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Using numerical simulations, we investigate vortex configurations and pinning in superconductors with
honeycomb and kagomé pinning arrays. We find that a variety of vortex crystal states can be stabilized at
integer and fractional matching field densities. The honeycomb and kagomé pinning arrays produce consider-
ably more pronounced commensuration peaks in the critical depinning force than triangular pinning arrays, and
also cause additional peaks at noninteger matching fields where a portion of the vortices are located in the large
interstitial regions of the pinning lattices. For the honeycomb pinning array, we find matching effects of equal
strength at most fillings B/B 4,=n/2 for n>2, where n is an integer, in agreement with recent experiments. For
kagomé pinning arrays, pronounced matching effects generally occur at B/Bg=n/3 for n>3, while for trian-
gular pinning arrays pronounced matching effects are observed only at integer fillings B/B=n. At the non-
integer matching field peaks in the honeycomb and kagomé pinning arrays, the interstitial vortices are arranged
in dimer, trimer, and higher order n-mer states that have an overall orientational order. We call these n-mer
states “vortex molecular crystals” and “vortex plastic crystals” since they are similar to the states recently
observed in colloidal molecular crystal systems. We argue that the vortex molecular crystals have properties in
common with certain spin systems such as Ising and n-state Potts models. We show that kagomé and honey-
comb pinning arrays can be useful for increasing the critical current above that of purely triangular pinning

arrays.
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I. INTRODUCTION

There have been extensive studies on the static and dy-
namical properties of vortices in superconductors with peri-
odic arrays of artificial pinning sites. These works focused on
simple two-dimensional periodic pinning arrays such as
square, triangular, and rectangular lattices, where the pinning
sites consist of holes,! blind holes,'®!" or magnetic
dots.'”'® For square and triangular pinning arrays, pro-
nounced commensurability effects such as peaks or anoma-
lies in the critical current appear at the magnetic field B
=B, where the number of vortices equals the number of
pinning sites, as well as at higher fields B=nB, where n is
an integer. At these matching fields, the vortex lattice forms
ordered crystalline structures of a type determined by the
number of vortices that are captured at individual pinning
sites. If more than one vortex can occupy each pinning site in
the form of a multiquanta vortex, then at each matching field
the overall vortex lattice has the same symmetry as the pin-
ning lattice but is composed of n-quanta vortices. If only a
single vortex can occupy each pinning site, ordered vortex
crystals still form at the matching fields and for n>1 some
of the vortices are located in the interstitial regions between
the pinning sites. Imaging experiments* and simulations’ for
systems where at most one vortex can occupy each pin have
shown that numerous kinds of interstitial vortex lattice struc-
tures can be stabilized, some of which have different sym-
metries than the pinning array. Interstitial vortex crystals also
form above the pinning saturation field in samples with pins
that can be occupied by multiquanta vortices. When each pin
has captured as many vortices as possible, additional vortices
sit in the interstitial regions, and the resulting vortex lattice
structure is a composite of interstitial singly quantized and
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pinned multiply quantized vortices.>*!%?9 In the case where
the pinning sites are blind holes, it is possible for multiple
vortices to occupy a single pinning site without merging into
a multiquanta vortex. Instead, the vortices retain their indi-
vidual identities and form dimer, trimer, or ring-type states
inside the pin.!%-?!

In addition to the matching effects that appear at integer
fields, commensuration effects can also occur at nonmatch-
ing fields or fractional fields.3>#!¢ These noninteger match-
ing effects are generally weaker than those observed at inte-
ger matching and are most prominent for fields B<B,. If
multiple vortex quantization occurs above the first matching
field, the submatching sequence that appears between B=0
and B=B is repeated between every integer matching field
until the pinning sites are saturated. In contrast, if only one
vortex is captured per pinning site, the fractional matching
effects above the first matching field are significantly re-
duced or missing.® Commensuration effects for vortices in-
teracting with a periodic substrate have also recently been
demonstrated for vortices in Bose-Einstein condensates
where the pinning sites are created with an optical array.??*

The physics of vortices in periodic pinning arrays is simi-
lar to that of repulsively interacting colloids in triangular or
square periodic trap arrays>~2 and charged spheres on peri-
odic substrates.® In both these cases, it is possible to have
localized traps which capture only a single colloid or sphere
while the remaining particles sit in the interstitial
regions,??3 similar to the situation for vortex pinning arrays.
The interstitial particles are more mobile than the pinned
particles, and the particle trajectories resemble those seen in
computer simulations of vortices in similar geometries.?!*2
In the colloid system, it is also possible for multiple colloids
to be captured by a single trap>>~2® where they form dimer,
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trimer, or higher order n-mer states. The n-mers may be ori-
entationally ordered if the interaction between colloids in
neighboring traps is strong enough, and the system can show
multistage melting transitions in which the initial stage of
melting occurs when the orientational ordering of the n-mers
is lost, followed by a transition in which the n-mers break
apart. The ordered n-mer states can be mapped onto various
spin systems such as Ising and Potts models.?’?® Orientation-
ally ordered dimer and trimer states have also been proposed
to occur for vortices in superconductors with blind hole ar-
rays where the vortices retain single quantization in an indi-
vidual hole.® The orientational ordering of the n-mer states in
the colloidal and vortex systems arises due to quadrupole or
higher order pole moment interactions between the n-mers in
adjacent traps.?’” The anisotropic nature of the quadrupole
and higher order pole moments creates preferred directions
for the alignment of the n-mers that minimize the pole mo-
ment energy.

A limited number of studies have treated periodic sub-
strates other than square and triangular pinning arrays, such
as honeycomb or kagomé pinning arrays. These are simply
triangular lattices with a fraction of the pinning sites re-
moved. Figure 1(a) shows a triangular pinning lattice. Re-
moving every other pinning site from every other row of the
triangular lattice, which eliminates 1/4 of the pinning sites,
produces the kagomé array illustrated in Fig. 1(b). A honey-
comb array in which 1/3 of the pinning sites in the triangular
array have been eliminated is shown in Fig. 1(c). Here, every
third pinning site is removed from every row of the triangu-
lar array. An experimental study of pinning phenomena in
kagomé arrays using superconductors with magnetic dot ar-
rays produced evidence for pronounced commensurability
effects at noninteger matching fields.'> These results are,
however, difficult to interpret since magnetic dot arrays can
induce the formation of vortices or antivortices in addition to
the vortices created by the external field.'"” Numerical work
on kagomé pinning arrays®! only treated thermal melting of
vortices at a single field of B/B,;=2.0, where a two step
melting transition was shown to occur. Here, the multiple
interstitial vortices located at the larger interstitial sites
where a pin has been removed undergo local melting at a
temperature below that at which the entire vortex lattice
melts. In Ref. 31, neither long-range vortex configurations
nor critical currents were analyzed, so the nature of commen-
surability effects for varied vortex densities in kagomé pin-
ning arrays is not known.

Only a single experimental study®? has been performed on
honeycomb pinning arrays to our knowledge. In Ref. 33,
several unusual features were observed, including pro-

nounced matching effects of equal magnitude at magnetic
fields corresponding to both integer and half-integer mul-
tiples of the matching field for vortex densities up to the fifth
matching field B/By=35. This result is in contrast to the re-
sponse of square or triangular pinning arrays, where com-
mensuration effects are much weaker at nonmatching fields
than at integer matching fields. In Ref. 33, it was also ob-
served that for fields greater than the second matching field,
B/B > 2, the commensuration effects at half-integer match-
ing fields become more prominent than those at integer
matching fields. This effect can be understood by considering
that since the honeycomb pinning array is simply a triangular
pinning array that has been diluted by 1/3, the field B/B
=1.5 for the honeycomb array would correspond to an inte-
ger matching field B/By=1 in a triangular array of the same
density. As a result, the overall vortex lattice is triangular at
B/By=1.5 in a honeycomb pinning array. Similarly, a field
of B/B4=1/2 in the honeycomb pinning array would corre-
spond to a field of B/B,=1/3 in the equivalent triangular
pinning array, which is known to produce a peak in the criti-
cal current.® These results suggest that honeycomb pinning
arrays may allow for a variety of vortex structures to be
stabilized at noninteger fillings.

In this work, we present an extensive study of vortex
pinning and dynamics in honeycomb and kagomé pinning
arrays using numerical simulations. Section II contains a de-
scription of the simulation method. We show the vortex con-
figurations and ordering for honeycomb pinning arrays in
Sec. III and illustrate the formation of vortex molecular crys-
tals, which are named in analogy with molecular crystals.
Section IV gives the corresponding description for vortices
on a kagomé pinning lattice. The melting of these vortex
configurations and the creation of vortex plastic crystal states
for both types of pinning lattices are studied in Sec. V. We
construct phase diagrams for the vortex molecular crystals at
the dimer and trimer fillings of the honeycomb pinning lat-
tice as a function of temperature and pinning strength in Sec.
VI. The effect of the strength of the pinning sites is explored
in further detail in Sec. VII. The paper closes with a discus-
sion in Sec. VIII and a conclusion in Sec. IX.

II. SIMULATION

We perform two-dimensional simulations of supercon-
ducting vortices in honeycomb and kagomé pinning arrays
using a computational procedure similar to that previously
employed for studies of vortices in square and triangular pin-
ning arrays.”$2%2! The system of size L,X L, has periodic
boundary conditions in the x and y directions and contains
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N, pinning sites and N, vortices. The dynamics of a vortex i
located at position R; is determined by the following over-
damped equation of motion:

77% =F"+F +F!+F. (1)
Here, F!" is the repulsive vortex-vortex interaction force, F/
is the force from the pinning sites, F is the force from an
external drive, and F is the random force from thermal fluc-
tuations. The dampmg constant 7= qSOd/ 27épy, where d is
the thickness of the superconducting sample, ¢y=h/2e is the
flux quantum, £ is the superconducting coherence length, and
py is the normal state resistivity of the material.>* We mea-
sure length in units of the London penetration depth N and
for most of the results presented here, the system size is
24N X 24N\.

The explicit vortex-vortex interaction force is

Fuv 2f0K1<R ) Lj’ (2)

JFi

where K is the modified Bessel function, f0:¢(2)/ Qmu\),

R ii=(R;=R))/R;;. A short range cutoff of
0.1\ is applied to the vortex-vortex interaction force to avoid
divergence; however, at the densities considered here, vorti-
ces do not approach each other this closely. The interaction is
also cut off beyond 6\ for computational efficiency since the
vortex-vortex forces beyond this distance are negligible.”
Time is measured in units of 7=7/f,. As an example of
physical units, for a NbSe, crystal of thickness d=0.1 mm
with 7=236X10""' Ns/m, f;=6.78 X107 N/m and 7
=0.35 us.

The pinning sites are modeled as N, attractive parabolic

P
traps with radius R,=0.3\ and strength f, so that

R _R(P) R
E I_QER([’)@(_%I]{)REI[;)' (3)
k=1

Here, R,(Cp) is the location of pinning site &, RE£)=|Ri—
lig?:(Ri—R,?’))/Rgp), and O is the Heaviside step function.
The pinning radius is chosen to be small enough that only
one vortex can be captured per pinning site. The pinning
sites are arranged in a triangular lattice with lattice constant
ay, as illustrated in Fig. 1(a), and then 1/4 or 1/3 of the
pinning sites are removed to create a kagomé or honeycomb
array, as in Figs. 1(b) and 1(c). The pinning density is n,
=N,/(L,L,). The rnatchlng fields for the honeycomb and
kagome arrays are B »=npand BY 4=, respectively, while the
matchlng field of the equlvalent trlangular array is B, such
that BY o/ By=2/3 and B¢/B¢—3/4

The driving force is assumed to arise from the application
of an external current which induces a Lorentz force on the
vortices that is perpendicular to the current. All vortices ex-
perience an equal driving force F/=F“ in the x direction,
corresponding to the horizontal axis of Fig. 1. The thermal
force F! is modeled as random Langevin kicks with the
properties (F7)=0 and <FiT(t)FjT(t’)>:2nkBT5(t—t’)5ij.

PHYSICAL REVIEW B 76, 064523 (2007)

The initial vortex configurations are obtained by simu-
lated annealing. Our procedure for this study was to start
from an initial temperature of F7=3 and decrease the tem-
perature to F7=0 in increments of 6F’=0.002 while spend-
ing 5000 simulation time steps at each increment, so that the
total annealing time is 7.5 X 10° simulation time steps. We
note that an overly rapid annealing rate can cause the system
to be trapped in a metastable state, which prevents the vor-
tices from ordering even at integer matching fields. To check
our annealing rate, we tested slower rates and found that the
resulting vortex configurations were unchanged. Once the
vortex positions have been initialized and the temperature
has been set to zero, we determine the velocity-force curve
relations and the critical depinning force f,. by slowly in-
creasing the external drive F¢. We measure the average vor-
tex velocity response V,=N,'(Z}yv;-%), where v,=dR/dt.
The resulting velocity-force curve would correspond to a
voltage-current curve in experiment. The depinning force is
determined by applying a cutoff threshold of V,=0.01 to the
average velocity. We find that this cutoff is sufficiently low
that the critical depinning force f. vs B curves are not
strongly sensitive to the choice of cutoff.

III. VORTEX PINNING AND ORDERING IN HONEYCOMB
ARRAYS

A. Commensurability peaks at integer and half-integer fillings

We measure the critical depinning force f, for vortices on
a honeycomb pinning array with f,=0.5f, and B,
=0.47¢,/\? as a function of vortex density. The results are
plotted in Fig. 2(a) as f./f, versus B/B where B
=0.313¢,/\? is the field at which the number of vortlces
equals the number of pinning sites for the honeycomb pin-
ning array. We find peaks in f, at the integer matching fields
B/ BH 1, 2, 3, and 4. Additionally, there are pronounced
peaks in f, at the half-matching fields B/B%=0.5, 1.5, 2.5,
3.5, and 4.5. Note that the f. peaks at the noninteger match-
ing fields of B/B =3.5 and 4.5 are significantly larger than
the peaks at the 1nteger matching fields of B/ BH =3,4,and 5,
as highlighted in Fig. 2(b). There are submatchlng commen-
suration effects for 0.5<B/B{Z <1.0 which are in general
weaker than the submatching commensuration effects for
B/BH 0 and 1.0. A similar trend was observed in earlier
Works for square and triangular pinning arrays.>® The nu-
merical simulations are time consuming and permit us to
perform only finite field increments, so that the weaker sub-
matching and higher order fractional matching fields are dif-
ficult to observe numerically. In this paper, we focus mainly
on the pronounced matching fields.

The behavior of the commensuration effects for the hon-
eycomb pinning lattice in Fig. 2 is very similar to the experi-
mental results observed for honeycomb arrays in Ref. 33. In
the experiments, strong commensuration effects appeared at
B/BZ: 1/2, 1, 1.5, and 2, in agreement with our results. The
experiments also show that the commensuration effects at
B/B=3 and 4 are very weak or absent, while those at
B/B,=3.5 and 4.5 are very pronounced. This is also in
agreement with our result, as seen in Fig. 2(b). One differ-
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FIG. 2. (a) The depinning force f./f, vs B/BZ for the honey-
comb pinning array illustrated in Fig. 1(c) with f,=0.5f,, By
=0.47 /N2, and BZ=O.313¢0/)\2. (b) A blow-up from (a) of f./f,
Vs B/BZ in the region B/Bgé 2.

ence between the experimental results and our work is that
we find a very pronounced peak in f,. at B/ BZ =2.5, while the
experiments produced only a weak peak at the same field. In
Sec. V, we show that this may be due to the fact that the
commensurate vortex configuration at B/ Bg=2.5 is unstable
under thermal fluctuations.

Figure 3 shows a comparison between the behavior of f,
as a function of B for the honeycomb pinning array (heavy
line) and a triangular pinning array with the same value of
By=0.47¢y/N\* (light line). The depinning force f,. for the
triangular pinning array exhibits pronounced peaks at B/B
=1/3, 2, and 3 and only very weak peaks at noninteger
matching fields for B/B,> 1. The peak at the second match-
ing field B/B,=2 for the triangular pinning array is signifi-
cantly smaller than the one at the third matching field
B/By=3. This effect has been observed in previous studies
and results from the fact that the vortex lattice forms a hon-
eycomb structure at the second matching field, while at the
third matching field the overall symmetry of the vortex lat-
tice is triangular.” Figure 3 also indicates that the peak at
B/B,=1.0 for the triangular array coincides with the peak at
B/B,=1.5 for the honeycomb array, while a peak at B/Bﬁ
=1/3 in the triangular array coincides with a peak at B/B
=1/2 in the honeycomb array.

B. Vortex configurations for B<B

In order to explain the origin of the pronounced commen-
surability peaks in f,. for the honeycomb pinning array at
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FIG. 3. (Color online) f./f, vs B/B,, for the honeycomb pinning
array (black heavy line) and the triangular pinning array (red light
line) in Figs. 1(a) and 1(c) with f,=0.5f; and B4=0.47 ¢/ \>.

B/ Bg =n/2 and the fact that some peaks are more prominent
than others, we analyze the vortex configurations at these
fields. In the left panels of Fig. 4, we illustrate the vortex and
pinning site locations for three matching fields in the honey-
comb array from Fig. 2, while the right panels of Fig. 4 show
only the vortex positions at the same fields in order to em-
phasize the vortex lattice structure.

Figures 4(a) and 4(b) indicate that at B/BZ:I/Z, the
overall vortex lattice is triangular. The vortex configuration
at half filling for the honeycomb lattice is the same as that of
vortices at unit filling in an undiluted triangular lattice with
matching field BZ/ 2 that is rotated by 90° relative to the
triangular lattice in Fig. 1(a). The configuration is also iden-
tical to the vortex arrangement found for 1/3 filling of a
triangular lattice with matching field Bd,.g Since the vortex
lattice structure is triangular, the vortex-vortex interactions
cancel and the depinning force is determined only by the
maximum force of the pinning sites such that f./f,=1.0.
This is what we find at B/BJj=1/2, as seen in Fig. 2. For
fields just above or below half filling, the vortex lattice re-
tains the same triangular ordering shown in Figs. 4(a) and
4(b) but contains weakly pinned vacancies or interstitials
which reduce the value of f.. In the case of a triangular
pinning array, there is no commensurate peak at B/B,=1/2
when all of the vortices are forced to occupy pinning sites
since the system is geometrically frustrated, resulting in a
strongly defected vortex lattice.® If fp is very weak, an or-
dered vortex lattice can form at this field when the elastic
forces of the vortex lattice overcome the pinning force, al-
lowing half of the vortices to shift out of the pinning sites
and creating a partially pinned or floating triangular vortex
lattice.®*" In our simulations, the pinning strength f,=0.5f,
is well above this limit so that floating vortex configurations
do not occur; we return to this point in Secs. VI and VII. We
note that for very low applied fields B/B,<<1, the depinning
force is dominated by single vortex pinning and thus f./f,
~1.

The vortex configuration for the first matching field in the
honeycomb array, B/Bg=1, is illustrated in Figs. 4(c) and
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FIG. 4. Left panels: vortex positions (black dots) and pinning
site positions (open circles) obtained for the honeycomb array in
Figs. 1(c) and 2. Right panels: vortex positions only. [(a) and (b)]
B/B=1/2.[(c) and (d)] B/B}=1. [(¢) and (f)] B/B}=1.5.

4(d). The vortex lattice has the same highly symmetric struc-
ture as the pinning lattice and as a result the vortex-vortex
interactions cancel, giving f./f,=1.0, as shown in Fig. 2. For
fields above the first matching field, the additional N,—-N,
vortices are located in the interstitial regions and are pinned
not by the pinning sites but by the interactions with the vor-
tices trapped at the pinning sites. In general, this interstitial
pinning is weak, so f,./f, drops significantly for B/ Bg> 1.0,
as seen in Fig. 2.

At B/BZ= 1.5, where a prominent peak in the depinning
force appears in Fig. 2, the overall vortex lattice is triangular,
as shown in Figs. 4(e) and 4(f). In this case, the interstitial
sites that were produced when the triangular pinning array
was diluted to form the honeycomb pinning array each cap-
ture one vortex. Figure 3(b) shows that the prominent peak in
Self, at B/B4=1 for the triangular pinning array coincides
with the peak at B/B%=1.5 in the honeycomb pinning array.
Although the symmetry of the vortex lattice is triangular in
each case, at B/B=1.5 for the honeycomb pinning array,
the depinning force is determined not by f,, but by the caging
force on the vortices in the interstitial regions. As a result,
the depinning force for the honeycomb array at this field is
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FIG. 5. Left panels: vortex positions (black dots) and pinning
site positions (open circles) in a portion of the sample for the hon-
eycomb pinning array from Figs. 1(c) and 2. Right panels: Vortex
positions only. [(a) and (b)] B/B%=2.0. [(c) and (d)] B/BH=225.
[(e) and ()] B/B7=3.0.

lower than the depinning force for the triangular array at
B/B,=1.0 filling, as seen in Fig. 3(b). For fields slightly
below or above B/Bgz 1.5 in the honeycomb pinning array,
interstitials or vacancies appear in the triangular vortex lat-
tice at the locations of the missing pins and cause a reduction

in f/f,

C. Vortex configurations for B> B,

As B increases above B/BZ:l.S, the additional vortices
sit in the large interstitial regions at the center of each hon-
eycomb plaquette. In general, for 1.5<B/B’;<2.0, we find
that the plaquette centers capture at most two vortices rather
than three. The two vortices cannot both sit at the center of
the interstitial site, so instead they form an interstitial dimer
state, as illustrated in Figs. 5(a) and 5(b) at B/B7=2.0. The
interstitial dimers have an additional orientational ordering
which is highlighted in Figs. 5(a). The dimers can be de-
scribed as having a director field which is oriented at a 30°
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angle with the x axis in Figs. 5(a) and 5(b). Within the center
interstitial region of each honeycomb plaquette, the six sur-
rounding pinned vortices create a sixfold modulated symmet-
ric potential and each vortex forming the interstitial dimer
sits in one of the minima of this potential. As a result, at zero
temperature each dimer can be oriented in one of three de-
generate directions. If we change the initial conditions during
the simulated annealing process slightly, we find the same
configuration shown in Figs. 5(a) and 5(b) with one-third
probability. With equal probabilities, we obtain configura-
tions in which all the dimers are either oriented at 90° or
—30° angles with the x axis. If the dimers in neighboring
plaquettes did not interact with each other we would expect
to find a random distribution of dimer orientations among the
three degenerate directions in a given configuration. The ori-
entational ordering of the dimers in our system indicates that
dimers in neighboring plaquettes do interact with each other
and that this interaction gives the dimers a ferromagneticlike
alignment. Unlike an Ising model in zero magnetic field
which has two possible spin orientations, this system has
three possible orientations for the dimers and is thus more
closely related to a three-state Potts model. The ordering of
the dimers is very similar to the ordering found in the re-
cently studied model of colloidal dimers on a triangular lat-
tice, which has been shown to map to the three-state Potts
model.”® The theoretical work in Ref. 28 indicates that the
dimers lose their orientational ordering as a function of tem-
perature through either a continuum melting transition or a
first order transition, depending on the system parameters.
The colloidal dimers in neighboring plaquettes have been
shown to interact through an effective quadrupole moment
with an additional screening term;?’ higher order n-mers
were also considered which interact through higher order
pole moments. These types of interactions are anisotropic
and thus the pole moment energy can be minimized when the
n-mers form an orientationally ordered state. Neighboring
dimers may be oriented parallel or perpendicular to each
other depending on the pinning geometry.>> The colloids in-
teract via a repulsive screened Yukawa potential; since this is
similar to the vortex interaction of Eq. (2), the same type of
multipole interactions between vortices in neighboring
plaquettes should emerge as in the colloid system.

For fields 2.0<B/Bg < 2.5, the additional vortices again
occupy the interstitial sites where they form trimer states.
For this range of fields, we do not find any interstitial sites
that have captured four vortices. Figure 5(c) shows the vor-
tex configuration at B/ Bg=2.5 where each pinning site cap-
tures one vortex and each center interstitial region captures
three vortices. The trimers are equilateral triangles and each
vortex in the trimer is located at one of the sixfold potential
minima created by the six surrounding pinned vortices. In
the same manner as the dimer states, the trimers are orienta-
tionally ordered and all align in one of the two possible
degenerate orientations, indicating that neighboring trimers
have an interaction with ferromagnetic character. The overall
vortex lattice structure at B/ BZ=2.5 is very intricate, as in-
dicated in Fig. 5(d). It can be viewed as triangles of vortices
each surrounded by three pentagons, indicating that a large
fraction of the system has fivefold ordering coexisting with
true long-range order.
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Figure 5(e) illustrates the vortex configurations and pin-
ning site locations at B/BI;:3.0. At this filling, a weak peak
in f./f, appears, as shown in Fig. 2. Here, each pinning site
captures one vortex and the center interstitial regions capture
four vortices in a quadrimer state. Unlike the dimers and
trimers, we find no orientational ordering of the quadrimers.
The fourfold symmetry of the quadrimer state cannot match
the sixfold modulation of the potential at the center of the
honeycomb plaquette. If the four vortices in the quadrimer
sit at minima of this potential, then at least two vortices must
occupy adjacent minima, which is energetically unfavorable
due to the vortex-vortex interactions. Instead, the quadrimers
form distorted square structures that are not commensurate
with the underlying sixfold modulated potential. Since the
overall orientational order of the quadrimers is absent at the
B/BZ=3.0 filling, a strong commensurate peak in f./f, does
not occur. A weak peak does appear at this filling, as seen in
Fig. 2, due to the fact that each interstitial region captures
exactly four vortices at B/B?=3.0. Just above or below this
field, vacancies or interstitials in the form of threefold or
fivefold occupied interstitial sites occur, which are less
strongly pinned and cause a reduction in f..

In Figs. 6(a) and 6(b), we show the vortex configurations
at B/BZ=3.5 where a strong peak in f./f, appears in Fig.
2(b). At this field, the system deviates from the pattern which
we observed at lower fields for n=1-4 of forming symmetri-
cal n-mers in the interstitial sites at the center of the honey-
comb plaquettes. Instead of forming a pentamer state at
B/B=3.5, the interstitial vortices are arranged with four
vortices captured as a rectangular quadrimer in the center of
each interstitial plaquette and a fifth vortex between two ad-
jacent pinned vortices. The vortex lattice has long-range or-
der with all the center quadrimers aligned in the same direc-
tion, unlike the B/ BZ =3.0 filling of Figs. 5(e) and 5(f). The
ordering is possible because the fifth interstitial vortex which
sits at the boundary of the honeycomb plaquette breaks the
sixfold symmetry of the potential minima inside the center of
the plaquette and replaces it with a twofold symmetry which
can be matched by the remaining quadrimer of interstitial
vortices.

At B/BZ=4.0, a small commensuration peak appears in
Fig. 2(b). The corresponding vortex configuration is illus-
trated in Figs. 6(c) and 6(d). The vortex lattice has long-
range order. Each interstitial site captures six vortices in the
form of an inverted triangular structure with three interstitial
vortices at the top, two in the middle, and one at the bottom.
The triangles have a twofold degenerate ordering, and we
have also observed the other possible ordering in which each
triangle points upward instead of downward along the y di-
rection. Although the vortex lattice structure has long-range
order at B/B"=4.0, there is not a large increase in f,/ fp at
this field. This may be due to the fact that the triangular
configuration of interstitial vortices is unstable to fluctuation
effects, as we will describe in Sec. V.

In Figs. 6(e) and 6(f), we illustrate the vortex configura-
tion at B/B¥=4.5 where a pronounced peak in the depinning
force occurs in Fig. 2(b). In this case, the seven interstitial
vortices captured in each interstitial site are arranged with
one vortex in the center surrounded by six interstitial vortices
sitting in the sixfold potential minima created by the six
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FIG. 6. Left panels: Vortex positions (black dots) and pinning
site positions (open circles) in a portion of the sample for the hon-
eycomb array from Fig. 1(c) and Fig. 2. Right panels: vortex posi-
tions only. (a,b) B/Bj=3.5. (c.d) B/B}=4.0. (e.f) B/Bj=45.

neighboring pinned vortices. The overall vortex lattice has a
triangular ordering, as seen in Fig. 6(f), and the vortex con-
figuration is the same as that which would result at B/B,,
=3.0 for a triangular pinning array that is rotated by 90°
relative to the triangular lattice in Fig. 1(a), where the center
interstitial vortex would be located in a pinning site. For
B/ BZ =5.0 (not shown), we find a state without orientational
order and there is no particular peak in f./f, at this field. We
note that for very high applied fields B/ BZ > 1, the depinning
response is dominated by the shearing motion of the intersti-
tial vortices.

As we have demonstrated, the honeycomb array can sta-
bilize various types of interstitial vortex n-mer states at the
center of each honeycomb plaquette. These n-mers have a
tendency to align in the same direction, indicating effective
ordering of a ferromagnetic nature which is similar to the
ordering observed for colloidal n-mer states on periodic sub-
strates. At fields B/B=n/2 where an ordered vortex crystal
forms, we observe peaks in the depinning force. As we de-
scribe in further detail in Sec. V, we find that at finite and
increasing temperature, a melting transition can occur in
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FIG. 7. (a) The depinning force f./f, vs B/Blj) for the kagomé
pinning array illustrated in Fig. 1(b) with f,=0.5f;,, By
=0.47¢2/>\2, and B§=0.3523 ¢o/\*. (b) A blow-up from (a) of f,/f,,
vs B/B, in the region B/B,>2.0.

which the n-mers lose their orientational ordering but remain
trapped in the center interstitial regions of each honeycomb
plaquette, similar to the vortex dimer states in kagomé
arrays®' and the colloidal n-mer molten states.?>262% This
suggests that many of the spin model analogies developed to
describe orientational ordering of colloidal n-mer states can
be applied to the vortex n-mers as well. We term the orien-
tationally ordered vortex n-mer states “vortex molecular
crystals” in analogy with molecular crystals, which have
translational order along with an additional alignment of the
molecules. At higher temperatures where the molecules lose
their orientational ordering but remain in translationally or-
dered lattice positions, the system is referred to as a plastic
crystal. Thus, by analogy, states such as that in Fig. 5(e)
would be a vortex plastic crystal. The high temperature states
(described in Sec. V) in which the orientational ordering has
melted at B/B7=2, 2.5, and 3.5 would also be plastic vortex
crystals.

IV. VORTEX STATES AND COMMENSURABILITY IN
KAGOME ARRAYS

A. Commensurability peaks at integer and B/B =n/3 fillings

In Fig. 7(a), we plot f,/f, obtained for vortices interacting
with the kagomé pinning array illustrated in Fig. 1(b) with
[,=0.5f, By=0.47¢/\?, and BY=0.3525¢,/\?, where B
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is the field at which the number of vortices equals the num-
ber of pinning sites in the kagomé array. Unlike the honey-
comb array, there is no strong peak in fE/ f,at B/ BK 1/2 or
at any of the submatching fields B/B ¢<1 for the kagomé
array, but clear commensurablhty peaks occur at the integer
matching fields B/ B =1, 2, 3, and 4. In addition to the inte-
ger peaks, there are a series of peaks at B/BX=n/3 for n
>3. The strongest of these peaks fall at B/B =4/3, 5/3,
7/3, and 10/3, as shown in Fig. 7(b). The existence of clear
fractional matching effects at fields above the first matching
field is similar to the behavior seen in the honeycomb pin-
ning array (Fig. 2) and distinct from the behavior of a trian-
gular pinning array (Fig. 3), where no strong fractional
matching effects appear above B/B,=1. This indicates that
the pinning behavior of the kagomé and honeycomb pinning
arrays is very similar and suggests that similar types of ori-
entationally ordered vortex molecular crystal states are oc-
curring in the kagomé array as in the honeycomb array.

B. Vortex configurations for B<B

In Figs. 8(a) and 8(b), we show the vortex configuration
for the kagomé pinning array from Fig. 7 at B/Bg:l/ 3.
Here, the vortex lattice does not order and in general we do
not observe any particularly ordered vortex lattices for the
submatching fields B/BX <1 for the kagomé pinning arrays,
in contrast to the triangular and honeycomb pinning arrays.
In the honeycomb pinning array, Fig. 2(a) showed that there
is a peak in f./f, at B/BZ: 1/3 followed by a drop in f./f,.
For the kagomé pinning, Fig. 7 indicates that although there
is no peak in f./f, at B/BI;: 1/3, there is still a drop in f./f,
at this field. In each case, the drop in f./f, occurs due to a
change in the nature of the vortex-vortex interactions. For
fields at and below 1/3 filling, the spacing between adjacent
vortices is at least 2a, and the vortex-vortex interactions are
minimal. For fields above 1/3 filling, in order for all of the
vortices to occupy pinning sites, some of the vortices must
be located at a distance of a single lattice constant a, from
another vortex, while the spacing between other nearest-
neighboring vortices remains the larger distance 2a. A vor-
tex which has some nearest neighbors at a distance a, and
other nearest neighbors at a distance 2a, experiences an
asymmetric vortex-vortex interaction force. This asymmetry
causes the vortex to depin at a significantly lower driving
force, producing the drop in f./f, above 1/3 filling.

At B/BK 1.0 where each pinning site captures one vor-
tex, the net vortex symmetry is that of a kagomé lattice, as
indicated in Figs. 8(c) and 8(d). At B/BX=4/3, shown in
Figs. 8(e) and 8(f), each center interstitial site of the kagomé
plaquettes captures one vortex so that the overall vortex con-
figuration is triangular. This vortex configuration is the same
as that for the triangular pinning lattice in Fig. 1(a) at
B/By=1, where the vortices at interstitial locations in the
kagomé lattice would sit in pinning sites in the triangular
pinning lattice. The B/BK 4/3 filling also corresponds to
the B/B =1.5 filling of the honeycomb array where each
1nterst1t1al site captures one vortex and to the “first” match-
ing field of Ref. 31. For the kagomé lattice at B/B’;<1,
single vortex depinning dominates the response of the sys-
tem and f./f,~1.
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FIG. 8. Left panels: vortex positions (black dots) and pinning
site locations (open circles) obtained for the kagomé array in Figs.
1(b) and 7. Right panels: vortex positions only. [(a) and (b)]
B/B§=1/3.[(c) and (d)] B/B§=1.0. [(e) and (f)] B/B=4/3.

C. Vortex configurations for B> B,

Figures 9(a) and 9(b) illustrate the vortex configuration at
B/BX=5/3 in the kagomé pinning array. At this filling, each
interstitial site at the center of the kagomé plaquettes cap-
tures two vortices which form a dimerized state, as high-
lighted in Fig. 9(a). Unlike the dimerized state in the honey-
comb pinning array where the dimers are all aligned in the
same direction, in the kagomé array the dimers are tilted in
opposite directions from one row to the next. This type of
dimer structure is referred to as a herringbone state and has
been observed for colloidal dimers on triangular arrays®>?8
as well as for the deposition of molecular dimers on triangu-
lar substrates® and in three-state Potts models.3¢

At B/ Bg: 2.0, each central interstitial site captures three
vortices which form a trimer state, as shown in Figs. 9(c) and
9(d). The trimer orientation is twofold degenerate as in the
honeycomb array, and the trimers are oriented pointing either
up or down. Figure 9(c) shows that the up-down ordering is
neither random nor uniform but occurs in domains reminis-
cent of an Ising model in zero field where domain walls have
formed. If the domain wall energy is low, the relaxation time
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FIG. 9. Left panels: vortex positions (black dots) and pinning
site locations (open circles) in a portion of the sample for the
kagomé array from Fig. 7. Right panels: vortex positions only. [(a)
and (b)] B/B§=5/3. [(c) and (d)] B/B§=2.0. [(¢) and (f)] B/B
=7/3.

to reach a state where one of the phases dominates can be
exceedingly long, and here we find that it is beyond our
computational time scale. In spite of the lack of true long
range order, a small peak still appears in f./f, at this filling,
as seen in Fig. 7(b).

In Figs. 9(e) and 9(f) at B/BX=7/3, the large interstitial
sites in the kagomé plaquette centers again capture three vor-
tices and the additional fourth interstitial vortex is located in
the small interstitial space between three pinning sites. Only
half of the small interstitial regions capture a vortex. The
trimers in the large interstitial sites are all aligned in the
same direction, in contrast to the mixture of alignments
found at B/Bg:Z.O in Figs. 9(c) and 9(d). The presence of
the fourth interstitial vortex in the small interstitial sites
breaks the sixfold symmetry of the large interstitial region
and produces only a single low-energy alignment direction
for the interstitial trimer. A grain boundary would require a
shift in the position of the vortices in the small interstitial
sites as well as a change in the orientation of the trimers.
Such a grain boundary has a high energy and is not stable in
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FIG. 10. Left panels: vortex positions (black dots) and pinning
site locations (open circles) in a portion of the sample for the
kagomé array from Fig. 7. Right panels: vortex positions only. [(a)
and (b)] B/B5=8/3. [(c) and (d)] B/BY=3. [(e) and (f)] B/Bl
=10/3.

our simulation. Since there are no grain boundaries present,
this state has long-range orientational order, and as a result
the peak in f,/f,, at B/B§=7/3 shown in Fig. 7 is higher than
the peaks at B/B%=2.0 and B/Bg:S/ 3, where the vortices
do not form completely orientationally ordered states.

A related state appears at B/ Bg=8/ 3, shown in Figs.
10(a) and 10(b), where the large interstitial site captures
three vortices in a trimer state and all, rather than half, of the
small interstitial sites capture one vortex. This state was
termed the “second” matching field in Ref. 31. Since all of
the small interstitial sites are now occupied, the sixfold sym-
metry of the potential in the large interstitial sites is restored,
resulting in two degenerate orientations for each trimer. The
interaction between neighboring trimers is not strong enough
to induce a global orientation of the trimers, so, as shown in
Figs. 10(a) and 10(b), there is no long-range trimer orienta-
tional order at B/Bg:S/ 3, just as there was no long-range
orientational order at B/ B{;:Z.O in Figs. 9(c) and 9(d). There
is also only a small peak in f./f, at B/B§:8/3, as seen in
Fig. 7(b).
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For B/B’;=3.o, illustrated in Figs. 10(c) and 10(d), the
large interstitial region captures four vortices which form a
quadrimer state. The remaining interstitial vortices fill all of
the small interstitial sites. The quadrimers are orientationally
ordered and have an effective herringbone structure in which
the quadrimers are tilted in opposite directions from one row
to the next. This state might more appropriately be called a
double herringbone since the herringbone state is composed
of single dimers, while here two dimers have been paired to
form a quadrimer. As mentioned earlier, herringbone states
appear in surface physics for the deposition of molecular
dimers on triangular substrates.>> We are not aware of any
observation of the double herringbone structure for surface
ordering. Such states might occur for the deposition of cubic
molecules on triangular surfaces. Fi Igure 7 shows that there is
a prominent peak in f./f, at B/B4=3.0 due to the overall
orientational ordering of the quadrlmer state.

An ordered state also forms at B/ Bg— 10/3, as shown in
Figs. 10(e) and 10(f). Each large interstitial region captures
five vortices which form a pentagon and the smaller intersti-
tial sites all capture one vortex. The interstitial pentagons are
aligned in a single direction, as indicated in Fig. 8(e). In
surface physics, it is uncommon to consider fivefold sym-
metric molecules that form a pentagon; however, if such
ring-type molecules occur and lie flat on an atomic surface,
then a similar ordering may appear.

There is no appreciable peak in f./f, at B/Bldi:ll/ 3 in
Fig. 7. The vortex configuration corresponding to this field is
plotted in Figs. 11(a) and 11(b). All of the small interstitial
sites are occupied, while some of the large interstitial sites
capture seven interstitial vortices and the rest capture five
vortices. The resulting vortex structure has no long-range
orientational order. In general, we do not observe states
where six vortices are captured in the large interstitial re-
gions. The triangular six-vortex configuration that appears in
the honeycomb pinning lattice in Fig. 6(c) at B/B=4 is not
stable for the kagomé pinning lattice due to the presence of
the vortices in the small interstitial sites. At B/Bf;=4.0,
which was termed the “third” matching field in Ref. 31, Figs.
11(c) and 11(d) show that each large interstitial region cap-
tures seven vortices and the remaining interstitial vortices fill
the small interstitial sites. The overall vortex lattice is trian-
gular and a prominent peak in f../f), is observed at this filling,
as seen in Fig. 7. For higher fillings, we find additional or-
dered and disordered states and, in Figs. 11(e) and 11(f), we
show the case of B/B§= 16/3 where a triangular vortex lat-
tice forms. At very high fillings B/ Bg > 1, depinning occurs
via a shearing motion of the interstitial vortices.

These results indicate that the kagomé pinning array pro-
duces peaks in the critical current at most fields B/B%=n/3
for n>3. In some cases such as B/Bg:8/3 and B/B'(;
=11/3, the peaks are missing or strongly reduced due to a
lack of orientational ordering in the vortex configuration.
The general behavior for both the honeycomb and kagomé
pinning arrays is very similar in that n-mer states with vari-
ous types of orientational ordering form in the large intersti-
tial regions of the pinning lattice.

V. VORTEX PLASTIC CRYSTAL STATES

As noted in Sec. III C, the orientationally ordered dimer
and higher order n-mer states that form in the large intersti-
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FIG. 11. Left panels: vortex positions (black dots) and pinning
site locations (open circles) in a portion of the sample for the
kagomé array from Fig. 7. Right panels: vortex positions only. [(a)
and (b)] B/BY=11/3. [(c) and (d)] B/BY=4. [(e) and ()] B/BY
=16/3.

tial regions of the honeycomb and kagomé pinning lattices
are very similar to the colloidal molecular crystals studied
recently.?>?628 Colloidal molecular crystals undergo a ther-
mal disordering transition to a state in which the orienta-
tional ordering of the n-mers is lost when the n-mers remain
localized at the lattice sites but begin to rotate freely.?>-6-28
Here, we show that the vortex n-mers exhibit a similar rota-
tional melting behavior.

In Fig. 12(a), we plot the vortex positions and pinning site
locations for the honeycomb pinning array in Figs. 5(a) and
5(b) at B/B/;=2 and temperature F'=1.56. At F'=0 in Fig.
5(a), the dimers are all aligned in a single direction, but at
FT=1.56 in Fig. 12(a), the dimer alignment is lost, although
the dimers remain confined to the interstitial sites. The vortex
trajectories, illustrated in Fig. 12(b) for a period of 10* simu-
lation time steps, indicate that while the pinned vortices
move a small amount, each dimer is undergoing rotational
motion between the three low-energy orientations. We find
that there is some correlation in the dimer motions; however,
over long distances, the true long-range orientational order-
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FIG. 12. (a) The vortex positions (black dots) and pinning site
locations (open circles) in a portion of the sample for the honey-
comb pinning array in Figs. 5(a) and 5(b) with f,=0.5f, and
B/Bg:Z.O at a temperature of F7=1.56. (b) The same as in (a) with
vortices (white dots), pinning sites (open circles), and vortex trajec-
tories (black lines) over a fixed time period of 103 simulation time
steps.

ing is lost. We refer to this finite temperature state with no
orientational order as a “vortex plastic crystal” since it is
similar to the colloidal plastic crystal phases. In the vortex
dimer case, there are two species of vortices: the interstitial
dimers and the single vortices trapped at the pinning sites. In
the colloidal system of Refs. 22028, the egg-carton substrate
does not allow interstitial colloids to exist so there is only a
single species of n-mer states.

In Fig. 13(a), we plot the fraction of orientationally or-
dered dimers P as a function of temperature F’ for the hon-

0 0.5 1 1.5

FT

FIG. 13. (a) Fraction P of orientationally ordered dimers versus
temperature F7 for the honeycomb pinning lattice in Figs. 5(a) and
5(b) with f,=0.5f, and B/Bf=2.0. (b) The depinning force felfpvs
FT for the same sample.
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eycomb pinning lattice at B/BZ:Z from Fig. 12. To deter-
mine P, for each dimer we identify the angle a which the
line connecting the two vortices composing the dimer makes
with the positive x axis, where 0 < a<<180°. We then assign
a state d; to each dimer of 1, 2, or 3 depending on whether «
is closest to 30°, 90°, or 120°. The ordered fraction P is
given by P=N,' max[=N48(1-d;), SN 8(2~d;), N4 8(3
—d;)], where N, is the number of dimers in the sample. For
FT<1.25, the dimers remain orientationally ordered with P
=1 and form the vortex molecular crystal state shown in Fig.
5(a). For 1.25<FT<2.3, the orientational order is thermally
destroyed and the system enters the vortex plastic crystal
state. For FT>2.3, the dimers break apart, P is no longer
defined, and there is vortex diffusion throughout the entire
system.

Figure 13(b) shows the depinning force f,/f, as a func-
tion of FT for the honeycomb pinning lattice at B/BZ=2
from Fig. 13(a). The orientationally ordered dimer state has a
well defined depinning threshold which decreases monotoni-
cally with increasing F”. Once the dimer orientational order
is lost, f./f, undergoes a corresponding pronounced drop.
This is consistent with the results presented earlier in which
vortex states that lack orientational order have a significantly
lower value of f./f, than orientationally ordered states. We
note that in the experimental studies on honeycomb arrays of
Ref. 33, as the temperature was increased, the matching ef-
fects at B/B%=3.5 and 4.5 were lost while the matching
effects at B/BZ:I and 2 persisted. This is consistent with
our finding that a significant drop in the strength of the
matching effect appears at the melting of the vortex molecu-
lar crystals, which we expect to be present at B/ Bg=3.5 and
4.5.

VI. VORTEX MOLECULAR CRYSTAL PHASE DIAGRAM
A. Honeycomb dimer state at B/BH=2

By conducting a series of simulations and measuring P
and the diffusion D, we determine the phase diagram of the
different phases for the B/ BZ: 2.0 dimer state of the honey-
comb pinning array. The diffusion is given by

D<w> W
dt

with dr=1000 simulation time steps. The resulting phase dia-
gram as a function of temperature 7 and pinning strength o
is given in Fig. 14. The behavior of the sample at f,=0.5f,
was shown in Figs. 12 and 13 where a vortex molecular
crystal forms for 0<F7<1.25, a vortex plastic crystal is
present for 1.25<F7<2.3, and at FT=2.3 the dimer states
break apart and the vortices diffuse throughout the sample in
a modulated liquid state induced by the substrate. Figure 14
indicates that there is no vortex plastic crystal phase for f,
<0.35f, but that the vortex molecular crystal melts directly
to the modulated vortex liquid for 0.15f,<f, <0.35f.

For f,=<0.15f,, the pinning force is not strong enough to
overcome the elastic energy of the vortex lattice and the low
temperature ground state is not the dimer state shown in
Figs. 5(a) and 5(b) but a partially pinned triangular vortex
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FIG. 14. The temperature F’ vs pinning strength Jfp phase dia-
gram for the honeycomb pinning array at B/Bg=2.0 in the dimer
state. The four phases include the vortex molecular crystal phase
illustrated in Figs. 5(a) and 5(b), a vortex plastic crystal phase
shown in Figs. 13(a) and 13(b), a modulated vortex liquid phase
where motion occurs throughout the sample, and a partially pinned
triangular vortex lattice that forms at low f,, and low temperature
which is described in Fig. 15. Circles: onset of significant diffusion
as determined from the diffusion measurement D. Squares: loss of
orientational order as determined from P, the fraction of orienta-
tionally ordered dimers.

lattice. This state is illustrated in Figs. 15(a) and 15(b) at
f»=0.15fy and F T=(. The triangular vortex lattice still shows
a partial commensuration effect with the substrate and is
aligned in such a way that half of the pinning sites are occu-
pied by a vortex. The unpinned vortices form a kagomé
structure oriented 30° from the original triangular lattice,
where here the pinned vortices take the place of the missing
pinning sites in the kagomé lattice.

The melting temperature in Fig. 14 from the partially
pinned triangular lattice to the modulated vortex liquid in-
creases with increasing f,. The existence of pinned vortices
in the triangular vortex lattice effectively stiffens the lattice,
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FIG. 15. (a) Vortex positions (black dots) and pinning site loca-
tions (open circles) in a portion of the sample for the honeycomb
pinning array in Fig. 14 at B/B%=2.0 and f»=0.15f in the partially
pinned triangular lattice phase at F'=0. (b) Vortex positions only.
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and this effect becomes more pronounced as f, increases.
The transition temperature from the vortex plastic crystal
state to the modulated vortex liquid also increases with in-
creasing f,, since a higher temperature is required to enable
the vortices to escape from the stronger pinning sites.

An interesting feature in the phase diagram of Fig. 14 is
the fact that the transition temperature between the vortex
molecular crystal and vortex plastic crystal states decreases
with increasing f,. The same trend was observed for colloi-
dal molecular crystals as a function of temperature versus
substrate strength.”2-28 In the colloidal case, each dimer is
trapped in a substrate minima, and as the substrate strength
increases, the distance between the two colloids in each
dimer decreases. As a result, the strength of the effective
quadrupole interaction between the dimers decreases, lower-
ing the transition temperature. For the case considered here,
the vortex dimers in the honeycomb pinning lattice do not sit
in the pinning sites and are not directly affected by the in-
crease of f,,. The dimers do, however, interact with the vor-
tices which are trapped by the pinning sites, and these pinned
vortices become less mobile and less able to fluctuate as f),
increases. At low f),, the pinned vortices that are closest to
the ends of each dimer move to the outer edges of the pin-
ning sites in order to sit as far as possible from that dimer.
This produces a flatter interstitial confining potential along
the length of the dimer in the center of the honeycomb
plaquette and permits the interstitial vortices that form the
dimers to move further away from each other. For higher f,,
the pinned vortices are shifted toward the center of the pin-
ning sites and closer to the dimer. This produces a stronger
confining force on the interstitial dimer and brings the vorti-
ces that form the dimer closer together, reducing the effective
quadrupole interaction between neighboring dimers and low-
ering the transition temperature between the vortex molecu-
lar crystal and vortex plastic crystal states. This transition
line is likely to saturate at very high f, when the pinned
vortices are constrained to sit at the very center of the pin-
ning sites and cannot adjust their positions in response to the
orientation of the neighboring dimers. We note that it is pos-
sible that for very high values of f,, a new interstitial liquid
phase could form in which the dimers break apart and the
interstitial vortices hop from one interstitial region to another
while the vortices in the pinning sites remain immobile.

It is beyond the scope of this work to determine the exact
nature of the transitions in the phase diagram of Fig. 14;
however, since the overall system appears to be very similar
to the colloidal case, we can argue from the results for the
colloidal system that the vortex molecular crystal to vortex
plastic crystal transition is probably Ising-like. The vortex
plastic crystal to modulated vortex liquid state transition is
mostly likely an activated crossover.

B. Honeycomb trimer state at B/Bg: 2.5

In order to determine how general the features of the
phase diagram in Fig. 14 are, we consider the case of the
honeycomb lattice at a field of B/B%=2.5 where an ordered
arrangement of trimers occurs, as seen in Figs. 5(c) and 5(d).
We find the same general melting behavior as for the dimers.
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FIG. 16. (a) The vortex positions (black dots) and pinning site
locations (open circles) in a portion of the sample for the honey-
comb pinning array in Figs. 5(c) and 5(d) with f,=0.5f, and
B/Bg:Z.S at a temperature of F'=1.1. (b) The same as in (a) with
vortices (white dots), pinning sites (open circles), and vortex trajec-
tories (black lines) over a fixed time period of 103 simulation time
steps.

In Fig. 16(a), we illustrate the vortex plastic crystal at FT
=1.1. Here, each pinning site captures one vortex and the
interstitial trimers do not have orientational ordering. In Fig.
16(b), the vortex trajectories indicate that the trimers are ro-
tating in a manner similar to the dimers in Fig. 12. For higher
temperature F7, the trimers break apart and we observe dif-
fusion throughout the entire sample.

By conducting a series of simulations for varied tempera-
ture FT and pinning strength S, and measuring the fraction of
aligned trimers and the diffusion, we map out the phase dia-
gram for the trimer state at B/Bgz 2.5, as shown in Fig. 17.
The general features of the phase diagram at B/ BZ =2.5 are
similar to the phase diagram at B/B%=2.0 in Fig. 14; how-
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FIG. 17. The temperature F vs pinning strength Jfp phase dia-
gram for the honeycomb pinning array at B/Bg=2.5 in the trimer
state. The vortex molecular crystal phase is illustrated in Figs. 5(c)
and 5(d). The vortex plastic crystal phase is shown in Fig. 16. In the
modulated vortex liquid, there is diffusion throughout the entire
sample, while at low f, and FT a partially pinned polycrystalline
triangular lattice forms which is described in Fig. 18. Circles: onset
of significant diffusion. Squares: loss of trimer orientational order.
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FIG. 18. (a) Vortex positions (black dots) and pinning site loca-
tions (open circles) in a portion of the sample for the honeycomb
pinning array in Fig. 17 at B/BZ:Z.S and f,=0.1f; in the polycrys-
talline vortex state at F7=0. (b) Vortex positions only.

ever, there are some noticeable differences. For a given pin-
ning strength, the trimers disorder at a significantly lower
temperature than the dimers. For example, at f,=0.5f, the
trimers lose orientational order at F'=0.5, while for dimers
the orientational order persists up to F7=1.25. This reflects
the fact that the effective multipole interaction between tri-
mers is weaker than the effective quadrupole interaction be-
tween dimers. We also note that at F7=0.0, we observe a
peak in f./f, at B/BZ=2.5, shown in Fig. 2, while the ex-
periments of Ref. 33 did not find a peak at this filling. This
could be due to the fact that the trimer melting temperature is
relatively low, and the experiments may have been per-
formed above the trimer melting temperature.

For f,<<0.2f, and low temperatures, the ordered trimer
state is lost and the vortices form a partially ordered triangu-
lar lattice, as shown in Fig. 18. At B/Bg:2.5, the vortices
are unable to simultaneously sit in a triangular lattice and
align with the pinning sites, as in the partially pinned trian-
gular lattice of Fig. 15 at B/ Bg:2.0. Instead, we find a poly-
crystalline state composed of a triangular lattice that contains
dislocations and grain boundaries. The melting line between
the polycrystalline state and the modulated vortex liquid in
Fig. 17 at B/ BZ =2.5 decreases in temperature with increas-
ing f,,. This is the opposite of the behavior of the melting line
between the partially pinned triangular lattice and the modu-
lated vortex liquid at B/ BZzZ.O shown in Fig. 14 and occurs
because the increasing f, leads to an increase of the polydis-
persity in the lattice, depressing the melting temperature. At
f»=0.0 and B/Bf=2.5, a dislocation-free triangular lattice
forms, which has a higher melting temperature than the de-
fected lattice that appears at finite pinning strength.

We have also studied the effect of temperature on the
orientational ordering of the n-mer states for B/ Bg =3 in the
honeycomb lattice at fixed f,=0.5 (not shown). In general,
we find that at fields with no long-range orientational order,
such as B/ Bg:S, the n-mers undergo thermally induced ro-
tations at any finite temperature so there is only a vortex
plastic crystal phase which melts to the modulated vortex
liquid. At the other orientationally ordered fillings, we ob-
serve a finite temperature transition from an ordered vortex
molecular crystal state to a vortex plastic crystal state.

We have performed finite temperature simulations for the
kagomé system as well and find the same general results (not
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shown) as in the honeycomb system. At orientationally or-
dered fillings, there is a low temperature ordered vortex mo-
lecular crystal state which melts into an intermediate vortex
plastic crystal state. Additionally, the orientationally disor-
dered states at B/BX=8/3 and 11/3 show only vortex plastic
crystal and vortex modulated liquid phases at finite tempera-
ture.

Our results agree with the previous study of thermal mo-
tion of vortices on kagomé pinning arrays. In Ref. 31, at the
second matching field B/B,=2, which corresponds to our
B/BX=8/3, the interstitial vortex triangles did not form an
orientationally ordered state but instead created what was
termed a kagomé state at finite temperatures. This kagomé
state corresponds to our general class of vortex plastic crys-
tals in which the n-mers are orientationally disordered. We
note that at B/BX=8/3, we observe no large peak in Selfp as
shown in Fig. 7, and the interstitial vortex trimers have no
long-range orientational order, as seen in Fig. 10(a). In con-
trast, at B/BX=7/3, we find an orientationally ordered vortex
molecular crystal state in which all of the trimers are aligned,
shown in Fig. 9(e), which has a finite temperature transition
to a vortex plastic crystal.

The vortex plastic crystals have similarities to the recently
proposed vortex Peierls states for vortices in a Bose-Einstein
condensate interacting with a corotating periodic optical
lattice.* The optical lattice structure is, in fact, a kagomé
array; however, in Ref. 23, there is an additional potential
minima imposed on the center of the kagomé plaquettes. The
vortex trimer state which forms at a filling of 1/3 on the dual
dice lattice tunnels between the two degenerate configura-
tions. This state is very similar to the vortex trimer state we
observe in which the trimers are undergoing thermally in-
duced rotations, as shown in Fig. 16.

VII. EFFECT OF PINNING STRENGTH

The strength f,, of the pinning sites determines whether it
is possible for a vortex molecular crystal state to form. In
Sec. VI, we showed that in the honeycomb pinning lattice at
B/ BZ =2.0, low f),, and low temperature, the partially pinned
triangular vortex lattice illustrated in Fig. 15 appears instead
of the vortex dimer molecular crystal shown in Fig. 5(a).
This results when the elastic energy of the vortex lattice,
which favors a triangular vortex configuration, overcomes
the energy of the pinning sites. Similarly, at B/B7=2.5, the
partially pinned polycrystalline vortex lattice seen in Fig. 18
forms instead of a vortex trimer molecular crystal at low f,,.
In general, partially pinned phases will not occur in super-
conductors with arrays of holes because the pinning is too
strong but may form for the weaker pinning found for vorti-
ces in superconductors with blind hole arrays or for colloids
on optical trap arrays. Previous work has shown that a com-
petition between the symmetry of the pinning lattice and a
triangular lattice of interacting particles can lead to structural
transitions of the particle lattice. Transitions from square to
partially pinned vortex lattices have been observed in vortex
simulations,?¥” while partially pinned phases have recently
been demonstrated experimentally for macroscopic Wigner
crystals in square pinning arrays.’’ As the pinning strength is
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FIG. 19. f,. vs B/BZ for the honeycomb pinning array from Fig.
2 with f,,=0.35fy, 0.175f,, and 0.1f, from top to bottom. The re-
sults for f,=0.5f, appear in Fig. 2.

reduced at the first matching filling, Ref. 30 shows that a
transition occurs from a square Wigner lattice where each
pinning site captures one charge to a partially pinned trian-
gular lattice. A similar transition appears at the second
matching filling. If the substrate had been triangular, then at
the first matching filling there would have been no structural
transition of the charge lattice since its symmetry would co-
incide with that of the pinning lattice. At the second match-
ing filling on a triangular array, the particles form a honey-
comb lattice when the pinning is strong,” but as the pinning
strength is weakened, a transition to a partially pinned phase
should occur that allows the particle lattice to have a more
triangular ordering. For vortices in honeycomb and kagomé
pinning arrays, we expect a transition from a completely
pinned phase to a partially pinned phase to occur as a func-
tion of pinning strength even at the first matching field.
Since there are a rather large number of possible different
vortex configurations shown in Secs. III and IV, we focus
here on three cases which indicate the general behavior for
both the honeycomb and kagomé arrays at the different
matching fields as the pinning strength is varied. In Fig. 19,
we plot f,. vs B/B’(Z at pinning strengths of f,,=0.1fy, 0.175f,
and 0.35f, for the honeycomb pinning array from Fig. 2,
which contains the results at f,=0.5f,. The vortex configu-
rations at f,=0.35f, are the same as those at f,=0.5f, de-
scribed in Sec. III, and the depinning force f. at B/ Bg
=1/2 and 1.0 is higher than f, at B/B};=1.5 and 2.0. As f,, is
reduced below 0.35f,, the overall f. at all the fields de-
creases, but not uniformly, as f, at B/B%=1.0 drops below
the value of f, at B/B#=0.5 and 1.5. This crossover in f,
with decreasing pinning force results when the vortex lattice
at B/ Bg:l undergoes a transition from a fully pinned hon-
eycomb lattice such as that illustrated in Figs. 4(c) and 4(d)
to the partially pinned distorted square lattice shown in Figs.
20(a) and 20(b) at f,=0.175f,. Here, although there are an
equal number of pins and vortices, half of the pinning sites
are occupied while the other half are empty, resulting in a
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FIG. 20. (a) The vortex positions (black dots) and pinning site
locations (open circles) in a portion of the sample for the honey-
comb pinning array in Fig. 19 at B/BZ: 1.0 and f,=0.175f, where
a distorted square vortex lattice forms. (b) Vortex positions only.
For higher f,,, all the vortices are located at pinning sites and the
state shown in Figs. 4(c) and 4(d) occurs.

significant decrease of the depinning threshold. The elastic
energy of the distorted square vortex lattice at f,<0.35f; is
lower than the honeycomb vortex lattice that forms at higher

! In Fig. 21(a), we plot f, vs f, for the honeycomb array at
B/BY5=1/2, 1.0, and 1.5. At B/B/;=1/2, the triangular vor-
tex lattice illustrated in Figs. 4(a) and 4(b) forms. There is no
transition to a partially pinned state as f, decreases at this
field since there is no competition between the vortex lattice
symmetry and the pinning symmetry. All the vortices remain
trapped at pinning sites for arbitrarily low f,. Since the vor-
tex lattice is completely symmetrical, the depinning force f.
is directly proportional to f,, as shown in Fig. 21(a). At
B/B"=1.0, all the vortices are pinned at the pinning sites in
a honeycomb lattice for f,>0.35f, and f, increases linearly
with f,. For f,=<0.35f,, the system enters the partially
pinned phase illustrated in Fig. 20. At the same time, f, drops
abruptly to a lower value and then decreases more slowly
with decreasing f,. The vortex lattice is always triangular at
B/BZ=1.5, as seen in Figs. 4(e) and 4(f), and there is no
sharp change in f, vs f, since there is no structural transition
in the vortex lattice when f), is varied. For f,<0.35, f, is
higher at B/B=1.5 than at B/Bg: 1.0, as also indicated in
Fig. 19. The depinning force at B/BZ=1.5 increases more
slowly than linearly with f,, which is more clearly seen in
Fig. 21(b) where the range of f, is extended to 2.0f. Here,
the depinning force is determined by the 1/3 of the vortices
which are not confined at pinning sites. As f, increases, the

0.5
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vortices at the pinning sites are more strongly pinned; how-
ever, the caging potential which pins the interstitial vortices
saturates.

At B/BZ=2.0, we have already shown in Sec. VI B that a
transition to the partially pinned state illustrated in Fig. 15
occurs as f, decreases. As a result, there is a jump in f, near
f»,=0.35f; (not shown) similar to what we find for B/B1=1
in Fig. 21(a). For high f,, the f. versus f, curve for B/BZ
=2 resembles that at B/BZ:].S shown in Fig. 21(b), with a
saturation in the depinning force for the interstitial vortex
dimers. We thus expect two dominant behaviors of f,. versus
Jfp at higher matching fields. For those fields where the over-
all vortex lattice is triangular, such as B/Bg: 1.5 and 4.5 in
the honeycomb pinning array [Figs. 4(e) and 4(f) and Figs.
6(e) and 6(f), respectively] as well as B/BI;=4/ 3, 4, and
16/3 in the kagomé array [Figs. 8(e) and 8(f) and Figs. 11(e)
and 11(f), respectively], f, saturates at high values of f, but
has no transition at low values of f,,. For the matching fields
with nontriangular vortex configurations, a transition to a
more triangular state at low f,, occurs which is accompanied
by a drop in f,, and in addition there is a saturation of f, at
high f, which always occurs in the presence of interstitial
vortices. It is also possible that there could be more than one
structural transition as f, decreases. For example, we have
shown a transition from a honeycomb vortex lattice to a
distorted square lattice (Fig. 20) in the honeycomb pinning
lattice at B/Bgzl. At extremely low f,, a second transition
to a completely triangular vortex lattice should occur.

VIII. DISCUSSION

In this work, we only considered the case where each
pinning site could capture at most one vortex; however, other
types of vortex phases and commensurability effects may
occur in real samples if multiple vortices are captured by the
pins. If the pinning is very strong, the first few matching
fields would correspond to the presence of multiquanta vor-
tices at the pinning sites and no interstitial vortices. The vor-
tices would start to enter the interstitial regions only once the
pinning site saturation field is reached. For kagomé and hon-
eycomb lattices of this type, strong commensurability effects
would appear at only the integer matching fields below the
pinning saturation field and would cross over to matching
effects at the n/2 or n/3 fields once the pinning saturation
occurs. Alternatively, individually quantized vortices may
form at low fields, while multiply quantized vortices may
appear in the pinning sites only at high fields where the

«~0.25

FIG. 21. (a) The depinning force f, vs f, for
the honeycomb pinning array at B/ Bgz 1/2
(squares), B/Bg:l.O (circles), and B/Bg: 1.5
(triangles). At f,<C0.35, the vortex lattice at
B/ Bg:l is a distorted square lattice rather than a
honeycomb lattice, and therefore f.. for B/ Bgzl
drops below f,. for B/Bg: 1/2. (b) The same as in

(a) for B/B’;:l (circles) and B/B’;=1.5 (tri-

0.25 0.5

angles) but extended to higher f,,, showing that
there is a saturation in f,. for B/Bg: 1.5.
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vortex lattice constant is small. In such a case, noninteger
matching effects would appear at low fields followed by a
crossover to integer matching effects at higher fields. In Ref.
9, where continuum simulations of square pinning arrays
were performed, it was proposed that multiple interstitial
vortices can merge to form a single giant interstitial vortex.
In the case of the honeycomb and kagomé arrays, singly
quantized vortices could occupy the pinning sites while mul-
tiply quantized vortices sit in the large interstitial sites. In
this scenario, the overall vortex lattice would be triangular
and commensurability peaks would be observable at all
fields n/3 or n/2. If multiple quantization of the interstitial
vortices occurs, there would be no finite temperature phase
transition from a vortex molecular crystal to a vortex plastic
crystal and all of the matching peaks would vanish at the
same rate with temperature. Additionally, since the vortex
lattice symmetry would be triangular at every matching field,
there would be no missing matching peaks due to the forma-
tion of vortex plastic crystals. These effects are not seen in
the experiment of Ref. 33, suggesting that multiple quantiza-
tion of vortices is not occurring.

As stated previously, many of the orientationally ordered
n-mer states are related to various types of Ising and three-
state Potts models. It may be possible to create honeycomb
and kagomé pinning arrays that have an additional aniso-
tropy in one direction. This would bias some of the degen-
erate directions of the n-mer states so that only certain direc-
tions of the n-mer ordering would occur. Also, highly
frustrated states could be created such as incommensurate
fillings composed of mixtures of two different n-mer species.
Ordered colloidal molecular crystal alloy states formed by
mixtures of different n-mers have been proposed in Ref. 38,
and similar states may occur for the vortex system. It is
likely that such mixtures would have extremely long relax-
ation times to reach the ordered ground state. These mixtures
might produce glassy dynamics and have interesting time-
dependent or history-dependent properties.

In addition to allowing the creation of vortex molecular
crystal and vortex plastic crystal states, honeycomb and
kagomé pinning arrays may also be valuable for the general
enhancement of pinning. If pinning sites are placed in a hon-
eycomb or kagomé arrangement, higher pinning can be
achieved at matching fields above the first matching field
compared to a triangular pinning array with an equal number
of pinning sites. This is illustrated in Fig. 22, where f./f), is
plotted as a function of matching field for a triangular,
kagomé, and honeycomb pinning arrays of equal pinning
strength f,=0.5f;. Below the first matching field, there is
little difference between the depinning force for the three
arrays; however, above the first matching field, the honey-
comb array shows a pronounced enhancement of f, over the
triangular array and the kagomé array also shows a smaller
enhancement of f. compared to the triangular array. This
suggests that for different arrays with the same number of
pinning sites, the honeycomb and kagomé pinning arrays
have an overall higher critical current than triangular pinning
arrays.

IX. CONCLUSION

We have used numerical simulations to study the vortex
states in honeycomb and kagomé pinning arrays in the limit
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FIG. 22. (Color online) f,/f, versus B/B, for the triangular
pinning array (red medium hne) versus B/ BK for the kagomé array
(dark line), and versus B/B* » for the honeycomb array (light line) at
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where only one vortex is captured at each pinning site. For
the honeycomb arrays, we find pronounced matching effects
in the form of peaks in the depinning force at most fields
B/B =n/2, where n>2, while for kagomé arrays pro-
nounced matching effects occur at most fields B/BK =n/3,
where n>>3. This is in contrast to the purely trlangular pin-
ning arrays which have prominent matching effects only at
B/By=n or at fields below the first matching field. For the
honeycomb pinning array, a variety of vortex molecular crys-
tal states occur. Here, multiple interstitial vortices occupy the
large interstitial regions of the honeycomb pinning lattice
and form effective dimer, trimer, and higher order n-mer vor-
tex states. The n-mers interact via an effective quadrupole or
higher order pole moment which can lead to an overall n-mer
orientational ordering. This type of n-mer ordering is similar
to the recently studied colloidal molecular crystal states ob-
served for repulsively interacting colloidal particles on peri-
odic substrates. For the honeycomb array, at some of the
matching fields the n-mers do not order and there is no
prominent peak in the depinning force at these fields. Our
results agree well with recent experiments on honeycomb
pinning arrays where strong peaks are observed at B/Bg
=n/2 fillings with missing or weak peaks for the fields at
which we observe disordered n-mer configurations. For the
kagomé pinning arrays, we observe similar dimer, trimer,
and n-mer ordered states which form herringbone or other
ferromagneticlike configurations. Most of the missing com-
mensuration peaks in the B/BX=n/3 sequence correspond to
the lack of n-mer ordering at zero temperature. We term the
orientationally ordered vortex n-mer states “vortex molecular
crystals.” At finite temperature, we demonstrate the existence
of a transition from an orientationally ordered vortex mo-
lecular crystal state to a state where the n-mers are rotating
and lose their relative orientational ordering. We refer to this
disordered state as a vortex plastic crystal. At higher tem-
peratures, there is a crossover to a modulated vortex liquid
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state where there is diffusion throughout the entire system.
When the pinning strength is weak, we find that the vortex
molecular crystal phases undergo a transition to partially
pinned phases where the vortex lattice has triangular or par-
tially triangular ordering and only a portion of the pinning
sites are occupied. These results suggest that the vortex mo-
lecular crystal states have many similarities to the recently
studied colloidal molecular crystal states and that the vortex
molecular crystal to vortex plastic crystal transitions can be

PHYSICAL REVIEW B 76, 064523 (2007)

mapped to various types of spin systems such as Ising and
Potts models.
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