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We give a theoretical description of the general critical states in which the critical currents in type-II
superconductors are not perpendicular to the local magnetic induction. Such states frequently occur in real
situations, e.g., when the sample shape is not sufficiently symmetric or the direction of the external magnetic
field changes in some complex way. Our study is restricted to the states in which flux-line cutting does not
occur. The properties of such general critical states can essentially differ from the well-known properties of the
usual Bean critical states. To illustrate our approach, we analyze several examples. In particular, we consider
the critical states in a slab placed in a uniform perpendicular magnetic field and to which two components of
the in-plane magnetic field are then applied successively. We also analyze the critical states in a long thin strip
placed in a perpendicular magnetic field which then is tilted towards the axis of the strip.
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I. INTRODUCTION

The concept of the critical state introduced by Bean1 is
widely used to describe various physical phenomena in the
vortex phase of type-II superconductors, see, e.g., Refs. 2
and 3, and citations therein. According to Bean, in the critical
state of type-II superconductors with flux-line pinning, the
driving force of the currents flowing in this state is balanced
by the pinning force acting on the vortices. The critical state
is characterized by the component of the current density
flowing perpendicular to the flux lines, jc�, since only this
component generates a driving force. It is assumed in the
critical-state theory that this jc� is known, i.e., it is a given
function of the magnetic induction B , jc�= jc��B�, and the
problem of this theory is to find the appropriate distribution
of the magnetic fields and currents in the critical state. Be-
low, for simplicity, we shall assume that the magnetic fields
H in the superconductor considerably exceed the lower criti-
cal field Hc1, and so we set B=�0H throughout the paper.
Beside this, we deal only with bulk superconducting
samples, assuming that all their dimensions noticeably ex-
ceed the London penetration depth, and we consider the criti-
cal state macroscopically, averaging vortex structures and the
appropriate microscopic currents over a scale exceeding the
intervortex spacing.

Hereafter we shall call the critical states “Bean critical
states” if the current density j is perpendicular to the local
magnetic field H at every point of a superconductor, j= j�,
and thus j= j�= jc�. This definition imposes limitations on
the direction of the currents in the critical state, but it does
not imply constancy of jc�, e.g., jc��H� can be as in the Kim
model.4 The Bean critical states can be found from the static
Maxwell equations,

rot H = j, div H = 0, �1�

and the conditions on the current density

div j = 0, �2�

j� = jc�, j� = 0, �3�

where j� is the component of the current density along the
local magnetic field H. Such states usually occur when the
shape of the superconductor is sufficiently symmetric and the
external magnetic field Ha is applied along a symmetry axis,
so that the direction of the currents is dictated by the sym-
metry of the problem. Most of the known solutions of the
critical state problem describe just these Bean states. For
example, this is the well-known solution for an infinite slab
in an external magnetic field parallel to its surface,1 and also
the solution for an infinitely long cylinder with arbitrary
cross section in a magnetic field parallel to its axis since the
currents flow perpendicular to this axis.2 Bean critical states
also occur in infinitely long and thin strips5–7 and in thin
disks8 in a perpendicular magnetic field even if jc� depends
on �B��B or on the angle between B and the normal to the
sample plane.9–11 If the applied magnetic field is tilted to the
plane of an infinitely long strip12–15 or slab16 but remains
perpendicular to the sample axis, the critical currents flow
along this axis, and a Bean critical state occurs. Further ex-
amples of the Bean critical states in samples of a complex
shape can be found in Refs. 17–21. A characteristic feature
of all these Bean critical states is that the perturbation of the
current distribution caused by a change of the applied field
propagates into the sample as a sharp front at which the
direction of the currents changes abruptly.

In real samples of nonsymmetric shape, or when the ap-
plied magnetic field changes not only in amplitude but also
in its direction, adjacent flux lines may be slightly rotated
relative to each other in the critical state. This rotation gen-
erates a component of the current along the magnetic field,22

j�. The rotation of flux lines can lead to their mutual
cutting.2,22 Flux line cutting occurs when the component of
the current density parallel to the magnetic field, j�, exceeds
some longitudinal critical current density jc�. In this situation
a vortex23 or a vortex array24 becomes unstable with respect
to a helical distortion, and the growth of this distortion leads
to flux-line cutting. When both j� and jc� are equal to their
critical values jc� and jc�, respectively, the so-called double
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critical state22,25 occurs in the superconductor.26 For ex-
ample, this state appears in some region of a superconduct-
ing sample25,27 when a rotating magnetic field of constant
magnitude is applied to a superconducting disk �or slab� in
its plane.28–31 The double critical state can be still described
by Eq. �1� and �2�, but with the following conditions on the
current density j= j�+ j�:

j� = jc�, j� = jc� . �4�

The concept of the critical state with flux-line cutting was
further developed in Refs. 32–34 to explain the observed
suppression of the magnetic moment of a superconducting
slab under the action of an ac magnetic field.34–36

However, in many real situations a change of the direction
of the external magnetic field or a nonsymmetric shape of the
sample does not lead to flux cutting in the superconductor,
i.e., j� does not reach jc� in the critical state. In such situa-
tions there is no explicit condition on the magnitude of j�

except that j� � jc�, and the static equations �1� and �2� with
the only restriction j�= jc� are not sufficient to find the dis-
tributions of the magnetic field H�r� and current density j�r�
in the critical state. This problem for the special case of a
slab with an in-plane magnetic field was solved in Refs. 25
and 27. The full set of the critical-state equations for arbi-
trary shape of the sample and for any quasistatic evolution of
the vector of the applied magnetic field Ha was obtained in
Ref. 37, where it was also shown that in contrast to the
common Bean critical states, a perturbation of the current
distribution in such critical states propagates into the sample
smoothly in a diffusive way. We emphasize that this class of
critical states with j� � jc� corresponds to the general situa-
tion, while the common Bean critical states and the double
critical states are only limiting cases occurring when j� =0 or
j� = jc�, respectively.

Such general critical states, which we shall call the
T-critical states �T means transport�,38 occur even for simple
experimental situations. In particular, they appear in a certain
region of thin rectangular platelets in a perpendicular mag-
netic field �in platelets with thickness exceeding the London
penetration depth this is the region which is not penetrated
by the perpendicular component of the magnetic field�.39

Critical states of this type also appear at the vortex shaking
in rectangular platelets40 and even in strips if the ac field is
along the axis of the strips.41 They also occur in low-
frequency ac experiments with a slab when a circularly po-
larized ac field is applied perpendicularly to the dc magnetic
field Ha that is normal to the plane of the slab.42,43

As was pointed out in Refs. 25 and 27, one more type of
critical state can exist in superconductors. In these states
j�� jc� and j� = jc�, i.e., only flux cutting occurs without any
transport of vortices. The description of such C-critical states
�C means cutting� in samples of arbitrary shape can be ob-
tained by an immediate generalization of the approach used
in Refs. 25 and 27 for a superconducting slab. Below we
shall not analyze such states in detail but only briefly outline
this generalization.

In Sec. II of this paper we develop the approach of Ref.
37. In particular, we take into account the dependence of jc�

on j� and anisotropy of flux-line pinning. We also discuss the

relationship between the equations of Ref. 37 and the varia-
tional principle recently proposed.44–46 In Sec. III we then
analyze three examples of the general T-critical state.

II. GENERAL CRITICAL STATES

A. Critical-state equations

The critical state is well established in a sample if the
characteristic time of change of the applied magnetic field
Ha, jc�d / �dHa /dt�, considerably exceeds the time of flux
flow across the sample, �0d2 /�ff, where d is a characteristic
size of the sample and �ff is the flux-flow resistivity. In other
words, the concept of the critical state can be used for a
description of the magnetic-field and current distributions in
superconductors if the generated eddy electric fields are rela-
tively small,

�0d�dHa

dt
� � �ffjc�. �5�

The ideal critical state thus corresponds to the limit �ff→�.
Below we imply condition �5� to be fulfilled.

The general T-critical states with j� � jc� can be described
by the following approach:37 The static equations �1� and �2�
are supplemented by the quasistatic Maxwell equation

rot E = − �0Ḣ , �6�

where Ḣ��H /�t, and E is the electric field generated by a
change of the applied field Ha. For the set of equations �1�,
�2�, and �6� to be solvable, it must be supplemented by the
current-voltage law E�j ,B�.47 This law is introduced from
two well-known physical ideas: �1� At any given j and B, the
direction of E follows from E= �B�v�, i.e.,

E��B � v� , �7�

where v is the vortex velocity caused by the Lorentz force
�j�B�. Here for simplicity we shall neglect the so-called
Hall angle,48 and so the directions of v and the Lorentz force
coincide. �2� The magnitude of E is found from the condition
that

�j�� = jc�. �8�

In fact, this condition may be interpreted as the following
current-voltage dependence:

�E� = 0 at j� � jc�,

�E� → � at j� � jc�, �9�

which just corresponds to the ideal critical state.
To proceed with our analysis, let us introduce the follow-

ing notations for the magnetic field H�r� and the current
density j�r� in the critical state: H�r�=H�r���r�, j�r�
= j�r�n�r�, where H and j are the absolute values of the mag-
netic field and the current density while the unit vectors �
and n define their directions. Then, the component of the
current density perpendicular to the magnetic field is given
by
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j� = j − ���j� � jc�n��r� .

Here the unit vector n� defines the direction of j� ,n�= �n
−���n�� /D; D=	1− �n��2 is the normalizing factor that is
equal to the sine of the angle between H and j, and we have
taken into account the condition �j� � = jc�. These formulas
also lead to the explicit expression for the magnitude j of the
current density,

j =
jc��H�

D
, �10�

that is only another form of the condition �j��= jc�. Let us
now formulate condition �7�. Let at a moment of time t the
external magnetic field Ha�t� change infinitesimally by 	Ha

=Ḣa	t. Under the change of Ha, the critical currents locally
shift the vortices in the direction of the Lorentz force �j
���; this shift generates an electric field directed along [�
� �j���]= j�, i.e., along the vector n�. Thus, we can repre-
sent the electric field E�r� in the form

E = n�e , �11�

where the scalar function e�r� is the modulus of the electric
field. Note that the electric field in general is not parallel to
the total current density j�r�. With formulas �10� and �11�,
Eqs. �1�, �2�, and �6� are sufficient to describe the T-critical
states in a sample of arbitrary shape. It is important that the
magnetic fields H�r� and currents j�r� in the critical state at
the moment of time t+	t depends only on the field and cur-
rent distributions in the previous critical state at the moment

t and on the change of the external field 	Ha=Ḣa	t, while

the electric field e is proportional to the sweep rate Ḣa rather
than to 	Ha, and so it plays an auxiliary role in solving the
critical-state problem.37

We emphasize that e is now found as a solution of the set
of equations �1�, �2�, �6�, �10�, and �11� without using the
specific current-voltage dependence �9�. The explicit equa-
tion for the scalar function e�r� has the form37

n� · 
rot rot�E� − �� · rot ��rot�E�� =
�jc��H�

�H
· rot�E� ,

�12�

where E is given by Eq. �11�. Continuity of the magnetic
field on the surface of the superconductor, S, yields the
boundary condition to Eq. �12�,

− rot�E�rS�� = �0Ḣa +� �R � rot rot�E�r����
4
R3 dr�, �13�

where rS is a point on the surface S, R�rS−r�, R= �R�, and
the integration is carried out over the volume of the sample.
The right-hand side of this boundary condition expresses

�0Ḣ on the surface of the superconductor �but reaching from
outside� with the use of the Biot-Savart law. If in the critical
state of the superconductor there are also boundaries at
which the direction of the critical currents changes discon-
tinuously or which separate regions with j�= jc� from re-
gions with j=0,49 the function e�r� must vanish at these

boundaries to provide continuity of the electric field en�

there.
In practical calculations of critical states developing in the

process of changing Ha�t� it is convenient to rewrite Eqs. �1�
and �6� in the form

�0j�n � ṅ� = − �n � rot rot�E�� , �14�

which is a differential equation for the angles defining the
direction of j, i.e., the unit vector n= j / j. Note that since the
distributions of the magnetic fields and currents in the critical
states of a superconductor are independent of the sweep rate

Ḣa, their temporal dependence is only a parametrization of
their dependence on Ha.

Let us now write explicitly the applicability condition of
the above theory. Since the projection of j on the local direc-
tion of H is jc��n�� /D, the condition that flux-line cutting is
absent leads to the following restriction on the angle between
the local j and H:

�n��
	1 − �n��2

�
jc�

jc�

, �15�

where jc� is the longitudinal critical current density.
Finally, we make several remarks on the electric field. It

may turn out that the electric field en� obtained with Eq.
�12� does not satisfy the condition div�en��=0. To clarify
this situation, it is necessary to remember that a moving vor-
tex generates an electric dipole moment,48 and hence the
moving vortex medium is characterized by the vector of po-
larization P which is the macroscopic density of this mo-
ment. It follows from the results of Ref. 48 that P=−en�,
and a nonzero div�en�� means that in a type-II supercon-
ductor the electric-charge density −div P appears which gen-
erates a curl-free electric field Ep=−�� described by the
scalar potential �. This potential field is a part of the total
electric field given by E=en� inside the sample, and it obeys
the equation div Ep=div�en��, i.e.,

�� = − div�en�� , �16�

where ��div �. At the surface of the sample, S, the field Ep
satisfies the same boundary conditions as in the electrostatics
of dielectrics:47 The tangential components of Ep and the
normal component of Ep+P=Ep−en� are continuous there.
Since P=0 outside the sample, the latter condition means
that

�Ep
+ − Ep

−�� = − en�� , �17�

where Ep
+ and Ep

− are the surface potential fields calculated
outside and inside S, respectively, and � is the normal to S
pointing outside. The right-hand side of Eq. �17� gives the
surface-charge density induced by moving vortices in the
sample. Note that the potential part of en� does not influence
the magnetic fields and currents in the critical state since
rot Ep=0. Appearance of this part is caused by condition �11�
that dictates the direction of the electric field in the sample.
Although both the inductive part of the electric field, en�

−Ep, which generates the critical states, and the potential
part Ep can be measured in certain situations,50 we shall not
analyze electric fields in detail in this paper since these fields
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play only an auxiliary role in the critical state problem. See
also the recent literature on electric fields.51

Generally speaking, in the process of changing Ha a mi-
gration of the induced charges �=div�en�� occurs, which
leads to a generation of currents satisfying div j=−��� /�t�
and violating Eq. �2�. However, these nonstationary currents

are proportional to the second power of the sweep rate Ḣa
and are negligible under assumption �5�.

B. Generalizations

We now point out some generalizations of the above re-
sults which may be useful in analyzing critical states in real
situations.

1. jc� depends on j¸

The current-voltage law used in Sec. II A, Eq. �9�, means
that flux creep is negligible in our approach. In this case the
critical current density is found from the condition that the
creep activation barrier U of a vortex bundle is equal to zero.
It has been implied above that jc� may depend on B but is
completely independent of the magnitude of j�. In other
words, the form U=U�j� ,B� has been assumed for this U.
However, the creep activation barrier U, generally speaking,
may depend not only on j� and B but also on the j� that
characterizes flux-line misalignment in the bundle, i.e., in the
general case one has U=U�j� , j� ,B�. Then the critical cur-
rent density jc� determined from U�j� , j� ,B�=0 takes the
form jc�= jc��B , j��. One may expect that this dependence of
jc� on the longitudinal current component j� is especially
noticeable when j� is close to its critical value jc�, and hence
jc��B , jc�� in general differs from jc��B ,0�. Similarly, the
activation barrier Ucut for flux cutting is a function of both
current-density components and of the magnetic induction,
i.e., Ucut=Ucut�j� , j� ,B�, and the condition Ucut=0 gives jc�

= jc��B , j��. In Fig. 1�a� at a fixed B we schematically show
the dependences of jc� on j� and of jc� on j� in the plane
�j� , j��. Note that these dependences cross when the equa-
tions U�j� , j� ,B�=0 and Ucut�j� , j� ,B�=0 hold simulta-
neously. This occurs at isolated points in the j�-j� plane since
the barriers U and Ucut characterize different physical pro-
cesses and are essentially different functions of the current
components. These points correspond to the double critical
states when j�= jc� and j� = jc�. In Fig. 1�a� the top �bottom�
and right �left� sections of the curves between the four points
describe jc��j�� in the general T-critical state and jc��j�� in
the C-critical state.

The dependence jc��j�� leads to a replacement of jc��H�
by jc��H , j�� in formula �10� that now reads

jD = jc��H, j	1 − D2� . �18�

The dependence jc��j�� also leads to a modification of Eq.
�12�. On the right-hand side of this equation the term
−�0��jc� /�j����jc� /�t� should be added that is equal to

�jc�

�j�

 jc�

H
n� · rot�E� + � · rot rot�E�� �19�

with E from Eq. �11�. Note that the first term in this expres-
sion has no singularity at H→0 since the combination
n� · rot�en�� can be also rewritten as en� · rot n� and e
= ��B�v��
H.

In Refs. 52 and 53 a phenomenological model of the gen-
eral critical state was considered that described sufficiently
well a number of experimental data on the magnetization of
a slab and of a disk in magnetic fields parallel to their planes.
In fact, in this model a certain type of dependence of jc� on
j� �and of jc� on j�� was introduced. Even though the direc-
tions of the electric field in this model do not satisfy the
physical requirement �11�, the sufficiently good description
of the data seems to indicate the importance of this depen-
dence in real situations.

2. Anisotropy of flux-line pinning

In deriving Eq. �11� we have assumed that when Ha
changes, vortices shift in the direction of the local Lorentz
force �j�B�. However, in the case of anisotropic pinning
this assumption may fail. Nevertheless, even in this case the
direction of the shift can be expressed via the directions of j
and ��H /H, see Appendix A in Ref. 39. Now the unit vec-
tor u along the electric field, E=ue, is

u = n� cos 	 + �� � n��sin 	 , �20�

where the angle 	 describes the change of the direction of the
electric field due to anisotropic pinning. If in the plain per-

j
||

j⊥

E

Eflux cutting
j
c||

( j⊥)

flux transport
j
c⊥( j

||
)

E

E

j⊥ j⊥

j
||

j
||

E
E

E
j
c

(b) (c)

Γ Γ

FIG. 1. �a� Dependences of jc� on j� and of jc� on j� �solid
lines� shown schematically in the j�-j� plane at a fixed B, see Sec.
II B 1. The crossing points of the lines correspond to the double
critical states when j�= jc� and j� = jc�. Shown are also the direc-
tions of the electric field for the appropriate critical states. �b� and
�c� The boundaries � �solid lines� of the regions � introduced by
Badía and López �Refs. 44–46� in the j�-j� plane, see Sec. II C.
Here the regions � are �b� a circle and �c� a rectangle. Shown are
also the directions of the electric field according to the approach of
Badía and López.
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pendicular to the local H the critical current density jc� de-
pends on its direction n�, the angle 	 is found from39

tan 	 = −
��ln jc��B,���

��
, �21�

where � is the angle defining the direction of n�

= �cos � , sin �� in the plane perpendicular to H. When jc� is
isotropic in this plane, we obtain 	=0, and thus u coincides
with n�.

Equations �20� and �21� give a relation between n� and u.
When 	�0, i.e., when the vector u differs from n�, the only
change in the critical state equations is that en� in Eq. �11� is
replaced by eu, and jc��H� in Eq. �10� is now jc��H ,n��.

3. C-critical states

As it was mentioned in the Introduction, in the case of an
infinite slab the critical states with flux-line cutting but with-
out flux-line transport were considered in Refs. 25 and 27.
For samples of arbitrary shape such C-critical states can be
described by Eqs. �1�, �2�, and �6�, but now the electric field
is along the local H, i.e., E=�e. This condition replaces Eq.
�7� �or �11��. The absolute value e of the electric field is now
determined by the condition j� = jc� which is equivalent to the
following current-voltage dependence:

�E� = 0 at j� � jc� ,

�E� → � at j� � jc� , �22�

and leads to the formula

j =
jc��H�
�n��

. �23�

Equations �22� and �23� replace Eqs. �9� and �10�, respec-
tively.

C. Variational principle

Recently,44–46 a variational principle was put forward to
describe the critical states in superconductors. In deriving
this principle Badía and López used Eqs. �1� and �6� and the
current-voltage law with �E�=0 when j is inside some region
� of the j space and �E�→� when j lies outside this region.
In other words, the critical states correspond to the boundary
� of the region �, see Figs. 1�b� and 1�c�. However, the
physical idea of the direction of the electric field, Eq. �7�,
was not incorporated in their principle. Instead of this they
find the direction of the electric field from some condition of
maximality of their Hamiltonian. This leads them to the con-
clusion that the electric fields in the critical states are di-
rected along the normals to the boundary � at the appropriate
points, Figs. 1�b� and 1�c�.

Within our approach their boundary � corresponds to the
contour composed of the dependences jc��j�� and jc��j��, see
Fig. 1�a� and Sec. II B 1. But in our general T-critical states
with j� � jc� the electric field is always perpendicular to the
local H �i.e., to j��, and in the C-critical states with flux-line
cutting but without flux-line transport the electric field is

along the local H. It is clear that only in the case when � is
a rectangle does the approach of Badía and López lead to the
correct results for the electric field, Fig. 1.54 However, in
general their approach leads to contradiction with existing
physical concepts.2,23,24 In particular, in the so-called isotro-
pic model, when � is a circle, Fig. 1�b�, the electric field E is
parallel to j, and hence a nonzero E along H appears even
for an infinitesimally small longitudinal component of j, i.e.,
flux-line cutting in that model occurs without any threshold
jc�.55

III. EXAMPLES

We first consider two examples of the general critical state
in an infinite slab of thickness d. Let this slab fill the space
�x�, �y���, �z��d /2, and be in a constant and uniform exter-
nal magnetic field Haz directed along the z axis, i.e., perpen-
dicularly to the slab plane. The critical current density jc� is
assumed to be constant in this slab. In the first example a
constant field Hax �Hax�Jc /2=djc� /2� is applied along the x
axis, and after that the magnetic field Hay is switched on in
the y direction. This example was considered in our paper,37

but there Hax, Hay, and Jc were assumed to be small as com-
pared with Haz, i.e., the tilt angle � of the magnetic field to
the z axis was always small. Now we do not use this restric-
tion, and the angle � may be sufficiently large. But we still
assume that flux-line cutting does not occur �see below�. This
example may be considered as a modification of the experi-
mental conditions of Ref. 34 where the suppression of the
magnetic moment of the slab was investigated at Haz=0. In
the second example the critical current along the y axis is
applied to a slab, and after that the magnetic field Hay is
switched on in the same direction.

The critical state equations are the same for these two
examples. The difference is only in the boundary conditions.
Let us write these equations. The condition div j=�jz /�z=0
together with �jz�z=±d/2=0 yields jz=0, i.e., the currents flow
in the x-y planes.56 Then, to describe the critical state, we
may use the parametrization

j = jc��,�,���cos ��z�,sin ��z�,0� ,

H�z� = zHaz + h�z� ,

h�z� = �hx�z�,hy�z�,0� , �24�

where ẑ is the unit vector along the z axis; jc�� ,� ,�� is the
magnitude of the critical current density when a flux-line
element is given by the angles � and �, tan �=hy /hx, tan �
= �hx

2+hy
2�1/2 /Haz, while the current flows in the direction de-

fined by the angle �; all these angles generally depend on z.
A dependence of jc on the orientation of the local H appears
even at a constant jc� if jc is not perpendicular to this H, and
this dependence is described by formula �10�, where D in
terms of the angles is

D = �1 − cos2�� − ��sin2 ��1/2. �25�

With this parametrization, the equation div H=0 is satis-
fied identically, while the Maxwell equation rot H= j reads
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dhx

dz
=

jc� sin �

D
, �26�

−
dhy

dz
=

jc� cos �

D
. �27�

These equations differ from the appropriate equations of Ref.
37 by the factor 1 /D, which is not unity now.

In the case under study one has n= �cos � , sin � ,0�, �
= �sin � cos � , sin � sin � , cos ��. Then, a direct calculation
gives the following expressions for the vector n� defining
the direction of the current component perpendicular to H:

n�x =
cos � − sin2 � cos � cos�� − ��

D
,

n�y =
sin � − sin2 � sin � cos�� − ��

D
,

n�z = −
sin � cos � cos�� − ��

D
, �28�

and equation �12� for the electric field e takes the form

n�x�en�x�� + n�y�en�y�� − �� sin2 ��n�x� n�y − n�xn�y� �e = 0,

�29�

where the prime means � /�z. For the angle � we obtain from
Eq. �14�,

�0
jc�

D

��

�t
= �en�y�� cos � − �en�x�� sin � . �30�

At small � when D�1 and n��n, Eqs. �29� and �30� reduce
to the form that was used in Ref. 37,

e� − ����2e = 0, �31�

�0jc�

��

�t
= 2e��� + e��. �32�

Equations �26�–�30� provide the complete description of
any general T-critical state in an infinite slab with jc��H�
=constant in the absence of flux-line cutting. For different
critical-state problems only the boundary conditions should
be appropriately chosen. Note that the usual Bean critical
states in the slab correspond to discontinuous solutions ��z�
of these equations.

In the case of the slab, condition �15� of absence of flux-
line cutting leads to the following restriction on the angles �,
�, and �:

sin ��cos�� − ���
D

�
jc�

jc�

. �33�

This condition is fulfilled at any � and �, i.e., at any direc-
tion of j and h, if the z component of the magnetic field, Haz,
is not too small,

tan � =
	hx

2 + hy
2

Haz
�

jc�

jc�

. �34�

We imply this condition to be fulfilled below.

A. First example: Hax and Hay

In the first example that we consider, a constant field Hax
�Hax�Jc /2=djc� /2� is applied along the x axis, and after
that the magnetic field Hay is switched on in the y direction.
Then, the boundary conditions to Eqs. �26�–�30� at z=d /2
are

hx = Hax, hy = Hay�t� , �35�

�en�x�� = − �0
dHay�t�

dt
, �en�y�� = 0, �36�

or equivalently, conditions �36�, which follow from formula
�13�, can be rewritten in the form

e��n�x� n�y − n�xn�y� � = �0
dHay�t�

dt
n�y� ,

e�n�x� n�y − n�xn�y� � = − �0
dHay�t�

dt
n�y . �37�

Taking into account the symmetry of the problem, e�−z�
=e�z�, ��−z�=��z�−
, h�−z�=h�z�, it is sufficient to solve
Eqs. �26�–�30� in the region 0�z�d /2. At z=0, where the
direction of the currents changes discontinuously, one has the
additional condition for e,

e�0� = 0. �38�

Since after switching on Hax, the critical currents flow in the
y direction, we have the following initial condition for Eq.
�30�:

��z,t = 0� = 
/2, �39�

where the moment t=0 corresponds to the beginning of
switching on Hay. As to the initial magnetic-field profiles,
Eqs. �26�, �27�, and �39� give hy�z , t=0�=Hay =0 and hx�z , t
=0�=Hax−0.5Jc+ jc�z where Jc� jc�d.

In the limiting case Haz�Hax, Hay, Jc, the solution of Eqs.
�26�–�30� with conditions �35�–�39� was investigated in Ref.
37. Since in this case n��n, one finds that the electric field
en� is along the current density jn, and in fact, we arrive at
a situation which can be formally described by the so-called
isotropic model of Badía and López.45 As was explained in
Sec. II C, this model in general does not lead to the correct
direction of the electric field. In particular, it fails in the
following situation discussed by Badía and López:45 A slab
with Haz=0, Hax=constant, and oscillating Hay. But in the
case Haz�Hax, Hay, Jc, which in reality was not considered
in Ref. 45, the isotropic model gives the correct results, and
the numerical data of Ref. 45 agree57 with those of Ref. 37
and can be used to describe this limiting situation.

In the case Haz�Hax, Hay, Jc, the solution of Eqs.
�26�–�30� with conditions �35�–�39� is shown in Fig. 2. We
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present ��z�, ��z�, hx�z�, hy�z� in the sequence of the critical
states developed in the process of increasing Hay. We do not
show the electric field e that is proportional to the sweep rate

Ḣay and plays an auxiliary role. As was noticed previously,37

in stark contrast to the Bean critical states, in which any
change of the current direction occurs inside a narrow front,
in the general T-critical state the change of the angle ��z�
with increasing Hay has diffusive character. But there is a
difference between the data of Fig. 2 and the results37 ob-
tained in the case Haz�Hax, Hay, Jc when the currents in the
critical state are almost perpendicular to the local magnetic
fields. In the latter case at Hay �Jc the field profile hx�z�
becomes practically constant and coincides with Hax, while
the angle � tends to 
. On the other hand, we see from Fig.
2 that for Haz�Jc the angle � lies in the interval 
��
�3
 /2 at Hay �Jc. In other words, the y component of j�z�
has the opposite direction as compared with the initial state.
This leads to the fact that at Hay �Jc the field hx increases

towards the central plane of the slab, z=0 �but h�z�
=	hx

2+hy
2 still decreases towards this plane�, and the initial

diamagnetic state with the magnetic moment Mx=−jc�d2 /4
�per unit area� turns into a paramagnetic state with positive
Mx.

In Fig. 3 we show the same sequence of the critical states
but in the case of the paramagnetic initial state. This initial
state is obtained if one first increases the field Hax essentially
above the field of full flux penetration and then decreases it
to a prescribed value. Now the initial condition to Eq. �30� is

��z,t = 0� = − 
/2, �40�

and the magnetic fields at t=0 are given by hy�z , t=0�=Hay

=0, hx�z , t=0�=Hax+0.5Jc− jc�z. It is seen from Fig. 3 that
although at Hay �Haz a decay of the initial paramagnetic
profile hx�z� occurs, with a further increase of Hay new para-
magnetic states are developed that are close to the appropri-
ate states of Fig. 2.

In Fig. 4 we compare the Hay dependences of the mag-
netic moment �Mx, My� per unit area of the slab,58
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in the critical states of the slab at Haz=1.5, Hax=1.1, and Hay
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M = �
−d/2

d/2

z�ẑ � j�dz , �41�

obtained using the two sequences of the profiles j�z ,Hay�
developed from the diamagnetic and paramagnetic initial
states with the same Hax. It is seen that in both cases �Mx� and
�My�, and even more M =	Mx

2+My
2, can exceed the “satura-

tion value” jc�d2 /4 used as a unit in Fig. 4. This is possible
since the current density j exceeds jc� when it does not flow
at a right angle to the vortices. This excess of j leads to that
Mx�Hay� does not saturate at large Hay but continues to in-
crease nearly linearly, with slightly negative curvature. The
other component, My�Hay�, at large Hay practically saturates
to a value slightly lower than −jc�d2 /4. Of course, one
should keep in mind that in reality the region of large Hay
where these results for M are applicable is limited by condi-
tion �34�. Note also that in agreement with Figs. 2 and 3 the
magnetic moment Mx�Hay� is always positive at sufficiently
large Hay, and the diamagnetic and paramagnetic initial
states lead to practically the same Mx at such Hay.

As it is known, field-cooled type-II superconducting
samples frequently exhibit a positive magnetic moment; see,
e.g., Ref. 59, and references therein. Different explanations
of this paramagnetic effect were put forward. In particular,
this effect may be associated with the compression of
trapped magnetic flux in the sample.60 The data of Figs. 2–4
show that in principle, the paramagnetic effect may be also
due to the field-cooling caused generation of critical states in
which the circulating currents are not perpendicular to the
local magnetic fields.

The general T-critical states considered here can be real-
ized in experiments similar to the experiments of Park et
al.61 and Fisher et al.34 except that now the field Haz perpen-
dicular to the plane of the sample is not equal to zero. Such
investigations would enable one to compare the theoretical
results for the general T-critical states with the appropriate
experimental data avoiding complications due to flux-line
cutting. To prepare the initial state which was described
above, e.g., in a superconducting strip of length 2L and width
2w considerably exceeding its thickness d, 2L�2w�d, one
may apply first the field Haz perpendicular to the plane of the
strip, and then an oscillating in-plane magnetic field Hax
across the width of the strip. This “shaking” leads to a ho-
mogeneous distribution of the perpendicular field Haz over
the sample.62 After this shaking process one keeps Hax= con-
stant and applies the field Hay along the axis of the strip.

B. Second example: Jy and Hay

We now consider the second example of the general
T-critical state in the slab. It is assumed that the slab is in a
uniform magnetic field Haz along the z axis, the current J
�per unit length along x� flows in the y direction, and at t
=0 the field Hay is switched on. In this case the boundary
conditions at z=d /2 are

hx =
J

2
, hy = Hay�t� , �42�

�en�x�� = − �0
dHay�t�

dt
, �en�y�� = 0. �43�

The symmetry of the problem is now described by the rela-
tionships: e�−z�=e�z�, ��−z�=
−��z�, hx�−z�=−hx�z�, hy�
−z�=hy�z�, and at z=0 the direction of the critical currents
changes continuously. Thus, instead of condition �38� we
have at z=0,

hx�0� = 0, ��0� = 
/2. �44�

As in the first example, we shall consider the critical states
only in the interval 0�z�d /2.

If J is less than Jc= jc�d, in the initial state the current
flows only at 1− �J /Jc��2z /d�1. After switching on Hay

the current distribution develops over the whole thickness d
when Hay reaches a penetration field Hay

0 �Jc /2, and we shall
analyze the critical states only after this penetration of the
current has occurred, i.e., at Hay �Hay

0 .
Below we consider only the case Haz�Jc. In this case in

the leading order in the small parameter Jc /Haz we find the
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following analytic solution of Eqs. �26�–�30� with boundary
conditions �42�–�44�, see also Fig. 5:

e =
�0ḢayaD

sin � cos �
, cot � = −

z cos �

a
,

hx =
jc�a

cos �
ln
 z

a
+	1 +

z2

a2� ,

hy = Hay − jc�a
	1 +
d2

4a2 −	1 +
z2

a2� , �45�

where D2=1−cos2��−��sin2 ��1−sin2 � sin2 � �since ei-
ther ��
 /2 or sin2 ��1�, cos2 ��Haz

2 / �Haz
2 +Hay

2 �, and the
length a is determined by the sheet current J and cos �,

J

Jc
cos � =

2a

d
ln
 d

2a
+	1 +

d2

4a2� =
2a

d
arcsinh

d

2a
.

�46�

We shall denote the solution of Eq. �46� as 2a /d
=g�J cos � /Jc�. The function g�u� defined by u
=g arcsinh�1/g� increases monotonically with its argument
u, Fig. 6. Hence with increasing Hay, i.e., with decreasing
cos �, the length a decreases. When J is close to Jc and
cos ��1, the length a tends to �, while for J�Jc one has
2a /d�J cos � /Jc�1. A very good approximation valid at
all u is41

g�u� � u� ln
�1 + g0

2�1/2 + 1

g0
,

g0�u� =
u + u2

�24�1 − u��1/2 . �47�

The field of full flux penetration can be estimated from
hy�0�=0,

Hay
0 = jc�a
	1 +

d2

4a2 − 1� , �48�

where a is determined by Eq. �46�. When Hay �Haz, one has
cos ��1, and the length a is almost independent of Hay.
Thus, at such Hay the profiles ��z�, hx�z�, and hy�z�−hay

practically do not change with increasing Hay. Figure 5
shows that this property of the profiles, in fact, holds in the
region Hay �Haz /2 when J /Jc=0.5. However, if J is close to
Jc, the length a sharply depends on cos �, Fig. 6, and the
width of this region shrinks.

Solution �45� can be obtained as follows: We set

�en�x�� = 0, �en�y�� = 0, �49�

since it may be verified that the term proportional to
�� sin2 � in Eq. �29� and the left-hand side of Eq. �30� are
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small in the parameter Jc /Haz and hence may be omitted in
the first approximation. Equations �49� mean that en�x and
en�y are linear functions of z, and thus each of them gener-
ally depends on two constants. However, taking into account
boundary conditions �43� and the symmetry of the problem,
one finds that the functions en�x and en�y are expressed by
only one constant that coincides with en�y. If we denote this
constant as a cos � and use

n�x �
cos �

D
, n�y �

sin � cos2 �

D
, �50�

we arrive at formulas �45�. The profiles hx�z� and hy�z� fol-
low from Eqs. �26� and �27�, and the constant a can be found
from the condition

J = Jy = �
−d/2

d/2 dzjc� sin �

D
, �51�

which is just Eq. �46�.
It is also instructive to write the electric-field components

Ex�en�x and Ey �en�y explicitly. Using Eqs. �45� and �50�,
we find

Ex = − �0Ḣayz , �52�

Ey = �0Ḣaya cos � =
�0Ḣayd

2
cos �g�J cos �/Jc� . �53�

The field Ex results from the tilt of a vortex line along the y
direction when Hay is applied to the slab. Note that
�−d/2

d/2 Ex�z�dz=0 since the upper �z�0� and lower �z�0�
parts of the vortex move in opposite directions when the tilt
occurs. On the other hand, Ey is independent of z. This com-
ponent of the electric field is due to a drift of the vortex as a
whole in the x direction when Hay is applied to the sample.41

The above formulas for the slab with a current enable one
to reproduce a number of results for the vortex-shaking ef-
fect that were derived from geometrical considerations.40,41

In particular, the expression for ��z� in Eqs. �45�, formula
�46�, and Eq. �53�, in fact, coincide with Eqs. �4�, �6�, and
�28� from Ref. 41 in which the so-called longitudinal vortex-
shaking effect in a thin strip was considered. To obtain the
formulas for the vortex-shaking effect in a rectangular
platelet,40 one should consider the slab with Haz�Hay, Jc
and with the total current J flowing at an arbitrary angle to
the y axis, i.e., when J= �Jx ,Jy�. The appropriate solution of
the critical state equations is still obtained from Eqs. �49�,
but now there is no more symmetry restriction on the z de-
pendences of all the functions, and en�x and en�y are ex-
pressed via two constants. Similarly to Eq. �51�, these con-
stants can be expressed via Jx and Jy, and the solution thus
obtained reproduces the appropriate results of Ref. 40.

C. Third example: strip

We now consider the third example of the general
T-critical state. Let a thin strip fill the space �x��w, �y���,
�z��d /2 �d�w�, and be in a constant and uniform external
magnetic field Haz directed along the z axis, i.e., perpendicu-

larly to the strip plane. The critical current density jc� is still
assumed to be constant, and let Haz considerably exceed Jc
= jc�d so that at the initial moment of time, t=0, the strip is
in the fully penetrated Bean critical state. In other words, the
magnetic-field profile Hz�x� in the strip is described by the
well-known function,5–7 and one has Jy�x�=Jc for −w�x
�0 and Jy�x�=−Jc for w�x�0, where the sheet current Jy
is the current density integrated over the thickness d. At t
�0 the magnetic field Hay is switched on in the y direction,
and hence the applied field is tilted towards the axis of the
strip. Note that the critical states in isotropic and anisotropic
strips placed in inclined magnetic fields were studied in Refs.
12–16. However, in all these papers the external magnetic
field was tilted perpendicularly to the axis of the strip, the
currents in the critical states were always perpendicular to
local magnetic fields, and thus, the usual Bean critical states
occurred in the strips. In the considered case the general
T-critical states develop in the strip, and these states differ
from the states of the second example in that the magnetic
field Hz and the currents J are not uniform in the x direction
any more.

Strictly speaking, the description of the magnetic-field tilt
towards the axis of the strip reduces to solving a two-
dimensional general T-critical state problem. However, the
smallness of the parameter d /w enables us to simplify this
problem by application of the approach of Ref. 39. Within
this approach, we split the problem into two simpler prob-
lems: A one-dimensional problem across the thickness of the
sample, and a problem for the infinitely thin strip. Namely,
we first interpret a small section of the strip around an arbi-
trary point x �see Fig. 7� as an “infinite” slab of thickness d
placed in a perpendicular dc magnetic field Hz�x� and in a
parallel field Hay and carrying a sheet current Jy�x�. This is
just the problem that has been solved in Sec. III B. We then
use the resulting electric field Ey obtained for the slab, Eq.
�53�, as the local electric field Ey�x� for an infinitely thin
strip, to calculate the temporal evolution of the sheet current
Jy�x� and of the magnetic field Hz�x� in this strip by the
method of Refs. 63 and 64. The resulting equation for Jy�x , t�
can be written in the form62

�Jy�x,t�
�t

=
2


�0
�

−w

w du

u − x

w2 − u2

w2 − x2�1/2�Ey�Jy�
�u

, �54�

where Ey�Jy� is given by Eq. �53�. On determining Jy�x , t�,
the magnetic-field profiles are found from the Biot-Savart
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FIG. 7. Schematic picture of the strip. Shown is also a “slab” cut
out near the point x, see Sec. III C.
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law. Since Ey�Jy�
 Ḣay, we see again that the temporal de-
pendence of the current and magnetic-field profiles is only a
parametrization of their dependence on Hay, Sec. II A. It also
follows from Eqs. �53� and �54� that these profiles depend on
the parameters Hay, Haz, d, w via the following combina-
tions: Jy =Jy�x /w ,Hay /Haz , P�, Hz=Hz�x /w ,Hay /Haz , P�
where we have introduced the notation P��d /2w�Haz /Jc.
Note that the considered critical state problem is similar to
the problem of the longitudinal vortex-shaking effect in a
thin strip.41 The difference between the problems is that the
magnetic field Hay now increases monotonically rather than
oscillates about Hay =0, and here we present results up to
large values of Hay even as compared with Haz.

In Figs. 8 and 9 we show the profiles J�x ,Hay�
��Jy�x ,Hay�� and Hz�x ,Hay� that develop in the strip during
increase of the longitudinal field component Hay, i.e., when

the applied field is tilted away from the z axis towards the
strip axis y. The profiles J�x ,Hay� take the shape similar to
the shape of the profiles in the longitudinal vortex-shaking
effect,41 and their magnitude decreases with increasing Hay.
However, in contrast to the shaking effect, this magnitude
does not decrease down to zero but tends to a finite limit that
depends on the only parameter P= �d /2w��Haz /Jc�. Thus, at
Hay �Haz the current profiles J�x ,Hay� and the magnetic-
field profiles Hz�x ,Hay� reach nonzero limiting distributions.
The existence of such limiting J�x� and Hz�x� can be under-
stood from the following considerations: At small cos �, if
one neglects logarithmic corrections, the electric field Ey, Eq.

�53�, is proportional to Ḣay�d /2w��J /Jc�cos2 �, and Eq. �54�
has a solution with separable variables, Jy�x ,Hay�
=Jcf�x /w�F�Hay� where f�x /w� and F�Hay� are some func-
tions and cos2 �=Haz

2 / �Haz
2 +Hay

2 �. Inserting this form of
Jy�x ,Hay� into Eq. �54�, we find that

ln F�Hay� 
 − P arctan
Hay

Haz
+ const, �55�

i.e., at Hay→� the function F�Hay� does not tend to zero. In
other words, with increasing Hay the decay rate of J de-
creases so quickly that J does not reach zero even in the limit
Hay→�.

In Fig. 10 we show the magnetic moment per unit length
of the strip, Mz, in the general T-critical states developed
during increase of Hay,

Mz�Hay� = − 2�
0

w

x�Jy�x,Hay��dx . �56�

Here Jy�x ,Hay� is the solution of Eq. �54�, see Fig. 8. At the
initial moment of time, when the usual Bean critical state
occurs, we have Mz�0�=−Jcw

2. The application of Hay leads
to the relaxation of Mz towards a saturation value Mz���.
The normalized moment Mz�Hay� /Mz�0� depends only on
Hay /Haz and the parameter P. All the curves of Fig. 10 may
be well fitted by stretched exponentials of the form s+ �1
−s�exp�−p�Hay /Haz�q�, with some s and p depending on P
and with q close to 2/3.65 However, an expression useful for
all P is suggested by Fig. 10 �bottom�, namely,

Mz�Hay�
Mz�0�

� exp
− 1.67�P arctan�Hay/Haz��0.65� . �57�

This expression, depicted in Fig. 10 �top and bottom� as dots,
gives excellent fits to the numerical results for not too small
P�0.5, but even for smaller P it is qualitatively correct and
only slightly underestimates the exact Mz at large Hay /Haz.

The saturation values s=Mz��� /Mz�0� are determined by
the above-mentioned limiting current profiles and depend on
the only parameter P= �d /2w�Haz /Jc. These values obtained
numerically are plotted in the inset of Fig. 10 as circles,
while the solid line in this inset is the following analytic
approximation;

s�P� � „0.5 − 0.5 tanh
0.41�ln�P� − 0.5��…4. �58�
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FIG. 8. The sheet current J�x���Jy�x�� in the strip to which first
a large perpendicular magnetic field Haz=20 is applied and then an
increasing longitudinal field Hay. The aspect ratio of the strip is
2w /d=20. The magnetic fields are in units of Jc= jc�d.
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FIG. 9. The perpendicular magnetic field Hz�x� caused by the
sheet current of Fig. 8. The magnetic fields are in units of Jc.
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When the magnetic field Hay is switched on, not only does
the z component Mz of the magnetic moment change but
there appears also a magnetic moment My along the axis of
the strip. This moment �per unit length of the strip� is defined
by the expression

My�Hay� = �
−w

w

dx�
−d/2

d/2

dzjxz , �59�

where the x component of the current density, jx
= jc� cos � /D, can be found using solution �45�. With Eq.
�27�, formula �59� can be rewritten in the form

My�Hay� = − �
−w

w

dx�
−d/2

d/2

dz�Hay − hy�x,z�� . �60�

In other words, My is the “expelled” flux in the y direction.
Inserting Eqs. �45� into this formula, we obtain

My�Hay�
My

0 = �
0

w dx

w
�	1 + g2�u� − ug�u�� , �61�

where My
0=−jc�d2w /2 is the magnetic moment in the fully

penetrated Bean critical state which occurs if the field Hay
alone is applied to the strip, u=J cos � /Jc, and J=J�x ,Hay� is
the current profile obtained from Eq. �54�, see Fig. 8.

Figure 11 �top� shows the normalized magnetic moment
My�Hay� /May��� plotted versus Hay /Haz for the same values
of the parameter P as in Fig. 10. The saturation value May���
always coincides with My

0=−jc�d2w /2. Beside this, we find
numerically the following interesting result: If P is not too
small, P�0.5, the normalized magnetic moment plotted ver-
sus PHay /Haz= �d /2w�Hay /Jc is well described by the unique
curve, Fig. 11 �bottom�,

My�Hay�
My���

� 1 − exp
− 4.8��d/2w��Hay/Jc��0.44� . �62�

At smaller P values, fits of the form �62� are still possible,
but with different fitting parameters.
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ment of the strip shown in Fig. 7, plotted versus Hay /Haz �top� and
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The results of this section describe the relaxation of
J�x ,Hay� and Hz�x ,Hay� to the limiting profiles and of
Mz�Hay� and My�Hay� to their saturation values. According to
Figs. 8–11 and Eqs. �57� and �62�, this relaxation mainly
finishes at some Hay proportional to min �Haz ,2wJc /d� �note
that Haz�Jc=djc� for Eq. �53� to be valid and for the full
flux penetration to occur in the initial state�. All these results
can be verified in experiments similar, e.g., to those of Refs.
66 and 67. However, we emphasize that in contrast to Refs.
66 and 67, the magnetic-field component Haz must be
switched on before Hay. This guarantees absence of flux-line
cutting for not too large Hay, see Eq. �34�. If similarly to
experiments66,67 the in-plane magnetic field is switched on
before Haz, completely different critical states will develop.

IV. CONCLUSIONS

In this paper we point out how to calculate the general
T-critical �cutting-free� states in an arbitrarily shaped type-II
superconductor when the applied magnetic field Ha slowly
changes in its magnitude and direction. In accordance with
the definition of the general T-critical state, it is assumed
here that the external magnetic field changes in such a man-
ner that flux cutting does not occur in the sample. Our ap-
proach enables one to take into account the anisotropy of
flux-line pinning and the dependence of the critical current
density perpendicular to a local magnetic field, jc�, on the
longitudinal component of the current density j�. We also
show that the variational principle recently proposed44–46

cannot give the correct description of the general T-critical
states for many situations.

We analyze three examples of the general T-critical states,
at least two of which may be investigated experimentally. In

particular, we study a seemingly simple problem that has not
been solved as yet, viz., we consider the critical states in a
slab placed in a uniform perpendicular magnetic field Haz
and then two components of the in-plane magnetic field, Hax
and Hay, are applied successively, Sec. III A. We obtain that
one of the in-plane components of the magnetic moment, Mx,
becomes positive with increasing Hay for any sign of Mx in
the initial state �i.e., at Hay =0�. This paramagnetic effect is
due to the fact that the currents in the critical states are not
perpendicular to the local magnetic fields. This effect is es-
pecially evident when Haz is of the order of the self-fields of
the slab.

In the other example, we analyze the general T-critical
states in a long thin strip placed in a perpendicular magnetic
field Haz which then tilts towards the axis of the strip y, Sec.
III C. When Hay, the axial component of the applied mag-
netic field, increases, the magnetic-field and current profiles
across the width of the strip tend to limiting profiles, and the
components of the magnetic moment, Mz and My, reach satu-
ration values. The limiting profiles and the saturation value
Mz��� for Mz�Hay� are determined by the only parameter P
= �d /2w�Haz /Jc where d and 2w are the thickness and the
width of the strip, respectively, and Jc=djc�. If P is not too
large, P�5, the limiting profiles and Mz��� noticeably differ
from zero, while at P�5 they become very small and prac-
tically vanish. The saturation value for My is always equal to
My

0=−jc�d2w /2.
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