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We study a transverse electron-hole focusing effect in a normal-superconductor system. The spectrum of the
quasiparticles is calculated both quantum mechanically and in semiclassical approximation, showing an excel-
lent agreement. A semiclassical conductance formula is derived, which takes into account the effect of elec-
tronlike as well as holelike quasiparticles. At weak magnetic fields, the semiclassical conductance shows
characteristic oscillations due to the Andreev reflection, while for stronger fields it goes to zero. These findings
are in line with the results of previous quantum calculations and with the expectations based on the classical
dynamics of the quasiparticles.
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I. INTRODUCTION

Investigation of electron-transport properties of normal-
superconductor �NS� hybrid nanostructures has attracted
considerable experimental1–6 and theoretical8–14 interest in
recent years. A very important physical process in this re-
spect is the Andreev reflection,15 whereby an electron inci-
dent on a superconductor-normal interface is �partially� ret-
roreflected as a hole into the normal conductor and a Cooper
pair is created in the superconductor. The first direct experi-
mental observation of the peculiar property of the Andreev
reflection, i.e., that all velocity components are reversed, was
achieved by Benistant et al.2,3 using the versatile tool of
transverse electron focusing �TEF�.16 The experimental and
theoretical investigation of the two-dimensional electron gas
using the TEF technique has been pioneered by van Houten
et al.17 �see also a recent review18 discussing these experi-
ments in terms of coherent electron optics�.

A particularly interesting problem in NS systems is the
interplay of edge channel formation and the Andreev reflec-
tion in high magnetic fields.5–9,13,14 Hoppe et al.8 studied this
problem at the interface of semi-infinite superconductor and
normal regions in a strong magnetic field parallel to the in-
terface. They found that similarly to the normal quantum-
Hall systems, edge states are formed which propagate along
the NS interface but these “Andreev” edge states consist of
coherent superposition of electron and hole excitations.
Therefore, they are a new type of current-carrying edge
states which are induced by the superconducting pair poten-
tial. The authors of Ref. 8 also showed that a semiclassical
approximation can give a good agreement with the exact
results obtained by solving the Bogoliubov–de Gennes
equation19 �BdG� for the energy dispersion of the Andreev
edge states. Clear experimental evidence for the electron and
hole transport in edge states has been reported by Eroms et
al.5

In a disk geometry, it was shown in Refs. 20 and 21 that
such edge states can exist both in the presence and also in the
absence of any magnetic field and that the bound state ener-
gies calculated semiclassically agree very well with the re-
sults obtained from the BdG equation.

Giazotto et al.13 have extended the study presented in Ref.
8 by considering the effect of the Zeeman splitting and of the
diamagnetic screening currents in the superconductor on the
Andreev edge states. Very recently, Fytas et al.11 studied the
magnetic field dependence of the transport through a system
consisting of a normal billiard and a superconducting island,
while Chtchelkatchev and Burmistrov have considered the
role of the surface roughness in NS junctions.14

In this work, we study the NS hybrid system depicted in
Fig. 1. It is similar to the experimental setup of Ref. 2 but in
our system the normal conducting region is a two-
dimensional electron gas. It is assumed that the quasiparticle
transport in the waveguide is ballistic and that the waveguide
can act as a drain, which absorbs any quasiparticles exiting
to the left of the injector or to the right of the collector.

First, we calculate the eigenstates of this system when the
quantum point contacts are not present, i.e., we consider a
normal waveguide in contact with a superconductor. We
show how the interplay of the lateral confinement brought
about by the finite width of the lead, the applied magnetic
field, and the proximity effect gives rise to a rich physics in
this system. We calculate the eigenstates of the system by
solving the BdG equation and then these exact quantum re-

FIG. 1. The hybrid NS nanostructure that we investigate. It con-
sists of an infinitely long two-dimensional ballistic normal conduc-
tor of width W coupled to a semi-infinite spin-singlet supercon-
ductor region. The conductance is measured between two normal
conducting quantum point contacts: the injector �of width Wi� and
the collector �of width Wc and at distance L from the injector�. The
magnetic field B is applied perpendicular to the system �in our
calculation, B�0 corresponds to a field pointing out of the plane of
the system�.
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sults are compared with results obtained from semiclassical
calculations. As we shall show below, the agreement is ex-
cellent. We note that the semiclassical approximation we
used is applicable in a wider parameter range than the one
used in Refs. 8 and 13 for a similar system.

Having obtained the exact eigenstates and their semiclas-
sical approximations, we then turn to the calculation of con-
ductance for the case when the two quantum point contacts,
as depicted in Fig. 1, are present. To determine the conduc-
tance between the injector and the collector, we adopt the
method used by van Houten et al.17 to describe the TEF in a
two-dimensional electron gas. In our system, however, we
have to take into account the dynamics of both the electron-
like and of the holelike quasiparticles. Thus, our results can
be considered as a generalization of the corresponding semi-
classical calculations of Ref. 17.

Recently, the same NS system has been studied
numerically22 using a Green’s function technique.23 The in-
fluence of the underlying classical dynamics on the conduc-
tance has been, however, discussed only qualitatively. Our
rigorous semiclassical treatment gives a quantitative analysis
of the dependence of the transport on the classical dynamics
of quasiparticles.

The rest of the paper is organized as follows. In Sec. II,
we present the exact quantum calculations based on the BdG
equation. Then, in Sec. III, we discuss the results of the
semiclassical approximations of the exact quantum calcula-
tions. In Sec. IV, we compare the results of the quantum and
of the semiclassical calculations and give the physical inter-
pretation of the results. Section V is devoted to the semiclas-
sical calculation of the conductance between the injector and
the collector, which is the central result of our paper. Finally,
in Sec. VI, we come to our conclusions.

II. QUANTUM CALCULATION

In this section, we consider a system consisting of a nor-
mal conducting waveguide of width W in contact with a
semi-infinite superconducting region. We derive a secular
equation. The solutions of this equation give the eigenener-
gies of the bound states of the system.

The eigenstates and eigenenergies can be obtained from
the BdG equation,

�H0 �

�* − H0
* ���x,y� = E��x,y� , �1�

where � is a two-component wave function and H0= �p
−eA�2 / �2m�+V−EF is the single-electron Hamiltonian �for
simplicity, we assume that the effective mass m and the
Fermi energy EF is the same in the N and S regions24�. The
excitation energy E is measured relative to EF. Scattering at
the NS interface is modeled by an external potential V�x�
=U0��x�. Hard wall boundary condition is imposed at the
wall of the waveguide, which is not adjacent to the super-
conductor, i.e., ��x=W ,y�=0. The bound state energies are
the positive eigenvalues 0�E�� of the BdG equation.19

The superconducting pair potential � can be approximated
by a step function ��r�=�0��−x� without changing the re-

sults in any qualitative way.25 Owing to the translational
symmetry along the y direction, it is convenient to choose
the Landau gauge for the vector potential: A�r�=B�0,x ,0�T

�here, T denotes the transpose of a vector�. The system
is separable and the wave function ��x ,y�
= ��e�x ,y� ,�h�x ,y��T in the N region reads

��N��x,y� = �Ae�e
�N��x�

Ah�h
�N��x�

�eiky , �2�

where k is the wave number along the y direction and the
amplitudes Ae,h will be determined from the boundary con-
ditions given below. On substituting ��N��x ,y� into Eq. �1�,
we find that the function �e

N�x� satisfies the following one-
dimensional Schrödinger equation,

d2�e
�N����

d�2 − �1

4
�2 + a��e

�N���� = 0, �3a�

where

� = �2� x

l
− sign�eB�kl	, a = − � E

	
c
+

�0

2
� . �3b�

Here, l=�	 / 
eB
 is the magnetic length, 
c= 
eB
 /m is the
cyclotron frequency, and �0=2EF / �	
c� is the filling factor.
Equation �3a� is a parabolic cylinder differential equation.27

The solutions, taking into account the Dirichlet boundary
condition at x=W, can be expressed in terms of the Whit-
taker functions U�a ,�� and V�a ,��,

�e
�N��x� = U�a,�� −

U�a,�W�
V�a,�W�

V�a,�� , �4�

where �W=�2�W / l−sign�eB�kl�. It follows then from the
BdG equation that for the hole component �h

�N��x� of the
wave function, the symmetry relation,

�h
�N��B,E,x� = �e

�N��− B,− E,x� , �5�

holds.
The magnetic field is assumed to be screened from the

superconducting region; hence, the vector potential is taken
to be zero �for the case of finite magnetic penetration length,
see, e.g., Ref. 13�. Therefore, in the S region, the wave func-
tion ansatz with eigenenergy E can be written as20

��S��x,y� = �Ce��e

1
��e

�S��x� + Ch��h

1
��h

�S��x�	eiky ,

�6a�

where

�e,h
�S��x� = e±iqe,hx, �6b�

qe,h = kF�1 −
k2

kF
2  i� , �6c�

�=��0
2−E2 /EF, �e,h=

�0

E±i��0
2−E2 , and kF=�2mEF /	 is the

Fermi wave number �the upper/lower signs in the expres-
sions correspond to the electron/hole component�. Note that
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in the S region, the wave function ��S��x ,y� goes to zero for
x→−�.

The four coefficients Ae,h ,Ce,h in Eqs. �2� and �6a� are
determined by the boundary conditions at the NS in-
terface,20,21


��N�
x=0 = 
��S�
x=0,

� d

dx
���N� − ��S���

x=0
= �2m

	2 U0��N��
x=0

, �7�

for all y and k. The matching conditions shown in Eq. �7�
yield a secular equation for the eigenvalues E as a function
of the wave number k. Using the symmetry relations between
the electronlike and holelike components of the BdG eigen-
spinor given by Eq. �5�, the secular equation can be reduced
to20,21

Im��eDe�E,B�Dh�E,B� = 0, �8a�

where the 2�2 determinants De and Dh are given by

De�E,B� = � �e
�N� �e

�S�

��e
�N��� Z�e

�S� + ��e
�S���

� , �8b�

Dh�E,B� = De�− E,− B� . �8c�

Here, Z= �2m /	2�U0 is the normalized barrier strength, and
the prime denotes the derivative with respect to x. All func-
tions are evaluated at the NS interface, i.e., at x=0. The
secular equation derived above is exact in the sense that the
usual Andreev approximation is not assumed.28 An analo-
gous result was found previously20,21 for NS disk systems.

III. SEMICLASSICAL APPROXIMATION

As a first step to calculate the conductance between the
injector and the collector, we should solve the exact quanti-
zation condition �Eqs. �8�� which involves the evaluation of
parabolic cylinder functions. It turns out that for certain pa-
rameter ranges, this makes the actual numerical calculations
rather difficult. However, as we are going to show it in Sec.
IV, for the quasiparticle dispersion relations which will be
important in the subsequent analysis, one can obtain excel-
lent approximations using semiclassical methods. The use of
the semiclassical approximations makes the numerical calcu-
lations much simpler and gives a better understanding of the
underlying physics. The semiclassical calculations are based
on �i� the Wentzel-Kramer-Brillouin �WKB� approximation29

of the functions �e�x�, �h�x� �see Eqs. �3a� and �5�� and their
derivatives and �ii� the Andreev approximation.28 The ap-
proximated wave functions are then substituted into Eq. �8a�
to obtain the semiclassical quantization conditions. The cal-
culations can be carried out in a similar fashion as in Ref. 21;
therefore, in this section and in the next one, we only sum-
marize the main results. Throughout the rest of the paper, we
assume an ideal NS interface, i.e., we set U0=0.

Depending on the energy of the electrons �holes� and on
the applied magnetic field, eight different types of orbits can
be distinguished. These orbits, denoted by A to H, are shown

in Fig. 2. In the geometrical construction of the classical
trajectories, we took into account that the chiralities of the
electronlike and the holelike orbits are preserved when
electron-hole conversion occurs at the NS interface.13

Type A orbits correspond to the skipping motion of alter-
nating electron and hole quasiparticles along the NS inter-
face. Neither the trajectory of the electrons nor of the holes
hits the wall of the waveguide at x=W. This type of orbit was
first considered by Hoppe et al.8 Type B and C orbits are
similar to type A but either the electron or the hole can now
reach the wall of the waveguide at x=W. In the case of type
D orbits, the electrons and holes bounce both at the wall of
the waveguide and at the NS interface, while for type E �G�
orbits the quasiparticles move on cyclotron orbits. Type F
�H� is the familiar edge state of the integer quantum-Hall
systems. The electrons �holes� move on skipping orbits along
the wall of the waveguide at x=W.

The semiclassical quantization condition for the orbits
shown in Fig. 2 can be written in the following simple form:

N�E� = n + � for n � Z , �9a�

where N�E� can be expressed in terms of the �dimensionless�
classical action integrals Se��+

e ,�−
e�, Sh��+

h ,�−
h� �see Table I� of

the different types of orbits and � is the corresponding
Maslov index. The actions Se,h are given by the following
equations:

Se��+
e ,�−

e� = 2��e��+
e� − �e��−

e�� , �9b�

Sh = Se�− E − B� , �9c�

�e�x� =

eB

2�	

� �Re
2 − �x − X�2dx

=
E + EF

2�	
c
�arcsin

x − X

Re
+

1

2
sin�2 arcsin

x − X

Re
�	 ,

�9d�

�h = �e�− E,− B� . �9e�

Here, the cyclotron radii Re,h and the classical turning points
�±

e,h for electrons and holes are given by

Re,h = Rc
�1 ± E/EF, Rc = kFl2, �9f�

�+
e = min�W,X + Re , �9g�

FIG. 2. �Color online� Classification of the possible orbits. The
solid �dashed� lines correspond to electron �hole� trajectory seg-
ments. The black arrows show the direction of the group velocity
�cf. the slope of the dispersion curves in Figs. 3 and 4� for a mag-
netic field pointing out of the plane.
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�−
e = max�0,X − Re , �9h�

�±
h = �±

e�− B,− E� , �9i�

where X=sign�eB�kl2 is the guiding center coordinate. We
note that contributions to the Maslov index of a given type of
orbit come from the collisions with the wall of the wave-
guide, from the collisions with the superconductor �Andreev
reflections�, and from the caustics of the electron �hole� seg-
ments of the orbit �see Table I�.

IV. DISPERSION RELATION AND THE PHASE DIAGRAM
FOR NS SYSTEMS

In this section, we compare the numerical results obtained
from the exact quantum mechanical and from the semiclas-
sical calculations outlined in Secs. II and III. The above dis-
cussed classical orbits can exist in different parameter
ranges, depending on the strength of the magnetic field, on
the Fermi energy, and on the width of the normal lead. It is
convenient to use the following dimensionless parameters:

�0, �0 /	
c, kFW, and Rc /W. Figures 3 and 4 show compari-
sons of the exact quantum calculations with the semiclassical
results for the dispersion relation of the quasiparticles. In the
case of Fig. 3, the magnetic field is strong enough so that the
cyclotron radius is smaller than the width of the waveguide.
One expects therefore that type A orbits and Landau levels
�corresponding to orbits of types E and G� would appear in
the spectrum. One can see that this is exactly the case, the
Landau levels appearing as dispersionless states. The agree-
ment between the quantum and semiclassical calculations is
excellent except in the transition regime between type A and
type E �G� orbits. In the case of Fig. 4, the magnetic field is
weaker than for Fig. 3 and therefore Rc is now larger than W.
No Landau level appears and the dispersion relation can be
well approximated semiclassically using orbits of types B, C,
D, F, and H.

Whether or not a given type of classical orbit is allowed
for a certain set of parameter values depends on the positions
of the turning points with regard to the wall of the waveguide
and to the NS interface. The conditions for each type of
orbits are summarized in Table I. The turning points depend

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

k/k
F

E
/h

ω
c

A GE

FIG. 3. �Color online� The energy spectrum obtained from Eqs.
�8� �solid line� as a function of k. The parameters are �0=40,
�0 /	
c=2, kFW=106.7, and Rc /W=0.375. In the semiclassical cal-
culations �see Eqs. �9��, only orbits of types A ��� and E and G ���
need to be taken into account.

TABLE I. N�E� related to the actions defined in Eqs. �9� and the conditions for the possible types of orbits
shown in Fig 2.

Type of orbit N�E� � Conditions for orbits

A Se��+
e ,�−

e �−Sh��+
h ,�−

h� 1
� arccos � E

�
� �+

e ,�+
h �W, �−

e ,�−
h =0

B Se��+
e ,�−

e �−Sh��+
h ,�−

h� − 3
4 + 1

� arccos � E
�

� �+
e =W, �+

h �W, �−
e ,�−

h =0

C Se��+
e ,�−

e �−Sh��+
h ,�−

h� − 1
4 + 1

� arccos � E
�

� �+
e �W, �+

h =W, �−
e ,�−

h =0

D Se��+
e ,�−

e �−Sh��+
h ,�−

h� 1
� arccos � E

�
� �+

e ,�+
h =W, �−

e ,�−
h =0

E Se��+
e ,�−

e � 1
2 �+

e �W, �−
e �0

F Se��+
e ,�−

e � − 1
4 �+

e =W, �−
e �0

G −Sh��+
h ,�−

h� − 1
2 �+

h �W, �−
h �0

H −Sh��+
h ,�−

h� − 3
4 �+

h =W, �−
h �0

−1−1−1−1 −0.5−0.5−0.5−0.5 0000 0.50.50.50.5 1111
0000

2222

4444

6666

8888

k/kk/kk/kk/k
FFFF

E
/h

E
/h

E
/h

E
/h

ωωωω
cccc

D CBF H

FIG. 4. �Color online� The energy spectrum obtained from Eqs.
�8� �solid line� as a function of k for parameters �0=160, �0 /	
c

=8, kFW=106.7, and Rc /W=1.5. In the semiclassical calculations
�see Eqs. �9��, orbits of types D, F, H ���, B ���, and C ��� are
involved.
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�see Eqs. �9f�–�9i�� on the width of the lead W, on the Fermi
wave number kF, on the magnetic field �or equivalently, on
the cyclotron radius Rc�, and on the wave number k. In an
experiment, the former two parameters would be fixed, Rc
could be varied by varying the magnetic field, while the
wave number k of the injected electrons would be uniformly
distributed if there are many open channels in the quantum
point contact. For a given W and kF, i.e., for a given experi-
mental sample, one can then draw a “phase diagram,” which
shows the allowed types of classical orbits as a function of
Rc and k. An example of such a diagram is shown in Fig. 5.
Note that the weak energy dependence of the turning points
translates into a similarly weak energy dependence of the
phase diagram. Thus, for Fig. 5, we have chosen E=0. For
parameter values in the white region, no classical orbits ex-
ist.

V. COHERENT ELECTRON-HOLE FOCUSING

Having obtained the spectrum of the quasiparticles, we
have now all the necessary information to calculate the con-
ductance between the injector and the collector for the NS
system shown in Fig. 1. For Wi, Wc��F, the calculations in
principle could be carried out using the exact results of Sec.
II. However, this would involve evaluations of the Whittaker
functions �see Eq. �4�� and we have found that this would
render the actual numerical calculations rather difficult.
Therefore, we calculate the conductance semiclassically,
adopting and generalizing the method of Ref. 17 to account
for all types of current-carrying modes. Namely, the dynam-
ics of hole-type quasiparticles created by Andreev reflections
also needs to be taken into consideration. We assume that Wi,
Wc�Rc, meaning that the angular distribution of the injected
electrons is not perturbed by the magnetic field.

In a classical picture, electrons having orbits of type B or
D can contribute to the conductance since only these orbits
reach the collector �note that for type F orbits, the group
velocity points in the −y direction�. Assuming that the wave
function in the waveguide is unperturbed by the presence of
the collector,17 the current at the collector is given by

Ic = ��� ��e

�x
�W,L��2

− � ��h

�x
�W,L��2	 , �10�

where � is a yet undetermined parameter but will drop out
when we calculate the conductance. This expression is a gen-
eralization of Eq. �16� of Ref. 17 since it includes the con-
tribution of the holes as well. In the WKB approximation, the
wave function ��N��x ,y�= ��e�x ,y� ,�h�x ,y��T in the wave-
guide is the sum over all classical trajectories from the injec-
tor to the point �x ,y� of an amplitude factor times a phase
factor. As in Ref. 17, one can transform the sum over trajec-
tories into a sum over modes using saddle point integration.
Finally, we find

��e

�x
�W,L� = − 2ikF�

n

K=B,D

�2�i� �2Se
K�pn�

�pn
2 	−1

Apn

K eikn
KL−i� cos �n

K

�11a�

and

��h

�x
�W,L� = −2ikF�

n

�2�i� �2Sh
D�pn�

�pn
2 	−1

Apn

D eikn
DL−i� cos �n

D.

�11b�

For simplicity, here we give the definitions of the different
terms appearing in the above expressions only for electrons
having type B orbits. For holes and for type D orbits, similar
expressions were derived but are not presented here. The
wave numbers kn of the excited modes �for a given magnetic
field� can be obtained from the dispersion relation by solving
the equation E�kn ,Rc�=E. The amplitudes Apn

B of the modes
related to type B orbits are given by

Apn

B =�Ii cos �n

2vFL

d��n�

d����
�=�n

, �12�

where Ii is the current injected from the injector, vF
=	kF /m is the Fermi velocity of the quasiparticles, and the
prime denotes derivation with respect to �. Here �, �n, and
d��n� are defined in the following way: the distance between
two subsequent rebounds off the wall of the waveguide for
an electron injected at angle � �measured from the y axis� is
d���=4�Rc

2− �W−Rc sin ��2−2Rc cos �. Then, p=L /d��� is
the number of bounces between the injector and the collec-
tor. The angle � can also be expressed by sin �= �W
−X� /Rc and it is related to the wave number kn of the modes.
Namely, for mode kn, the guiding center coordinate
is X=sign�eB�knl2; therefore, sin �n=W /Rc−sign�eB�kn /kF

�because Rc=kFl2�, from which it follows that pn=L /d��n�.
Finally, Se,�h�

B �pn� is related to the action of electrons �holes�
between the injector and the collector. In the case of type B
orbits, the summation over n includes only those modes for
which the group velocity �E�k� /��	k� is positive, i.e., the
mode propagates from the injector to the collector. �Note that
the group velocity is determined by the slope of the curves in
Fig. 4.�

FIG. 5. The phase diagram of the allowed type of orbits as a
function of Rc and k for energy E=0. The white regions are classi-
cally forbidden. Positive values of W /Rc correspond to magnetic
field pointing out of the plane of the system, and negative W /Rc

corresponds to magnetic field in the opposite direction.
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The conductance G�E ,Rc� between the injector and the
collector is G= Ii /Vc, where Vc is the collector voltage. Tak-
ing into account Eq. �10� it reads:17

Vc = ��� ��e

�x
�W,L��2

Ge
−
� ��h

�x
�W,L��2

Gh
� . �13�

Here, Ge �Gh� is the conductance of the collector for elec-
trons �holes�. An estimate for Ge �Gh� is given by Eq. �17� of
Ref. 17. Since both Ge and Gh are proportional to the param-
eter �, it drops out from Vc. Similarly, the injected current Ii
drops out from G�E ,Rc� since the derivatives of the wave
functions in Eqs. �11� are proportional to �Ii through the
amplitudes Apn

.
Equations �10�, �11�, and �13� allow us to calculate semi-

classically the conductance as a function of the energy of
quasiparticles and of the magnetic field. This is the main
result of our paper. An example is shown in Fig. 6. One can
clearly see that for weak magnetic fields �W /Rc�0.4�, the
conductance is a rapidly oscillating function of the magnetic
field and can also take on negative values. The first observa-
tion is a consequence of the constructive interference of
many coherently excited modes �edge states�. A similar ef-
fect was found by van Houten et al.17,18 The negative con-
ductance values can be explained by the holelike excitations
of the NS system. Indeed, at low magnetic fields �large Rc�,
an injected electron undergoes one or more Andreev reflec-
tions and it can happen �see type D orbits� that a hole arrives
to the collector resulting in negative conductance. This is the
so-called Andreev-drag effect.22 In our calculations, the
heights of the positive peaks are comparable to those of the
negative ones. This observation is in line with the findings of
Ref. 2 and also with the results of Ref. 22, where an exact
�numerical� quantum calculation has been performed for the
same system. We note that in the limit of Rc /W�1, i.e., for
weak magnetic fields, the conductance is to good approxima-

tion periodic in the inverse of the magnetic field 1/B. In this
limit, only type D orbits can carry current �see Fig. 5�. It
turns out that for certain magnetic fields, an injected flux
tube of type D orbits can be focused into the collector, lead-
ing to negative or positive peaks in the conductance. The
condition on the focusing magnetic fields can be cast into
Rc� pW2 /L, where p�1 is an integer. Even integers lead to
positive peaks, and odd integers to negative ones in the con-
ductance.

The use of WKB approximation implies that our results
should be accurate at low magnetic fields when a large num-
ber of edge states are populated. We find, moreover, that our
semiclassics predicts correctly that the conductance vanishes
for strong magnetic fields in this setup �cf. Fig. 2 in Ref. 22�.
From the inset of Fig. 6, one can see that increasing the
magnetic field, the conductance decreases and rapidly goes
to zero for W /Rc�1.5. This can be understood from classical
considerations. Upon increasing the magnetic field, the cy-
clotron radius decreases and at a certain value of the field the
diameter of the cyclotron orbit becomes smaller than the
width of the waveguide �W /Rc�2�, which means that no
injected electron can hit the superconductor and undergo An-
dreev reflections. Instead, the electrons move to the left skip-
ping along the wall of the waveguide �type F orbits� and
eventually they leave the system without reaching the collec-
tor, i.e., the conductance becomes zero. According to our
semiclassical calculations, for kFW=26.7 as in the case of
Fig. 6, the last current-carrying mode disappears when
W /Rc�1.8, in broad agreement with the classical picture.

VI. CONCLUSIONS

In conclusion, we have studied the transverse electron-
hole focusing effect in a normal-superconductor system simi-
lar to the setup of Ref. 2. As a first step to determine the
conductance, we calculated the energies of the bound states
both quantum mechanically and in semiclassical approxima-

FIG. 6. The conductance G for low magnetic fields at E=0. Inset: the conductance for stronger magnetic fields. We used kFW=26.7 and
�0 /EF=0.1.
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tion. We have shown that semiclassical methods can repro-
duce the results of the relevant quantum calculations and
thus can help to understand the underlying physics. We have
identified those classical orbits which contribute to the con-
ductance and derived a semiclassical conductance formula.
In agreement with the quantum calculations of Ref. 22, for
weak magnetic fields the semiclassical conductance shows
rapid oscillations and the presence of the Andreev-drag ef-
fect. For stronger magnetic fields, the conductance goes to
zero, which can be understood by invoking the classical dy-
namics of electrons at such fields. Our results can be consid-
ered a generalization of similar works17,18 for normal sys-
tems since in the system that we studied, the current-carrying
modes are comprised of both electronlike and holelike qua-

siparticles. In our work, we assumed an ideal normal-
superconductor interface, i.e., neglected the probability of
specular reflection. Given the interface quality that can be
achieved with present-day fabrication techniques, an impor-
tant extension of the present work would be to consider both
quantum mechanically and semiclassically the effects of a
finite interface barrier �U0�0� and mismatch in the Fermi
velocities and effective masses.
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