow across the junction. At the same time, the
suppression of the order parameter amplitude leads to weak
coupling between the left and right electrodes. The suppres-
sion of the order parameter amplitude caused by the current
concentration in the constriction thus evokes the Josephson
effect in ScS junctions.

As long as the phase difference and the current density are
small, the suppression of the order parameter amplitude is
negligible and the self-consistent phase distribution re-
sembles the solution of the Laplace equation from London
theory, i.e., from local electrodynamics. The stronger the cur-
rents, the stronger is the suppression of the order parameter
amplitude in the constriction and the stronger is the deviation
of the phase distribution from the solution of the Laplace
equation. At phase differences close to y=mr, the whole
phase drop occurs in the constriction and only very small
currents flow.

For the parameters chosen here, we find that the current-
phase relation strongly deviates from the standard sinusoidal
form. As long as the suppression of the order parameter in
the constriction is small, the current-phase relation is basi-
cally linear. However, as the suppression of the order param-
eter becomes stronger, the current reaches the Josephson
critical current and vanishes at y=m. In Fig. 3, we show the
current flow pattern in the vicinity of the constriction at the
critical current (y=0.757).

In Fig. 2(d), we show the LDOS in the center of the
constriction. With increasing phase difference, pronounced
Andreev bound states occur at energies below the gap [|E]|
<A,(T)]. At intermediate values of the phase difference,
additional structures in the LDOS appear close to the main
peak of the bound state which stem from multiple reflections
in the constriction. These substructures will be discussed in
detail in the next section. At the maximum phase difference
of y=m, the Andreev bound states occur at an energy of E
=0 and exhibit the highest peak value.
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FIG. 2. Josephson effect in a ScS junction with /=w=0.05&; and
k=0 at a temperature of 7=0.57.. In (a) and (b), the order param-
eter amplitude and phase are plotted along the x axis for several
values of the phase difference across the junction. The constriction
length is indicated with the vertical dashed lines. In (c), we show
the corresponding current-phase relation with the Josephson critical
current indicated by the dashed lines. The LDOS in the center of the
constriction (x=0,y=0) is plotted in (d).
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FIG. 3. Current flow pattern in the vicinity of the constriction
for I=w=0.05¢,, k==, and T=0.5T, at the critical current (y
=0.751). For better visibility, we plot only every fourth point out of
the grid used in our calculations.

By considering the amplitude and the phase of the order
parameter, the currents, and the local density of states, we
gain a very complete picture of the Josephson effect in ScS
junctions. We can state that the supercurrent across the
constriction-type weak link is indeed mediated by the An-
dreev bound states. Cooper pairs incident on one side of the
junction are transformed into quasiparticles that travel across
the junction phase coherently and recompose to Cooper pairs
on the other side.

In order to explain the relevance of self-consistency, we
compare the self-consistent results with those of a
superconductor-normal conductor-superconductor (S-N-S)
model for the order parameter

A(T)e 2 x<—|
A(r) =10, [ <1 (19)
A (D)et B2 x> 1.

With this model, we calculate the supercurrents for phase
differences 0= y=< and extract the current-phase relation
and calculate the LDOS in the center of the constriction (see
Fig. 4). The parameters used here are the same as for the
self-consistent solutions in Fig. 2.

When using the S-N-S model, one implicitly assumes that
the junction exhibits weak link behavior. This justifies the
suppression of the order parameter and allows for a rapid
variation of the phase. The result is a more sinusoidal
current-phase relation because the full phase drop occurs
within the constriction [see Fig. 4(a)]. In the self-consistent
solution, however, part of the phase variation occurs in the
channel and the effective phase difference in the direct vicin-
ity of the constriction is smaller, at least for small total phase
differences [cf. Fig. 2(b)].

The position of the bound states for the S-N-S model
reflects the fact that the current-phase relation is more sinu-
soidal [see Fig. 4(b)]. Additionally, it is remarkable that the
bound states in the S-N-S model do not exhibit additional
substructure.

VI. INFLUENCE OF TEMPERATURE AND GEOMETRIC
PARAMETERS

In the first part of this section, we analyze the temperature
dependence of the Josephson effect in ScS junctions. In the
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FIG. 4. Current-phase relation (a) and LDOS in the center of the
constriction (b) for the non-self-consistent S-N-S model given in
Eq. (19). The self-consistent current-phase relation from Fig. 2(c) is
also plotted in (a) for comparison. For this figure, we use the same
parameters as for Fig. 2.

second part, we will focus on the influence of the geometric
parameters that define the constriction.

In order to investigate the temperature dependence of the
Josephson effect in ScS junctions, we keep the geometric
parameters fixed (I=w=0.05&;) and neither consider external

magnetic fields nor those caused by the supercurrents (éo
=0, k=),

To study the influence of the temperature, we calculate the
order parameter A(7), the currents f(?), and the local density
of states N(E) for different values of the phase difference y
at temperatures from 7=0.1T7, to 0.97,. From the resulting
current configurations, we extract the current-phase relations
which we show in Fig. 5(a). In Fig. 5(b), we plot the ampli-
tude of the order parameter in the center of the constriction
for the same values of T and vy as for the current-phase rela-
tions. For the two highest temperatures, we increase the cut-
off w,. used in the gap equation and the current equation in
order to include a sufficient number of Matsubara frequen-
cies (w.=100kgT, for T=0.7T, and ®.=200kzT. for T
=0.9T,, respectively).

At temperatures close to T, the current-phase relation is
highly sinusoidal. The lower the temperature, the stronger
are the deviations of the current-phase relation from
sin(y/2). For the geometry used here, the current-phase re-
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FIG. 5. Current-phase relations for /=w=0.05¢, and k=% at
different temperatures are shown in (a) and the corresponding am-
plitude of the order parameter in the center of the constriction in
(b). Points with solid guidelines are the calculated stable branches
whereas the dashed lines are a rough sketch of the unstable ones.
Inset in (a): temperature dependence of the critical current (points
with solid guideline) and the Kulik-Omel’yanchuk (dashed) and the
Ambegaokar-Baratoff results (dashed-dotted) for comparison.

lation becomes multivalued at temperatures 7<0.37.. As
stated above, our iterative approach yields only the stable
branch of the solution. The unstable branch of the current-
phase relation is roughly sketched in the diagram (dashed
lines, see, e.g., Refs. 7 and 8). The multivalued character of
the current-phase relation implies that the current increases
even for phase differences y> 7 and marks the transition
from Josephson junction behavior to bulk current flow.

In the inset of Fig. 5(a), we plot the dependence of the
critical current on temperature (points with solid guideline).
For comparison, we plot the Kulik-Omelyanchouk result
from Ref. 31 for a point contact in the clean limit (dashed
line) as well as the Ambegaokar-Baratoff result for a tunnel
junction (dashed-dotted line) from Ref. 32. Close to T, the
critical current exhibits a linear decrease with increasing
temperature and the self-consistent results of our calculations
coincide with those for the point contact. At lower tempera-
tures, however, the self-consistent treatment leads to a stron-
ger increase of the critical current than predicted for the point
contact. In the Kulik-Omelyanchouk results for the point
contact, the current vanishes at y=m for all temperatures,
whereas in the self-consistent treatment, the currents increase
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FIG. 6. Local density of states in the center of the constriction at
three different temperatures (7=0.17T,, 0.57, and 0.97, from top to
bottom) for different values of the phase difference 7y as indicated in
the diagrams. Inset: position of the Andreev bound states at T
=0.97,. as a function of the phase difference y (dots) and E
=A,(T)cos(y/2) for comparison. For this figure, we use the same
parameters as for Fig. 5.

for y> .78 At low temperatures, this leads to higher values
of the critical current in the self-consistent calculation. In
calculations for a more point contactlike constriction (I=w
=0.01&,), we find that this correction due to self-consistency
remains.

In Fig. 6, we show the local density of states in the center
of the constriction for three different temperatures. With in-
creasing phase difference and thus increasing transport cur-
rent, Andreev bound states occur in the constriction. The
larger the phase difference, the lower is the energy of the
bound states. At 7=0.17,, the Andreev bound state for 7y
=1 still has finite energy. At higher temperatures, when the
current-phase relation is not multivalued, the bound states
have zero energy for the maximum phase difference y=.

For T=0.9T,, we additionally plot the position of the An-
dreev bound states as a function of the phase difference y
(inset in the lowermost panel of Fig. 6). At temperatures
close to the critical temperature T, the position of the bound
states is given by E=+A_,(T)cos(y/2) which is plotted in the
inset for reference. At lower temperatures, deviations occur
as can be seen in the upper two panels of Fig. 6.
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FIG. 7. Current-phase relation (a) and order parameter ampli-
tude in the center of the constriction (b) for different values of the
constriction length / as indicated in the diagrams. For this figure, we
use 7=0.5T,, k=, and w=0.01§, and do not consider magnetic
fields. The lines are guides for the eyes.

Primarily at low temperatures, the Andreev bound states
do not only have one peak but exhibit additional local
maxima at energies above the main peak. This substructure is
due to multiple reflections of quasiparticles within the con-
striction. If we consider the center of the constriction and
measure the angle of the trajectories a with respect to the x
axis, an additional reflection within the constriction sets in at
angles a, with

tan(a,) = (2n + 1)%, n=0,1,2, ... .

The intervals between the angles «, each correspond to a
local maximum of the bound state. The effective distance
over which the phase drop occurs along the trajectory in-
creases with every additional reflection and the effective
phase gradient thus decreases.

In the case of the S-N-S model, the substructure of the
bound states does not occur because the phase drop occurs in
the direct vicinity of the constriction. Reflections of the tra-
jectories do not change the effective distance over which the
phase drop occurs along the trajectories.

Now let us address the influence of the geometric param-
eters on the Josephson effect. In Fig. 7, we plot the current-

064529-8



MICROSCOPIC THEORY OF SUPERCONDUCTOR-...

(a)
0.8 .

jtat /(@N(0)VE kg Te o)

A(x=0y=0)/(ks T¢)

05

0.25

0 0.2 0.4 0.6 0.8 1
b2

FIG. 8. Current-phase relation (a) and order parameter ampli-
tude in the center of the constriction (b) for different values of the
constriction width w as indicated. The dashed lines correspond to a
channel without constriction. For this figure, we use 7=0.57,, k
=, and /=0.01&; and do not consider magnetic fields. The lines are
guides for the eyes.

phase relation and the order parameter amplitude in the cen-
ter of the constriction for different values of the constriction
length [. The temperature is set to 7=0.5T, the width of the
constriction to w=0.01&,, and we do not consider magnetic
fields. If the constriction is shorter, more current flows and
the suppression of the order parameter amplitude is stronger.
Thus, for shorter constrictions, the current-phase relation is
more sinusoidal and the Josephson critical current is higher
than for longer ones. The decrease of the critical current with
increasing length of the constriction is consistent with the
results found by Zareyan et al.'® for temperatures close to T..

In Fig. 8, we show the current-phase relation and the or-
der parameter amplitude in the center of the constriction for
different values of the constriction width w. As before, the
temperature is set to 7=0.5T,, the length of the constriction
to [=0.01&,, and we do not consider magnetic fields. For
reference, we show the current-phase relation without a con-
striction but with periodic boundary conditions as described
in Sec. IV [dashed lines in both Figs. 8(a) and 8(b)]. The
dashed lines thus correspond to a long superconducting lead
with homogeneous current flow or equally a homogenous
bulk current.

As expected, the width of the constriction strongly influ-
ences the Josephson critical current. The narrower the con-
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FIG. 9. Current density at the critical current for k=1 (a) and
k=0.1 (b). The dark shading represents low current density, where
as the bright areas exhibit high current density. The arrows indicate
the direction of the current flow. For small values of «, the current
is strongly concentrated on the surface of the sample.

striction, the stronger is the current concentration in the con-
striction and the stronger is the suppression of the order
parameter amplitude. Hence, less current flows at the same
phase difference for a narrower constriction.

VII. EFFECTS OF SCREENING

From this section on, we will include the effects of mag-
netic fields in our considerations. In this section, we will
focus on the influence of the parameter k=\;/&, whereas in
the next section, we will examine the effect of an external
magnetic field.

So far, we neither considered external magnetic fields nor
those caused by the supercurrents. Neglecting the latter cor-
responds to large values of x which can easily be seen from
Eq. (17). In our case, the lateral extension of the geometry is
W=1§, and thus not much happens for k= 1. Nevertheless,
for smaller values of k, the distribution of the currents and
the magnetic fields changes drastically.

In Fig. 9, we show the current density at the Josephson
critical current for k=1 (a) and x=0.1 (b). To calculate these
configurations, we use 7=0.5T, and /=w=0.05&,. For k=1,
the current density is homogeneous over the cross section of
the channel. Nevertheless, in the vicinity of the constriction,
the current is strongly concentrated. For k=0.1, the current is
concentrated on the surface of the sample. In the channel, the
current distribution thus changes drastically. However, since
the constriction size is equal to the London penetration depth
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FIG. 10. Magnetic field distribution l?:l:}éZ for k=1 (a) and «
=0.1 (b). We multiply the magnetic field B with «? in order to have
equal scaling of the vertical axis. The geometry of the sample is
indicated with the black lines. For smaller values of «, the current is
concentrated on the surface of the sample and the magnetic field is
suppressed in the interior.

N.=k&) with k=0.1 used here, the current density is homo-
geneous in the constriction.

In Fig. 10, we plot the magnetic fields corresponding to
the current configurations in Fig. 9. The strong concentration
of the current on the surface of the sample leads to the dis-
appearance of the magnetic field in the interior of the chan-
nel. Nevertheless, the magnetic field in the vicinity of the
constriction does not depend much on the value of « as long
as the dimensions of the constriction are smaller than the
London penetration depth (A =[,w). Accordingly, the
current-phase relation and the dependence of the order pa-
rameter amplitude in the center of the constriction on the
phase difference remain unchanged for k= 0.1. Thus, we can
conclude that the Josephson effect is independent of « as
long as N\ =1, w.

In Fig. 11, we show the local density of states in the
center of the constriction for 7=0.5T, and [=w=0.05&,. The
inhomogeneous configuration for small values of « leads to a
splitting of the bound states. For the case of xk=0.1 and y
=0.77, we discuss the origin of the peaks labeled 1,2,3 in
the upper panel of Fig. 11 in detail.

Peak 1 originates from trajectories which are oriented par-
allel to the x axis and thus pass through regions with small
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FIG. 11. Local density of states in the center of the constriction
for two different values of k (k=0.1 in the upper panel and k=1 in
the lower panel). For this figure, we use T=0.57. and [=w
=0.05¢,. Please note the different scaling of the vertical axis for the
two panels.

current density. Peaks 2 and 3 stem from trajectories which
are reflected into the lower (y <0) and upper (y>0) parts of
the channel, i.e., in regions with high current density. Thus,
the concentration of the supercurrents on the surface of the
sample leads to differing contributions of the trajectories for
different angles and yields a splitting of the bound state.

VIIL. INFLUENCE OF THE EXTERNAL MAGNETIC
FIELD

In this section, we will finally examine the influence of an
external magnetic field on the Josephson effect in a ScS junc-
tion. Therefore, we set the temperature to 7=0.5T,, the geo-
metric parameters to /=w=0.05¢,, the parameter k=1, and

apply an external magnetic field Bozéoéz. At the end of this
section, we will discuss the temperature dependence of the
influence of the external magnetic field.

Before turning to the results of our calculations, let us
briefly discuss the normalization we use for the magnetic
field in terms of more familiar quantities. Following the pro-
cedure presented in Ref. 33, we calculate the bulk upper
critical field B,, using Eilenberger theory.** For s-wave su-
perconductors with cylindrical Fermi surface and with the
magnetic field oriented parallel to the cylinder axis, we find

T * du
Inf—]=] ——(e
T. o sinhu
At T=0.5T., the normalized upper critical field thus is écZ
=4.51, or B;,=0.424( —dB.,/dT|r T,), respectively.

An external magnetic field leads to screening currents
which flow on the surface of the superconductor. Thus, in our

—u2(1.764/8 2B (T T)? _ 1)
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FIG. 12. Current density with applied external magnetic field
(k=1, l§’0=2) without transport current [y=0, (a)] and with critical
transport current [y=0.741r, (b)]. Again, dark shading signifies low
current density whereas bright shading signifies high current den-
sity. The arrows indicate the direction of the current flow. Without
transport currents, a small circulating current appears in the con-
striction which leads to local antiscreening [white circular arrow in
the constriction in (a)]. With an applied phase difference, the total
current distribution becomes asymmetric and consists of both
screening and transport currents.

case, the currents are a mixture of transport currents across
the Josephson junction and screening currents. In Fig. 12, we
show the current density in the section enclosing the con-

striction for an external magnetic field of 1§’0:2 without
transport currents [ y=0, (a)] and with critical transport cur-
rents [y=0.74r, (b)]. In Fig. 13, we plot the corresponding

magnetic field distributions Bé,.

Without transport currents, we find screening currents
which flow on the surface of the channel and which lower
the magnetic field inside the sample. Since the width of the
channel is equal to the London penetration depth (\;=«x&,
with k=1 used here), the magnetic field is not completely
suppressed. In the constriction, a small circulating current
flows which is directed opposite to the screening currents
and which leads to a local enhancement or antiscreening of
the magnetic field.

With a finite phase difference applied between the ends of
the section, a transport current flows. This leads to a breaking
of the fourfold symmetry visible in Fig. 12(a) and to a com-
bined current configuration consisting of screening as well as
transport currents. Consequently, the magnetic field distribu-
tion shows an asymmetry. The total magnetic field is de-
creased for y <0 and increased for y> 0. Far away from the

PHYSICAL REVIEW B 76, 064529 (2007)

-0.5

FIG. 13. Magnetic field distribution é:éél for applied external
magnetic field (k=1, l§0=2) without transport current [y=0, (a)]
and with critical transport current [y=0.74, (b)]. The geometry of
the sample is indicated with the black lines. Screening currents lead
to a reduction of the magnetic field in the interior of the sample.
Additional transport currents increase the magnetic field on one side
of the sample and decrease it on the other side.

sample, the external magnetic field is recovered, but this hap-
pens on a much larger scale and cannot be seen in Fig. 13.

In Fig. 14, we show the current-phase relation and the
order parameter amplitude in the center of the constriction
for different values of the external magnetic field. For small
values of the external magnetic field, the strength of the cur-
rents is gradually reduced as is the order parameter ampli-
tude in the constriction, but the functional form of the
current-phase relation and the order parameter amplitude is
basically unchanged. At larger values of the external mag-
netic field, however, the transport currents become very
small and the order parameter amplitude in the constriction
remains unaffected. At the same time, the Josephson effect
disappears.

The reason for the disappearance of the Josephson effect
is that with increasing external magnetic field, superconduc-
tivity is suppressed in the channel. Since the constriction is
much smaller than the London penetration depth, the screen-
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FIG. 14. Current-phase relation (a) and order parameter ampli-
tude in the center of the constriction (b) for different values of the
external magnetic field éo. Inset in (a): dependence of the Joseph-
son critical current on éo. Inset in (b): amplitude of the order pa-
rameter in the center of the constriction (solid line) and in the center
of a long channel without constriction (dashed line) for y=0 as a
function of the external magnetic field. For the whole figure, we use
T=0.5T,, I=w=0.05¢,, and x=1. The lines are guides for the eyes.

ing currents do not flow across the constriction [see Fig.
12(a)]. This leads to pair breaking in the channel and lowers
the amplitude of the order parameter. The screening currents
mainly flow in the channel and superconductivity first breaks
down here. However, if superconductivity is already sup-
pressed in the channel, no current can flow across the con-
striction and the Josephson effect does not occur.

The external magnetic field which leads to suppression of
the Josephson effect is about twice the approximate upper

critical field I§62 derived above. To verify the validity of this
unusually large value of the magnetic field leading to the
suppression of superconductivity in the channel, we carried
out calculations for a longer channel with the same width
(L=10¢), W=1¢&,), but without a constriction. The amplitude
of the order parameter in the center of the constriction as
well as in the center of the long channel for y=0 is plotted in
the inset in Fig. 14(b). In the channel, superconductivity is
completely suppressed at somewhat lower values of the ex-
ternal magnetic field, namely, at about éoz 8.5.

Since our two-dimensional geometry implies translational
invariance in the z direction, the high critical field found in

PHYSICAL REVIEW B 76, 064529 (2007)

our calculations can be understood in terms of the parallel
critical field H ;.33 Because of the infinite extension of the
geometry in the z direction, the external magnetic field is
oriented parallel to the surfaces. Up to an external magnetic
field H 3=1.695H,, oriented parallel to the surface of a su-
perconductor, there is a superconducting surface sheath of
thickness ~§&(T) while A—0 in the interior. If the geometry
consists of two coplanar surfaces with spacing d < ¢, nucle-
ation is possible at even higher values of the external mag-
netic field, growing with ~1/d (see Refs. 37 and 38, and
references therein). Since the channel width is W=1§, the
value of the external magnetic field at which superconduc-
tivity is suppressed is in good agreement with H ;. In the
center of the constriction, the spacing between opposite sur-
faces is even smaller and nucleation occurs at even higher
values of the external magnetic field.

From the inset in Fig. 14(b), we conclude that the current

across the constriction should be suppressed at about l§0
~ 8.5 since this value of the external magnetic field leads to
suppression of superconductivity in the channel. The section
used for the calculations with a constriction (L=2&,) is too
short to reach the undisturbed channel, far enough from the
weak link. However, using a longer section would lead to a
badly defined phase difference across the junction and to
excessive numerical costs. Our main conclusion, the fact that
the external magnetic field primarily affects the channel and
not the constriction, remains unchanged, however.

In a thin film with small extension in the z direction, the
relevant critical field for the suppression of superconductiv-
ity is the upper critical field H,,. The occurrence of the par-
allel critical field H 3 in our results stems from the assump-
tion of translational invariance in the z direction.

In Fig. 15, we plot the local density of states in the center
of the constriction for three different values of the magnetic
field. At intermediate strength of the external magnetic field,
we find a splitting of the Andreev bound states, but the main
features of the LDOS without a magnetic field persist. We
still find the energy gap and pronounced bound states if a
phase difference y# 0 is applied. For y=r, the bound states
have zero energy which indicates Josephson junction behav-
ior. For very strong external magnetic fields, the local density
of states is strongly disturbed. Even without a phase differ-
ence, the energy gap is partly filled. A phase difference still
leads to bound states, but their spectral weight is strongly
reduced. For y=r, the bound states have finite energy and
the Josephson effect is absent.

In Fig. 16, we show the temperature dependence of the
critical current for [=w=0.05&, without (k=%, B,=0) and
with external magnetic field («=1, éo as indicated in the
figure). For comparison, we plot the Kulik-Omelyanchouk
result for a point contact in the clean limit’! and the
Amgebaokar-Baratoff result for a tunnel junction.’> We find
that the universality of the inclination of j.(7) close to T,
persists even in an external magnetic field.

IX. CONCLUSIONS

We present self-consistent solutions of microscopic Filen-
berger theory for a two-dimensional model of a ScS Joseph-
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FIG. 15. Local density of states in the center of the constriction
for three different values of the external magnetic field (I§0=0, 4,
and 8 from bottom to top). For this figure, parameters are set cor-
responding to Fig. 14. Please note the different scaling of the ver-
tical axis for the three panels.

son junction. Magnetic fields, external ones, as well as those
evoked by the supercurrents have been included and the rel-
evant equations have been solved numerically without fur-
ther assumptions.

In the self-consistent calculation, the Josephson effect ap-
pears without further input. Unlike in a non-self-consistent
calculation, we do not have to make assumptions about the
existence and the behavior of the weak link. By considering
the self-consistent results, we explain in detail how the Jo-
sephson effect in a ScS junction emerges. Taking into ac-
count the order parameter amplitude and phase, the currents,
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FIG. 16. Temperature dependence of the critical current without
magnetic fields (k=%, By=0, solid guideline) and with external
magnetic field (k=1, B, as indicated) for /=w=0.05¢,. For com-
parison, we plot the Kulik-Omelyanchouk result (Ref. 31, dashed
line) and the Ambegaokar-Baratoff result (Ref. 32, dashed-dotted
line).

and the local density of states, we point out that the Joseph-
son effect is a result of phase-coherent quasiparticle transport
across the junction. Localized quasiparticle states (Andreev
bound states) appear in the junction if a supercurrent flows.
These bound states, together with the corresponding current-
phase relations, have been calculated and discussed in detail
for different geometric parameters, different temperatures,
different values of k=\;/&,, and different values of the ex-
ternal magnetic field.

We show that the Josephson effect in ScS junctions is
independent of « as long as the London penetration depth is
larger than or comparable to the size of the constriction. We
also show that the Josephson effect in ScS junctions is very
insensitive to external magnetic fields. External magnetic
fields mainly influence the channel leading to the weak link
and suppress superconductivity there. The Josephson effect
persists up to the upper critical field of the channel.

In contrast to the non-self-consistent results, the self-
consistently calculated local density of states exhibits An-
dreev bound states with peculiar substructure due to the ge-
ometry and magnetic fields. The local density of states
should be experimentally accessible via scanning tunneling
microscopy/scanning tunneling spectroscopy.
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