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Graphite-superconductor junctions as a probe of order-parameter symmetry
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We discuss a method for determining the order-parameter symmetry of quasi-one- and quasi-two-
dimensional unconventional superconductors by the use of graphite-superconductor junctions. The use of a
graphite gate voltage, in combination with a bias tunneling voltage, allows access to more information con-
cerning gap values on the Fermi surface than with conventional tunneling spectroscopy, where only a bias
voltage is employed. In particular, the use of a gate voltage allows one to tune the momentum-space size of the
tunneling region, thus accessing gap values over local regions of the superconductor Fermi surface, in contrast

to conventional tunneling techniques.
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I. INTRODUCTION

Since the initial discovery of unconventional supercon-
ductivity in CeCu,Si, by Steglich et al.,' much effort has
centered on identifying the pairing state, or order-parameter
symmetry, of superconducting materials. One highly useful
tool has been low-temperature thermodynamics, such as spe-
cific heat and superfluid density and also nuclear spin relax-
ation rate and thermal conductivity. As is well known, in
conventional superconductors these quantities generally dis-
play exponentially activated behavior, while in unconven-
tional materials power-law behavior is observed. However,
the only directionally sensitive probes, giving information
about the angular position of nodes, currently in use are the
magnetospecific heat and magnetothermal conductivity, as
used by, e.g., Izawa et al.? and others. In these techniques, a
sample’s specific heat or thermal conductivity is measured in
a magnetic field applied at various directions. The Doppler-
shifted quasiparticles’ yield information about the gap value
when the gap value is less than the Doppler shift in quasi-
particle energy.* This technique has been used as a powerful
means for determining the likely location and type (point or
line, first order or second order) of order-parameter nodes,
and thereby finding the symmetry of the order parameter.
Knowing this symmetry is of great value for understanding
the mechanism of superconductivity in a given material.

In this paper, we propose a possible method for analyzing
order-parameter symmetry that has the potential to yield in-
formation about the local value of the gap function at spe-
cific regions on the Fermi surface, not just the nodes.

II. PROPOSED METHOD

In the common tunneling setup, bias voltage V applied to
the normal metal-insulator-superconductor (NIS) tunneling
junction selects the energies of quasiparticles on the S side
into which the normal electrons can tunnel. Quasiparticle
momenta, however, are not selected and electrons with all
possible momenta compatible with boundary conditions con-
tribute to the tunneling current.

The basis of the method proposed here is the use of an
additional gate voltage V, applied to the N electrode to select
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the momentum range on the N side from which electrons can
tunnel. A schematic setup is shown in Fig. 1. It shows the
arrangement of superconductor, insulator layer, graphite
electrode, and gate, along with the two voltages, gate (V,)
and tunneling bias (V). If a common metal is used as elec-
trode, momentum selection is not possible because v,
changes the Fermi momentum only slightly. This is different
if a semimetal electrode is applied where the relative change
of kr induced by V, may be much bigger. Most suitable for
this purpose would be an appropriately oriented graphite
sheet (bc plane || to interface) acting as the N electrode in an
NIS junction. Graphite has a very peculiar quasi-two-
dimensional (quasi-2D) band structure which leads to narrow
cigar- or rodlike Fermi surface sheets oriented along the k. [
HKH line in the three-dimensional Brillouin zone (BZ)].> A
single graphite sheet (graphene) is a zero gap semiconductor
with Dirac points at the corners of the hexagon BZ (which
turn into H points in graphite). In graphite, the interplane
hopping is much smaller than the in-plane hopping; there-
fore, slightly dispersive bands along HKH evolve from the
Dirac point. For zero gate voltage V,, the Fermi level is in
the center of the flatband along k_, resulting in the Fermi
surface (FS) cigar spanning half the distance along HKH
(Ref. 5) (see Fig. 2). Use of a positive or negative gate volt-
age V, increases or decreases the length of the flatband cigar-
shaped Fermi surfaces in the (001) direction, respectively, as
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FIG. 1. Schematic drawing of the proposed NIS junction with
layering arrangement of gate, graphite, insulator, and supercon-
ductor, with bias (V) and gate (V,) voltages for energy and momen-
tum selection of quasiparticles indicated, respectively.
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FIG. 2. A schematic diagram of the flatband centered at the K
point, with the Fermi line at zero gate voltage indicated.

shown in Fig. 3. Changing the gate voltage from —Vg to Vg
changes the length of the FS cigar from O to 7/c, i.e., the
whole length of the BZ along k..

Thus, when wave vector matching conditions at the
boundary are applied, this method selects a specific, tunable
region of the superconductor Fermi surface on which elec-
trons propagate. The relevant normal material Fermi surface
is effectively a set of rodlike Fermi lines running in the k,
direction. In the Blonder-Tinkham-Klapwijk (BTK) theory,’
a differential tunneling conductance feature is usually ob-
served at the gap magnitude. Given that in this proposed
method one studies specific regions of momentum space, one
observes a conductance feature at the local gap magnitude or
at the gap feature occupying the largest region of phase space
(on the superconductor Fermi surface) in a given geometry.

To make the issue clear, we have prepared diagrams of all
the geometries to be used for this method, shown in Fig. 3. It
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shows a transverse and a longitudinal geometry. The top part
of the figure shows the orientation of the graphite reciprocal
cell, with the flatbands along the H-K line perpendicular to
the nodes, which we have chosen to be vertical in this ge-
ometry. Several possible variations on this geometry, either
by choosing horizontal nodes, rotating the graphite by 90°, or
both, are clearly possible, and we note that a one-
dimensional (1D) superconductor, with the superconducting
Fermi cylinder replaced by a quasi-1D Fermi sheet, can also
be used in all these geometries. For clarity, the top right
figure shows the graphite-superconductor setup in real space;
the graphite bc plane is the contact plane with the supercon-
ductor.

The bottom right figure shows a schematic diagram of a
two-dimensional cylindrical Fermi surface in a longitudinal
nodal configuration, with the longitudinal axis into the paper.
In this geometry, there are two graphite Fermi lines, equally
displaced from the origin in opposite directions, affecting the
conductance. Due to the necessity of conserving momentum
parallel to the interface (from the translational invariance in
this direction), conductance will only occur at the four points
where the graphite Fermi lines contact the cylindrical Fermi
surface. This will happen at appropriately chosen bias volt-
ages to tune the size of the Fermi line to the size of
the superconducting Fermi cylinder, and will yield informa-
tion about the local value of the gap at each of these four
points. Given the number of cylindrical Fermi surface
superconductors—the cuprates, CeColns, several organics—
this technique could prove quite useful in determining the
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FIG. 3. The geometries for use
in a graphite-superconductor junc-
tion. Top left: the graphite unit
cell and a 1D or 2D Fermi surface.
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Top right: the top configuration in
real space; note that the x-y axes
are rotated 30° with respect to
the momentum-space k-k, axes.
Bottom left: an expanded version
of the top figure. Bottom right:
the longitudinal 2D geometry,
with the cylindrical Fermi surface
perpendicular to the paper. Here,
0, is the relative angle between
Cartesian coordinates on the N
side (HKL plane) and S side (ab
plane).
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order-parameter symmetry of unconventional superconduct-
ors. CeColns, in particular, has had an ongoing controversy
concerning whether its order parameter has d,2_2 or d,,
symmetry,'® and an experiment in this configuration may be
able to resolve this issue. We note that half the distance be-
tween the graphite Fermi lines must be nearly the same size
as the CeColns Fermi momentum (assuming a cylindrical
Fermi surface®), or there will be no intersection (in parallel
space) between the Fermi lines and the Fermi cylinder. For-
tuitously, this is, in fact, the case; based on the CeColns
a-axis lattice constant of 4.62 10%,9 we find kz=0.77 Al
while half the Fermi line separation is 0.87 A",

We note that the above discussion will necessarily be
complicated by multiband effects, particularly in the case
where different gaps arise on different bands, and by three
dimensionality, as is observed in some of the “115” materials
(though not so much for CeColns). With regard to multiband
effects, due to the conservation of parallel momentum, bands
whose intersections with the Fermi surface are well separated
(in momentum space) should not interact appreciably, and
the gap structure on the band meeting the boundary condi-
tions is the one that will be measured. Three dimensionality
necessarily complicates measurements using the proposed
technique, which is not generally well suited to such materi-
als. However, the longitudinal configuration described above
should still be effective for materials whose Fermi surface
consists of an undulating cylinder, provided the nodal lines
are parallel to the cylindrical axis and the parallel boundary
conditions can be satisfied.

Finally, we note that based on the tight-binding fits for
graphite,’ there is a simple relationship between the length of
the “cigar-type” Fermi surface oriented along HKH and the
gate voltage V, applied to the graphite. It is obtained by
approximating the dispersion in Ref. 7 by

K2+ i
er=ep—1, cos(2ckz)+;72, (1)
N

where ¢, =0.02 eV is the interlayer hopping and the Fermi
level e;=—0.02 eV is at the band center which is chosen to
adjust the Dirac point at H to zero energy. Furthermore, my
is the in-plane effective band mass of graphite around the
HKH line. The width of the FS cigar in the ab plane is given
by k‘?: (2myt | ) <ar/a. We neglect it in the following discus-
sion and simply approximate the FS cigar by a Fermi line
parallel to HKH. Its length for V,=0 is given by 2k,,,, with
kmax=gi. Application of a positive or negative gate voltage
will change the chemical potential to gx+eV,. This leads to

1 ev, 1
kmax = Z COS_1<— t_lg> = Z COS_I(_ SOVg)9 (2)

with V, measured in volts. Thus, changing the gate voltage
V, from —Vg to ngt /e sweeps the Fermi line from k,,,,
=0 over the whole HKH line to the zone boundary kmax=2—’7C
(the H point). This simple feature of the quasi-2D graphite
band structure is utilized in the tunneling setup proposed
above.
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III. BOGOLIUBOV-DE GENNES EQUATION,
COHERENCE FACTORS, AND CALCULATION
FORMALISM

The microscopic state of a superconductor is described by

the Bogoliubov—de Gennes (BdG) equations:®!1-13

ﬁz(ﬁ+ﬁ> hZ&zf
of

2

LIf o> ay? dz
if P 2my + o, +u+ V(x) [f(x,k,1)
- A(X’k)g(xat)5 (3)
w P55 w2
08 X 4
ih P 2 + o, +u+ V(x) |g(x,Kk,1)
- A(x,K)f(x,1). (4)

We have written these equations in a form to make clear the
different graphite effective masses. Strictly speaking, the m,
for graphite is a function of wave vector, as the band is
nonparabolic. However, this makes little difference in the
formalism because the dispersion in this direction is already
included in the energy in the coherence factors below.

The BdG equations have respective electron and hole so-
lutions,

f(x.k,1) =u(k)exp(i(k - r — Et)/h), (5)
g(x,k,1) =v(k)exp(i(k - r + Er)/h). (6)
Here, u and v are the usual BCS coherence factors:!%1415
1 [ e
u(k) = \/5(1 +\VE>—|A%(K)|/E), (7)
1 —_—
v(k) = \/5(1 - VE* - |A*(K)|/E). (8)

We now study the process wherein an incoming electron
in graphite undergoes Andreev'® and normal reflection at the
N-S interface. An electronlike quasiparticle and a backscat-
tered holelike quasiparticle are transmitted to the supercon-
ductor, as shown in Fig. 2 of Ref. 17.

As in the original BTK work,® we have used a boundary
delta-function potential H8(x) to account for the usual exis-
tence of a narrow insulating layer between the supercon-
ductor and the graphite. As stated earlier, in general, transla-
tional invariance parallel to the interface dictates that the
momentum in this direction be conserved. We note, however,
the need for a smooth and well-defined graphite-
superconductor interface to avoid random, diffusive scatter-
ing at the boundary, which would destroy the effectiveness of
this method. To avoid repetition, we now refer the reader to
our discussion of the setup and calculation of the Andreev
reflection and normal reflection amplitudes a and b in Sec.
IIT of Ref. 17.
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Throughout, we take the dimensionless barrier parameter
Z=1 and, for simplicity, assume equal effective masses on
both sides of the barrier. The basic effect of unequal masses
(for the case where mg>my) is to reduce the subgap conduc-
tance and increase the coherence peak conductance, except
for the cases containing a zero-bias conductance peak, where
this peak is enhanced. Following BTK® and Tanaka and
Kashiwaya,'? the normalized conductance at temperature T
=0 (which we assume throughout this paper) is given by

as(V)

dlldv=a(V) = (V)
N

th
J cos 0d6(1 +|a(6,V)|* - |b(6,V)|?)
4

0
f on(6,V)cos 0d6
0,

)

Here, 6 is the angle of the quasiparticle momentum with the
normal to the Fermi surface. For the quasi-1D and quasi-2D
cases, where the Fermi surface is essentially a sheet located
at a distance ky from the origin of coordinates, #,=0 and
6, =tan""(k,,,,/ kr). For the longitudinal 2D geometry (Fig. 3,
bottom), the € (polar angle) integration is replaced by a dis-
crete sum over the azimuthal angle. As in Ref. 17, the only
wave vectors that are of effect are the ones that lie on both
the graphite Fermi line and the superconductor Fermi sur-
face. We note that k, (direction across the boundary) is not
conserved in this process and we make the simple
assumption'® that the system chooses the appropriate k|
from the superconductor Fermi surface for transmission. We
note that were this assumption untrue, no current would flow
in the normal state, which is not likely to occur.

The key feature of this proposal is the use of a size-
tunable Fermi surface, as is occasioned by voltage gates on
the semimetal graphite. This allows substantially more infor-
mation to be collected from a single experimental sample
than in common tunneling experiments, where the FS geom-
etry on the N side cannot be changed by a gate voltage.

IV. RESULTS

We note that the method is applicable to one- and two-
dimensional materials. Also, to fully determine nodal struc-
ture, it is necessary that the length of the graphite “Fermi
line” cover most of the length of the superconductor Bril-
louin zone. The distance from the graphite K point to the H
point is approximately 0.44/A, and setting this greater than
or equal to the half Brillouin zone length 7, where c is the
c-axis lattice constant on the S side, yields c=7.1 A. Most
of the organic superconductors®” have c-axis lattice constants
significantly greater than this value and so these materials
appear to be suitable materials for the application of this
technique.

In Figs. 4 and 5, we show the differential conductance
numerically calculated for several unconventional order pa-
rameters which may be realized, e.g., in organic supercon-
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FIG. 4. (Color online) The differential conductance plots for
varying graphite gate voltage are shown. From top: A, cos k, and
A sin k, (both: Fermi line [Ik,).

ductors, in a configuration in which the Fermi line parallels a
longitudinal cylindrical Fermi surface or a quasi-1D Fermi
sheet. The first figure shows the result for A(k)=A, cos(k.).
It is easily seen that the coherence peaks reduce in height as
the Fermi line lengthens, and spectral weight is transferred
toward energies away from the coherence peak. The peak
itself, however, stays at the same energy. These results can be
understood on the following basis: As the Fermi line length-
ens, regions of smaller A, cos(k,) are contributing to the tun-
neling conductance, so that more low-energy densities of
states are observed. However, the maximum conductance is
still found at eV=A, because the order parameter is station-
ary at this point, so that more phase space (k,) has A(k)
values near the maximum A, than any other value, causing
the peak.

The second figure shows the result for A(k)=A sin(k.).
Here, the behavior is radically different from that of
cos(k,)—the coherence peaks begin right at V=0 and move
outward as the Fermi line lengthens, eventually reaching
eV=A, when the Fermi line reaches the antinodal line. A
similar pattern occurs in the quasi-1D case A sin(k,)sin(k,)
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FIG. 5. (Color online) The differential conductance for varying
gate voltages, for the order parameters (from top) Ag sin k_ sin k,
(Fermi line [Ik,) and A cos k, and A sin k, (Fermi line Lk,).

(here, k, refers to the perpendicular momentum from the ori-
gin of coordinates of two Fermi sheets). In this case, how-
ever, due to the sign change between the opposing sheets,”! a
zero-bias conductance peak is evident, which widens as the
graphite Fermi line lengthens, as states of larger A(k) con-
tribute to the conductance.

Finally, we have also plotted the results for A(k)
=/, sin(k.) and A cos(k,) in a transverse geometry wherein
the graphite Fermi lines run perpendicular to the 2D Fermi
cylinder. The result for Agsin(k,) is perhaps not too
surprising—the entire Fermi line, regardless of its length,
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FIG. 6. The differential conductance in the longitudinal “into the
paper” 2D configuration is shown, for the two order parameters
A(k)=Acos(2¢) and Ajsin(2¢), as a function of the angle 6,
(Fig. 3). For A cos(2¢), the left side of the plot represents 6,=0
and the right side 6y=1/4; for A sin(2¢), these are reversed.

lies on the node and thus the tunneling conductance is that of
the normal state. For the A cos(k,) case, we observe that the
conductance is essentially independent of the length of the
graphite Fermi line, which is again a consequence of the
constancy of the order parameter along the antinodal line
matched by the graphite Fermi line.

In Fig. 6, we present the results of numerical calculations
of T=0 differential conductance for the longitudinal 2D “into
the paper geometry” with A(k)=4(cos(2¢)(d,2_,2) and
A sin(2¢)(d,,), where ¢ is the in-plane azimuthal angle
from the x axis. These order parameters have been under
discussion for some time now regarding the heavy-fermion
superconductor CeColns. We have assumed here that the
gate voltage has been chosen such that the graphite Fermi
lines cross the 2D cylindrical Fermi surface, and have plotted
the differential conductance when the graphite is oriented at
various angles (6,) relative to the a axis of the supercon-
ductor. Clearly different behavior is observed for the two
order parameters: for the A cos(2¢) case, the coherence
peaks for 6,=0 are at approximately 0.9 A, split and then
move inward, terminating at 6y,=7/4 at approximately 0.5
A; the exact opposite is observed for A sin(2¢). These pat-
terns are sufficiently different that we believe that such an
experiment, in which several graphite-CeColns samples with
various 6, were constructed, would help resolve the order-
parameter controversy regarding this material.

The radically differing conductance curve sets for the
seven order parameters studied make clear that the use of
graphite-superconductor junctions is a potentially useful
means of assessing order-parameter symmetry in unconven-
tional superconductors. The essential feature of all these re-
sults is that more order-parameter information is available
with a single graphite-superconductor experiment than with
more conventional tunneling spectroscopy due to the use of a
size-tunable Fermi line in the graphite.

V. CONCLUSION

In summary, we propose a method for order-parameter
determination in unconventional superconductors based on
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the use of graphite as the normal electrode, with a gate volt-
age applied to tune the size of the occupied graphite Fermi
surface. We have shown that this method can be expected to
yield more information than conventional tunneling spectros-
copy, and that even the most common order parameters can
be expected to display widely divergent behavior when in-
vestigated using this method. We may therefore expect that
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this technique may become a useful tool for determining
order-parameter symmetry.
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