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We discuss a recent experiment in which the resistance of a superconducting film has been measured in
magnetic field. A strong decrease of the superconducting film resistance has been observed when a metallic
gate is placed above the film. We study how the magnetic coupling between vortices in a thin superconducting
film and electrons in a remote unbiased gate suppresses the tunneling rate of the vortices. We examine two
general approaches to analyze tunneling in the presence of slow low-energy degrees of freedom: the functional-
integral and scattering formalisms. In the first one, the response of the electrons inside the metallic gate to a
change in the vortex position is described by the “tunneling with dissipation.” We consider the Eddy current
induced in the gate by the magnetic flux of the vortex as a result of tunneling. In the second approach, the
response is given in terms of scattering of the electrons by the magnetic flux of the vortex in a way similar to
the Aharonov-Bohm scattering. A sudden change in the vortex position leads to the orthogonality catastrophe
that opposes the vortex tunneling. We show that the magnetic coupling between the vortices and the electrons
inside the gate can lead to a dramatic suppression of the vortex tunneling, restoring the superconducting
property in accord with the experiment.
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I. INTRODUCTION

The vortex motion in superconductors is a source of en-
ergy losses, destroying the perfect conductivity of the super-
conductors. The dissipation is caused by nonsuperconducting
electrons located inside the vortex core.1 The pinning poten-
tial created by impurities opposes the motion of vortices.
This potential results from the action of the impurities on the
vortex core averaged over the area of the core. Therefore, the
pinning potential has minima typically separated by a dis-
tance of order of the coherence length �.2,3 Vortices may
change their positions either by thermal activation4 or by
quantum tunneling between the potential minima at low
enough temperatures.5–8 In this context, the observation of a
strong decrease of the resistance when an unbiased metallic
gate is placed above an amorphous superconducting film9 is
of great interest. We believe that this experiment provides a
strong argument that at low temperature the motion of vorti-
ces is indeed realized by quantum tunneling �in the experi-
ment described in Ref. 9 it occurs at T�0.1 K�. If so, the
tunneling of a vortex in a thin superconducting film is a
unique example of tunneling of a very extended “object.”

In the discussed experiment, the resistance of a supercon-
ducting film has been measured at various magnetic fields,
both with and without a gate. In the absence of a gate, in
magnetic fields lower than the critical one �H�HC2�, the
resistance initially decreases with lowering the temperature,
but eventually saturates at a finite value. The saturation indi-
cates the possibility of vortex tunneling. When an unbiased
metallic gate is placed above the superconducting film the
resistance reduces significantly with no indication of saturat-
ing at a finite resistance when T→0. Remarkably, the effect
of the gate becomes noticeable at the same temperatures
where the resistance of the ungated film starts to saturate. It
is worth mentioning that the gate is separated from the film
by an oxide layer of 160 Å. Therefore, the film is thermally

isolated from the gate ruling out the possibility that the satu-
ration of the resistance in the ungated film can be attributed
to heating. In this paper we identify the mechanism causing
the suppression of the vortex motion in the presence of the
gate, which is effective in the tunneling regime only. The fact
that the finite resistance at low temperatures has been elimi-
nated by placing a remote isolated gate strongly confirms the
tunneling nature of the vortex motion.

In the experiment of Ref. 9 the film thickness is a
�30 Å and the gate thickness is d�400 Å. An important
feature indicating that the gate and the film are well sepa-
rated is that the superconducting transition temperature Tc as
well as the critical magnetic field are practically unchanged
by adding the gate. Since the gate does not affect the super-
conductivity at T�Tc when it is the weakest, its influence on
the superconducting properties, such as the energy gap, at
lower temperatures can be ignored. One should also keep in
mind that the gate does not influence the resistance of the
film when the vortex motion is thermally activated. In view
of all of the above, we concentrate only on examining the
influence of the gate on the vortex tunneling rate. We as-
sumed that the superconducting film and the gate are mag-
netically coupled via the magnetic field of the vortices that
pierces through the gate.

We employ here the following strategy. We accept the
tunneling of vortices at low temperatures as an established
experimental fact. We do not try to calculate the tunneling
rate of the vortices. Instead, we concentrate on how the re-
sponse of the electrons inside the gate to a change of the
vortex position suppresses the tunneling rate. With this ques-
tion in mind, in the complex problem of the vortex tunneling,
we wish to isolate the effect induced by the gate.

In fact, little is known about the motion of vortices at low
temperatures.10 Fortunately, for studying the role of the gate,
it is sufficient to assume that the change in the vortex posi-
tion is a discrete tunneling event. This can be a tunneling of
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a single vortex, a bundle of vortices, or topological defects
such as dislocation pairs in the case of a vortex lattice �or a
glass state�. Phenomenologically, the change in the vortex
position can be described by the hopping Hamiltonian

H = �
i

�iai
+ai + �

�i,j�
��ijai

+aj + H.c.� . �1�

According to the standard criterion of the Metal-Insulator
transition,11 the ratio of the variation of the potential minima
�= ��i� to the typical value of the tunneling rates �= ��ij�
specifies whether the vortices are itinerant or localized. The
finite resistance at low temperature in the absence of the gate
indicates that the vortices are mobile, i.e., the tunneling rate
in the ungated film �unG��. The dissipationless nature of the
superconducting film is revived when the tunneling rate is
reduced by the gate to �G��; see Fig. 1 which illustrates the
two cases. Thus, we interpret the experiment9 as a transition
from “metallic” to “insulating” phases in a system of tunnel-
ing vortices that is induced by the gate. �Because of the
strong interaction between the vortices, it may be enough to
have a fraction of vortices with a suppressed probability of
tunneling acting as the pinning centers for the entire en-
semble of vortices.�

The fact that the tunneling of the vortices can be blocked
by placing a gate above the film indicates that the tunneling
event gives rise to a dramatic response of the electrons inside
the gate. This response can be analyzed in terms of low-
energy electron-hole excitations “decorating” the tunneling
event. One may consider the cloud of virtual excitations as
part of the tunneling process that lasts long after the change
in the vortex positions occurs. In the present work we con-
centrate on the response of the electrons to the tunneling that
can lead to the strong suppression of the tunneling rate.

One may better understand the specifics of tunneling with
the participation of low-energy degrees of freedom, i.e., in
the presence of dissipative environment, using the picture
given by Iordanskii and one of the authors.12 Originally it
described the quantum formation of a nucleation center in
the decay of a metastable macroscopic state, but it could also
provide a general perspective. The quantum nucleation is an

example of a tunneling process in which a large number of
degrees of freedom participate. Alternatively, this kind of
process can be treated as a tunneling of an artificial “particle”
in a multidimensional space. When low-energy degrees of
freedom are involved in the process of quantum nucleation,
the nucleation develops in two stages.12 Namely, the motion
of the “particle” in this multidimensional space along the
trajectory minimizing the imaginary time action consists of
fast and slow stages.

The slow stage appears because of the long time needed
for the slow low-energy degrees of freedom to adjust them-
selves to the new state of the fast degrees of freedom.13 This
time is much longer than needed for fast the degrees of free-
dom to complete the tunneling. That is why the tunneling has
to develop in two stages. It has been shown in Ref. 12 that
despite the fact that the low-energy degrees of freedom yield
only a small contribution to the energy of the barrier, their
participation in the tunneling process increases parametri-
cally the overall tunneling time. This results in a large in-
crease of the action and, correspondingly, in the strong sup-
pression of the tunneling rate.14

The described picture of changing a quantum state in the
presence of low-energy degrees of freedom is rather typical
for condensed matter systems. In the course of the fast stage
of the process a quantum mechanical object changes its state
�position, spin projection, phase of the Josephson junction,
etc.�. The accompanying slow degrees of freedom act as an
environment for the fast degrees of freedom. In the discussed
problem of tunneling in the gated superconducting film, the
tunneling of the vortex from one potential minimum to an-
other corresponds to the fast stage. During the slow stage,
the electrons inside the gate adjust their state to the new
position of the vortex.

The ensemble of electron-hole pairs in the gate represents
the low-energy degrees of freedom of the environment. The
environment produces the most significant effect on tunnel-
ing at large time differences when the slow degrees of free-
dom have enough time to develop. Naturally, the effect is the
strongest when the tunneling occurs between states that are
almost degenerate. In the latter case the long time response
can considerably reduce or even block the tunneling15,16 �this
statement is often formulated in terms of the dissipative
quantum phase transition17�. With this in mind, we concen-
trate only on the slow stage that develops when the tunneling
of the vortex degrees of freedom is mostly accomplished
without specifying how the fast stage develops.

In this paper, we examine two different approaches to
describe the response of the electrons inside the gate to the
change of the vortex position. In Secs. II and III we consider
the dissipative Eddy �Foucault� currents induced in the gate
which continue long after the vortex changed its position. We
formulated the effect of the gate on the vortex tunneling in
terms of the effective action of a vortex. We integrate out the
environmental degrees of freedom inside the gate, and obtain
the dissipative term in the effective action. This allows us to
consider the vortex tunneling in the gated superconducting
film in the context of the well-known problem of tunneling
in the presence of a dissipative environment,18 Sec. IV. Al-
ternatively, one can analyze the slow stage in terms of the
scattering of electrons. In Sec. V we describe the elastic scat-
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FIG. 1. The vortex in the effective potential landscape is repre-
sented by a hopping “particle.” �a� The tunneling rate in the absence
of the gate �unG exceeds the energy difference between the potential
minima �; the vortices are in a “metallic” phase. �b� The tunneling
rate is reduced by the gate to �G��, and the system of vortices
becomes an “insulator.”
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tering of the gate electrons on the vector potential of the
magnetic field of the vortex. The zero overlap between the
states of the electrons before and after the change of the
scattering potential is known generally as the orthogonality
catastrophe �OC�.19 We show that the OC caused by the
change in the vortex position, effectively suppresses the vor-
tex tunneling. The novel element here20 is that the OC is
connected to the Aharonov-Bohm effect.21,22 We obtained
that the OC is significantly more effective in suppressing the
tunneling rate than the Eddy current. In Sec. VI we discuss
the relation between the two approaches and the peculiarities
of the tunneling of an extended object, such as a vortex in a
thin superconducting film.

II. EDDY CURRENTS INSIDE THE GATE

The magnetic field of the vortex inside a superconducting
film is similar to the magnetic field of a solenoid with a
radius equal to the magnetic penetration depth � which can
be very large.23 Outside of the film, the magnetic field decays
as a function of the height and deflects into the radial
direction24,25

Avor�r,z;R� =
	
0

�
� d2q

�2��2eiq·r−q�z� iq� ẑ

q2��−1 + 2q�
. �2�

Here r is the radial vector in cylindrical coordinates with the
origin at the vortex center R. Since a vortex in a film can
move only in the x-y plane, R is a two dimensional vector.
The parameter 	=1/2 is the total flux of a vortex in a super-
conductor measured in units 
0=2�c /e.

In the case of a thin superconducting film, a Pearl vortex
is a macroscopically large object. The penetration depth �
is23

� = �3D
2 /a, � � a , �3�

where a is the thicknesses of the superconducting film, �3D is
the penetration depth in a disordered bulk superconductor. In
Eq. �3�, �3D	�L��0 / l�1/2, where �L= �mc2 /4�ne2�1/2 and �0

are the London length and the coherence length of a clean
superconductor; l is the mean free path.

In the experiment of Ref. 9 the gate thickness d is much
smaller than �. Because of the exponential decay of the Fou-
rier components in the z direction, see Eq. �2�, momenta that
contribute mostly are limited to q�1/d. More accurately,
q�min
d−1 ,�r−1�, where �r is the typical distance that a
vortex has to tunnel, �r	�. To avoid unnecessary complica-
tions, we ignore the space between the superconducting film
and the gate since it is considerably smaller than the gate
thickness, see Fig. 2. Then, for small momenta that we are
interested in, the deflection of the magnetic field in the space
between the film and the gate can be neglected.

To describe the tunneling of a vortex in the presence of a
gate one has to deal with an imaginary time action:

S = Ssc + Sgate + Sint. �4�

In what follows we discuss each term in the action S.
The term Ssc is an action of the superconducting film in

the absence of the gate. Since we are not trying to solve the

problem of the vortex tunneling in full scale, but are inter-
ested only in the effect of the gate on the tunneling rate, this
part of the action is not specified.

In writing Sgate which describes the dynamics of the elec-
trons in the gate one should keep in mind the following
argument. The charge and current densities relevant for the
long tail response of electrons inside the gate to the tunneling
of the vortex are characterized by large length and time
scales. Therefore, their dynamics can be described macro-
scopically. Since the deviations of the charge and current
densities from their equilibrium values are small, the action
that describes the dynamics of their fluctuations should be
consistent with the fluctuation-dissipation theorem �FDT�.
�Examples of such an approach can be found in the calcula-
tion of the dephasing time of the cooperons due to the elec-
tromagnetic fluctuations,26 and also in a macroscopic calcu-
lation of the zero bias anomaly.27�

The current in the gate has two contributions. One is the
Ohmic response to the electric field, while the other one is
the diffusive current from the gradients of the density;
J�r ,��=JOhmic�r ,��−D���r ,��. The fluctuations of the
charge and current densities can be expressed through the
correlation function of the Ohmic part of the current written
in terms of the Matsubara frequency as follows:

K̂i,j
−1�k,i�n� = �JOhmic

i �k,i�n�JOhmic
j �− k,− i�n��

= �i,j�k,�n���n� + �i,i��k,�n�Dj,j��k,�n�ki�kj�.

�5�

Here the diffusion constants tensor D̂ and the conductivity
�̂ are connected through the Einstein’s relation �̂

=e2�dn /d��D̂. The gate, being a simple homogeneous metal,
is adequately described by the Drude formula. We assume
that the external magnetic field is classically weak, �c��1,
so that we can ignore the Hall conductivity in the gate; � is
the mean free time in the gate. Since we are interested in the

z

x

y

d

a
superconductor

gate

FIG. 2. Superconducting film magnetically coupled to a metallic
gate. The magnetic field of the vortex pierces through the gate. In
the experiment of Ref. 9 d�400 Å, a�30 Å, and the insulating
layer between the gate and the film is 160 Å thick.
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low frequency and long wave length behavior only, we take
the conductivity � to be constant.

Following the above arguments, one can write the gate
action Sgate for the charge and current densities inside the
gate in the Matsubara time:

Sgate =
1

2
�

0

�

d�1d�2� dr1dr2LFDT�r1,�1;r2,�2

+ �
0

�

d�� dr�Lcont + LMax . �6�

The first term in the above action describes the charge and
current density fluctuations in accordance with the FDT:

LFDT = �J�r1,�1� + D̂ � ��r1,�1�K̂�r1 − r2,�1 − �2�

��J�r2,�2� + D̂ � ��r2,�2� . �7�

Since the fluctuations of the current and density are not in-
dependent, the second term in Eq. �6� imposes the charge
continuity condition with the use of the Lagrange multiplier
�:

Lcont = ��r,���i�̇�r,�� + � · J�r,�� . �8�

The term LMaxwell describes the interactions of the electro-
magnetic fields and the charge and current densities in the
gate in a way that reproduces the Maxwell equations

LMax = i
1

c
�J · Aind + ��ind

+
1

8�
��− ��ind −

i

c
Ȧind�2

+ ��� Aind�2� . �9�

The factor i in the coupling of the electromagnetic fields with
the charge and current densities appears because of the
imaginary time.28 The plus in the magnetic field term �which
is a consequence of the i factor� is needed to get the repul-
sive sign in the Ampere interaction of currents, like in the
Coulomb interaction of charges. As usually, the total poten-
tials are the sum of the external and induced potentials; in the
discussed system the external source is the field of the vor-
tices.

The last term in the action �4�, Sint, describes the connec-
tion between the superconducting film and the gate. The cur-
rent and charge densities in the gate interact with the vector
and scalar potentials created by the superconducting film

Sint = i�
0

�

d�� dr�1

c
J�r,�� · Asc�r,�� + ��r,���sc�r,��� .

�10�

We are interested in the limited problem of the long tail
response of electrons inside the gate that develops when the
tunneling of the vortex degrees of freedom is mostly accom-
plished. Therefore, we consider large enough � when one can
assume that the deformation of the field Asc�r ,�� appearing
during the process of vortex tunneling has been already re-
laxed. �By deformation we mean the deviation of Asc�r ,��
from the field of the “rigid” vortex centered at R���, as it is

given by Eq. �2�. Here R��� denotes the position of the vor-
tex at time �. With this in mind, we put in Sint

Asc�r,�� = Avor�r;R��� . �11�

Furthermore, we ignore the scalar potential, �sc�r ,��
=�vor�r ;R���=0, relying on the known fact that the redis-
tribution of the charge density around the vortex core is neg-
ligible. We still have to justify our treatment of the electro-
magnetic field Asc as a given external field in the analysis of
the long tail response of the gate electrons. We will see in the
next section that the magnetic field created by the low-
frequency components of the dissipative Eddy currents is
much smaller than the field of the vortex, and can perturb the
superconducting film only weakly. Therefore, the gate does
not provide a substantial feedback effect to the superconduct-
ing film during the slow stage.

To get the response of the environment on the vortex mo-
tion, one has to integrate out the gate degrees of freedom.
Since Sgate and Sint are quadratic in the charge and current
densities, this immediately results in

Senv =
i

2
�

0

�

d�� dr
1

c
Jcl�r,�� · Avor�r,R��� . �12�

The current Jcl�r ,�� has to be found by solving the classical
equations of motion. Since the current J�r ,�� describes the
long-time response of the electrons in the gate, the term Senv
is nonlocal in time.

III. THE SOLUTION OF THE EQUATION OF MOTION

As we stated above, the main contribution to the induced
current emerges from the components of the field with q
�1/d for which the depletion of the magnetic field of the
vortex from the z direction is negligible. Therefore, we can
ignore the current component in the z direction and consider
only the components that are parallel to the plane. With this
in mind, we decompose the current parallel to the plane of
the gate into two components: a longitudinal component
along the two-dimensional vector q and a transverse compo-
nent perpendicular to it, J�q ,��=J��q ,��q̂+J��q ,��ẑ� q̂. In
the following we use the Fourier transformation for the in-
plane coordinates only and keep the vertical coordinate sepa-
rately. Then, the kernel in Eq. �5� is diagonal in the chosen
basis. As it follows from Eq. �2�, the vector potential Avor�r�
contains the transverse component only. Therefore, since the
use of the FDT for describing the slow stage implies a linear
response to the external field, the longitudinal component J�

cannot be generated. This is a direct consequence of the
magnetic coupling between the superconducting film and the
gate. It is very different from the zero bias anomaly in which
only a longitudinal current is generated.27

The variation of Sgate+Sint with respect to the current and
charge densities determines the equations of motion. We use
these equations for finding the transverse current
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� dz�K��q;z,z�;i�n�J��q,z�,i�n�

= −
1

c2 � dz�U�q,z − z��J��q,z�,i�n� − i
1

c
Avor

� �q,i�n� .

�13�

The left-hand side of this equation is the total vector poten-
tial in the transverse direction calculated via its Ohmic re-
sponse: J�= ���n /c�Atotal

� . The first term in the right-hand
side is the vector potential of the induced field and the sec-
ond one is the external potential of the vortex. Neglecting
relativistic effects, the instant kernel U can be written as the
Fourier transform of the instant in time Biot-Savart kernel
U�r−r��=1/ �r−r�� with respect to the in-plane momenta

U�q ,z−z��=2�e−q�z−z�� /q.
The above equation for the transverse current can be re-

written in the form

� dz�L��q;z,z�;i�n�J��q,i�n� = − i
���n�

c
Avor

� �q,i�n� ,

�14�

where the kernel L� is

L��q;z,z�;i�n�

= ���z − z�� +
2����n�

c2 e−q�z−z��/q 0� z,z�� d;

0 otherwise.
�
�15�

To find the transverse current one has to invert this kernel.
In analogy to the skin-effect, one can define a screening

length ��q ,�n�=1/�q2+4����n� /c2. �Usually, the skin-
effect is discussed in the case of an electromagnetic wave
propagating normally to a surface of a metallic slab. The
geometry of the problem studied here is different as the mag-
netic field is normal to the slab surface, while the propaga-
tion is parallel to it. Still, the surface current appearing in the
gate screens out the high-frequency components of the field
in the bulk of the slab.� The kernel L� can be inverted in the
two limits: �i� for the components of the electromagnetic
field that are transparent for the gate, d /��q ,�n��1 or �ii�
for the components with d /��q ,�n��1 that are well
screened by the surface currents. These are the thin and thick
gate limits, respectively.

In the thin gate limit, the change in the current along the
z direction is minor, and a reasonable approximation �up to
liner terms in qd� is to consider the current to be homog-
enous in the z direction, I2D=dJ��q ,z , i�n�. Then,

I2D = − i
�2D

1 +
2��2D��n�

qc2

��n�
c

Avor
� �q,i�n� + O�qd� . �16�

One can observe that the expression for the current I2D is
identical to the current in a two-dimensional system with
�2D=�d, and where 2��2D��n� /qc2 is the current screening

operator. �The term “current screening operator” is used here
in analogy with the polarization operator. It describes the
screening of the transverse component of the time dependent
vector potential by the induced currents.�

At low frequencies such that 2��2D��n� /c2�q�d−1 �this
automatically implies the thin gate limit�, the current in the
gate screens weakly the field produced by the vortex. The
total field is approximately just the field of the vortex, and
the current is merely the Ohmic response to it

I2D = − i
�2D��n�

c
Avor

� �q,i�n� . �17�

For higher frequencies, 2��2D��n� /c2�q, but still in the thin
gate limit, the situation is rather different. Since the effect of
dissipation is stronger for better conducting gates, we are
interested in the case when 2��2D/c�1. Then, there is a
window qc2 /2��2D� ��n��qc in which the current I2D

obeys a London-like equation24 I2D=−i qc
2�Avor

� �q , i�n�. Since
the electrons instantly respond to the potential, the contribu-
tion to the action in this limit is not of a dissipative character.
Rather, it provides a local in time term acting as an addi-
tional potential that should be added to Ssc. This kind of
contribution is not considered here.

For a thick gate, ��q ,�n��d, the limit of low frequencies
does not exist for q�d−1. In this limit the screening length is
equal to ���n�=c /�4����n�. At such high frequencies the
current flows in the reduced volume �which effectively is a
thin slab of width ���n� as follows:

J��q,z,i�n� = − i
cq

2�
�−1�q,�n�e−z/��q,�n�+qzAvor

� �q,z,i�n�

+ O�e−d/�� . �18�

Notice that the Fourier components Avor
� �q ,z� decay expo-

nentially on z as e−qz. Therefore, the factor eqz in the solution
above is canceled out leaving the induced surface current
with the z dependence e−z/��q,�n�. Integrating Eq. �18� in
the z direction yields the London-like current I2D

=−i qc
2�Avor

� �q , i�n� exactly as in the thin gate limit.
So far, we have ignored relativistic effects that appear at

high frequencies when ��n� /c�q. In this case, one has to
substitute q by the relativistic combination �q2+ ��n /c�2. Us-
ing the relativistic equations of motion, one can show that
the current Jcl is similar to the Ohmic regime but with �2D

replaced by �2D/ �1+2��2D/c�. In the limit 2��2D/c�1,
the dissipation caused by the Cherenkov’s radiation29 corre-
sponds to the effective conductivity equal to c /2�. Still, the
effect of the relativistic region is negligible in comparison to
the low-frequency contribution to Senv.

To conclude, let us come back to our assumption about
the absence of a feedback from the gate to the superconduct-
ing film. As we have showed above, the most significant
contribution to Senv originates from the region 2���n��2D/
�qc2��1 when the Eddy current is in the Ohmic regime. In
this limit, the low-frequency components of the vortex field
are poorly screened by the induced current in the gate.
Hence, the feedback from the gate to the superconducting
film can be neglected.
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We are ready to obtain the dissipative term in the action
describing the effective response of the environmental de-
grees of freedom on the vortex tunneling. Inserting the cur-
rent J� from Eq. �17� into Eq. �12�, one gets

Senv =
�

2�c2 � d�1d�2�
n

��n�e−i�n��1−�2�

�� d2q

�2��2dzeiq�R��1�−R��2�

�
− iq� Avor�− q,z�

q

iq� Avor�q,z�
q

. �19�

Performing the sum over the frequencies and rewriting the
action in terms of the magnetic field we get eventually

Senv = −
��

2�2c2 � d�1d�2� d2q

�2��2dz
eiq�R��1�−R��2�

sin2��
�

��1 − �2��
�

Bvor
z �− q,z�Bvor

z �q,z�
q2 . �20�

IV. TUNNELING IN THE PRESENCE OF Senv

For the purpose of illustration, let us compare Senv with
the action of Refs. 18 and 30 for a particle moving in a
dissipative environment

SCL = 1/4�� d�1d�2�
�R��1� − R��2�2

��1 − �2�2 . �21�

This term results from integrating out the slow degrees of
freedom of the environment. The long-time response of these
modes reveals itself through a nonlocal in time term in the
action. If R��� describes a particle moving with a constant
velocity, one can substitute �R���−R���� / ��−��� with
the velocity Ṙ. Then the action SCL reduces to
1/2��d�1d�2�Ṙ2 /2 where the integrand is a reminiscent of
the Rayleigh’s dissipation function. The Rayleigh function is
used in the Euler-Lagrange equations to include dissi-
pation:31

d

dt� �L

�Ṙ
� −

�L
�R

+
�F

�Ṙ
= 0, �22�

where F=�Ṙ2 /2 is the Rayleigh function with a friction co-
efficient �. Since the Rayleigh function enters the equation
of motion without a time derivative �unlike the Lagrangian�,
the inclusion of the dissipation into the action costs an addi-
tional time integration. Therefore, the corresponding term
must be nonlocal in time.

Under the same approximation of constant velocity, the
action Senv can be written in the coordinate representation as

Senv =
1

4�
� d2rdz� d�1d�2

�

c2 �vvor� Bvor�r,z�2. �23�

The combination �vvor�Bvor�r� /c is the electric field
created by a moving vortex. Then, the integrand in the

action Senv is merely the energy dissipation rate in
the gate caused by the vortex motion Senv
=1/2��d2rdz�d�1d�2�Evor

2 �r ,z� /2. This expression is in
full correspondence with the one obtained for a constant mo-
tion of a particle in the presence of friction �.

We return now to Eq. �20� and analyze it for the case of
tunneling between two minima separated by a distance �r.
We start with the integration over the coordinate z and mo-
mentum q using for the magnetic field Bvor the solution
given by Eq. �2�. We get in result

Senv =
	2�d

16e2�2 � d�1d�2
�R��1� − R��2�2

��1 − �2�2

�ln� d

�
+

8�2�2Dd

��1 − �2�c2�−1

. �24�

The appearance of the log factor is very natural if one recalls
that we integrate the square of the magnetic field and it is
well known that Bvor	1/r at a distance r from the center of
the vortex, when r��. The time dependence of the loga-
rithm results from the fact that the integration over the mo-
menta is limited to the Ohmic regime ��n��c2q / �2��2D�.
The time dependence of the logarithm is important because
in thin superconducting films the ratio d /� can be very small.
At large time differences, which are essential for low tem-
peratures, the logarithmic factor in the action becomes
ln � /d.

Following the standard renormalization group �RG� pro-
cedure one gets that the modified tunneling rate �G is

�G�T� = �unG�T�tun�KE, �25�

where the exponent KE is equal to the dimensionless dissipa-
tion coefficient

KE = �d
�	�r�2

8e2�2 ln��
d
� . �26�

In Eq. �25�, �tun is the time of the under-barrier motion of the
vortex in the process of tunneling in the absence of the gate
�i.e., the duration of the fast stage of the tunneling discussed
in the Introduction�. The parameter �tun

−1 acts as the high-
energy cutoff because only slow excitations that cannot fol-
low adiabatically the tunneling particle contribute to the slow
stage of the tunneling process �it is assumed that �tun

−1 �T�.
Since only the current in the Ohmic regime contributes to
Senv, there is an additional high-energy cutoff
	c2 / �4��2Dd�. Therefore, in Eq. �25� �tun

−1 should be re-
placed by �̃tun

−1=min
�tun
−1 ,c2 / �4��2Dd��. Little can be said

about �tun as the effective mass of the vortex and the poten-
tial of the tunneling barrier depend on the specific properties
of the superconducting film. As to the energy scale
c2 / �4��2Dd�, it is evaluated to be 	103 K �the resistivity of
the gate is about 10 �� cm�.

The temperature enters in Eq. �25� as a low-energy cutoff
because the excitations with energy smaller than T do not
contribute to the action. The dependence of the tunneling rate
on other factors limiting the time of response of the environ-
ment can be found from the RG analysis.16,32 Apart from the
temperature, such factors include the typical energy mis-
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match between the minima of the vortex potential � and the
tunneling rate itself. The energy mismatch � in this problem
is equivalent to a magnetic field in the Kondo problem.
Moreover, low-frequency components of the Eddy current
with frequencies smaller than �G cannot develop when the
tunneling events are too frequent. This is why the tunneling
rate determines its own renormalization in a self-consistent
way. To include the influence of these factors, one should
substitute T in Eq. �25�, by Tmax=max
T ,�G ,��.

For KE�1 the temperature dependence given by Eq. �25�
holds for all temperatures down to zero. Thus, for �→0 the
vortex becomes localized at T=0. In the Kondo problem32

this happens for a ferromagnetic sign of the exchange. The
localization occurs because the strong response of the envi-
ronment blocks the tunneling. In the opposite case, KE�1,
the tunneling rate remains finite when T ,�→0

�G 	 �̃tun
−1��unG�̃tun�1/�1−KE�. �27�

This quantity has the meaning of the Kondo temperature
which determines the physics of switching between two
states when both T and � are smaller than �G. Unlike the
Kondo problem, the dimensionless parameters KE and
��unG�tun� which determine the tunneling rate are completely
uncorrelated. We are interested in studying the case when the
tunneling is small even in the absence of the gate, i.e., when
�unG�1/�tun. Then, the tunneling between two states is
equivalent to the Kondo problem in the limit of extreme
anisotropy. In this case the renormalization of KE can be
neglected, and the trajectories of the RG phase diagram are
straight lines.

So far, in the discussion of the renormalization of the
tunneling rate we ignored the time dependence of the log
factor in Eq. �24�. Generally speaking, this is not valid as
there can be a big window of energies, �̃tun

−1� ��n����
−1,

where ��
−1=c2 /4��2D�. Then, the RG analysis has to be re-

vised. The modified phase diagram is plotted in Fig. 3; see
the Appendix for details. Notice, that the condition for local-
ization �the inability to tunnel� becomes harder. It is also
worth noting that the delocalization-localization phase tran-
sition occurs at a finite energy scale.

Let us discuss the result obtained for the exponent KE.
Naturally, the action Senv is proportional to the square of the
magnetic field. After integration over the coordinates one

obtains the factor �	 /��2. From the structure of the action
�24� it follows that KE is proportional to the squared distance
of the change of vortex position, which is typically of order
�. Altogether, the exponent KE acquires the factor �� /��2

�1. This smallness is opposed by the sheet conductance of
the gate, �2D, which in the case of a thick well conducting
gate gives a large factor 2��d /e2. As usually, the effect of
dissipation is stronger for cleaner systems.

V. ORTHOGONALITY CATASTROPHE (REF. 20)

The magnetic flux of a vortex piercing through the gate
scatters the electrons in a way similar to Aharonov-Bohm
�AB� scattering.21,22 The tunneling of a vortex enforces the
electrons inside the gate to adjust to its new position. The
response of the electrons to a sudden change of the vortex
position leads to the OC that manifests itself in the vanishing
overlap �� f ��i� of the two wave functions describing the
macroscopic electron system before and after the change of
the scattering potential.19 The tunneling rate renormalized by
the overlap integral is

�G = �unG�� f��i� . �28�

The overlap �� f ��i� can be expressed in terms of the opera-
tors Ŝi and Ŝf describing the scattering of the electrons by the
magnetic field of the vortex in its initial and final positions:33

��� f��i�� = N−KOC;

KOC = −
1

8�2Tr
ln2�ŜfŜi
−1�� . �29�

Here N is the number of electrons in the gate and, hence, the
overlap factor vanishes unless there is a mechanism that lim-
its the effectiveness of the OC. It is clear from the comments
to Eq. �25� that at finite temperatures34,35 the parameter 1 /N
should be substituted by �max
T ,�G��tun�. Obviously, the
renormalized tunneling rate �G is given by Eqs. �25� and
�27� with KE replaced by KOC, and the localization of vorti-
ces can be achieved when KOC�1.

In the following part of this section we show that for a
superconducting film magnetically coupled to a metallic gate
�see Fig. 2� the exponent KOC is

KOC = �d�kF
gate�2 �	�r�2

64�
, �30�

where kF
gate is the Fermi momentum of the electrons in the

gate and the prefactor � is evaluated numerically as �0.4.
The cylindrical symmetry of the vortex allows us to ana-

lyze the scattering of electrons using the basis of cylindrical
waves, �� ,q ,kz�; here � is the angular momentum along the z
axis, while q and kz are the magnitudes of the in-plane and z
components of the momentum. In this basis the elements of
the matrix SfSi

−1 can be easily calculated in terms of the
phase shifts �� as

f���SfSi
−1���� f = �

n

e2i��−2i�n+�Jn�q�r�Jn−��+��q�r� , �31�

where J��z� is the Bessel function.

Γ

τλ

unG

1

localization

delocalization

KE

τtun

τtun

FIG. 3. The delocalization-localization phase diagram for the
tunneling of vortices in the plane of �unG�tun and the dissipation
coefficient KE.

SUPPRESSION OF TUNNELING OF SUPERCONDUCTING… PHYSICAL REVIEW B 76, 064506 �2007�

064506-7



To proceed further, we need to find the specific phase
shifts for scattering by a vortex. An analogy to classical scat-
tering, where the angular momentum is related to the impact
parameter b= ��� /q, helps elucidate the behavior of the phase
shift as a function of �. For b��, the scattering by the vor-
tex is similar to the AB scattering by a flux 	
0. In the
AB scattering21,22 electrons acquire the phase ��

AB= �
2 ����

− ��−	��. The uniqueness of this scattering is in its infinite
range: �� does not vanish when ���→�. For scattering by the
vortex, the jump in the AB phase shifts is smeared out, but
the infinite range character of this scattering is preserved.
Hence, �� varies monotonically as a function of � between
the two limits

�� ——→
��q�

	
�

2
sgn � . �32�

Naturally, for q��1 the phase shift depends on b and � only
through the dimensionless combination b /�=� /q� such that
��= 	�

2 g�� /q��; see Fig. 3 in Ref. 20 for illustration.
We now notice that the sum determining the elements of

f���SfSi
−1���� f is accumulated at −q�r�n�q�r. This is be-

cause the Bessel functions J��z� decay exponentially with
their order when ��z. Therefore, since �r /�	� /��1, the
phase shifts difference in Eq. �31� can be approximated as

�� − �n+� ——→
n�q�

− n���; ��� �
	�

2q�
g�� �

q�
�� 1.

�33�

The final step of the calculation is to expand in �r /� the
logarithm in Eq. �29�, and take the trace over � and the
momentum on the Fermi surface. The outcome of the calcu-
lation is given in Eq. �30�. The gate thickness d appears here
as a result of taking the trace. The specifics of the vortex
solution enter only through g�x�, with the integral yielding
�=�dx�dg /dx�2�0.4.

Using the known expressions for � and � in disordered
thin films, the exponent can be rewritten as

KOC 	 �
	2

48�
� e2

c
�2vF

sc

e2 �kF
gated��kF

gatea��kF
sclsc�2. �34�

The index “sc” refers to the electrons in the superconducting
film: lsc is their mean free path �in the normal state� and vF

sc is
the Fermi velocity. Interestingly, Tc drops out from KOC so
that it depends only on the geometrical factors and the non-
superconducting properties of electrons. We see that the
value of the exponent KOC is determined by a small factor
	10−7 opposed by a product of a few large factors. Unlike
KE, the condition for vortex localization can be easily ful-
filled by KOC for a not too thin gate and not too disordered
superconducting film.

VI. COMPARISON BETWEEN THE TWO
CALCULATIONS AND DISCUSSION

The expressions in Eqs. �26� and �30� for the exponent
describing the renormalization of the tunneling rate have

been obtained assuming that only one vortex participates in
each tunneling event. In general, vortices can tunnel as a
bundle, or as topological defects. In a vortex lattice or in a
glass state such defects can be dislocations pairs, interstitials
or vacancies. Still, the calculation remains valid as long as
�r��. This is because the magnetic field of the tunneling
vortices extends over a large distance, so that their exact
configurations before and after the tunneling are not impor-
tant. The only relevant quantity is the product 	�r. For a
single vortex, 	=1/2. When more than one vortex tunnel
together 	 should be multiplied by the number of vortices.

The two expressions for the exponent, KE and KOC, share
the same dependence on 	�r and d. Therefore, the ratio be-
tween them is “universal”:

KE

KOC
=
� ln��/d�
e2�kF

gate�2�
	

lgate

�
, �35�

where lgate is the mean free path of the electrons in the gate.
Since in a thin superconducting film the penetration depth �
is very large, under the conditions of the experiment,9 the
OC is dominant.

In order to understand the difference between the two
expressions for the exponent, we have to explain the depen-
dence of KOC on �. Although we invoke the expansion in
terms of the small parameter �r /��1, we get KOC
 ��r�2 /�. This is typical for the OC when an extended scat-
tering potential is considered, because in this case a large
number of scattering channels �harmonics� is involved.
Therefore, the total effect of OC is parametrically bigger
than the one from a single channel.36 For the problem dis-
cussed here, the relatively weak dependence of KOC on � can
be understood from the following arguments. It has been
shown that the OC is determined by �����−��+1�2

��������2. Since the phase shifts approach asymptotically
the limit ±	�2 , the sum

�
�

��� − ��+1� � �
�
��� = �	 . �36�

Therefore, the result obtained for the exponent KOC corre-
sponds to the differences ���−��+1� that are distributed al-
most equally between L	q� channels

�
�

��� − ��+1�2 	 L��	
L
�2

	
	2

�
. �37�

Indeed we see that the first power of �−1 is natural for the
exponent KOC because a large number of scattering channels
is perturbed by the change in the potential when such an
extended object as a vortex tunnels.

The peculiarity of the discussed problem is that a vortex
in a thin film is a very extended object. In general, the tun-
neling of an extended object excites many channels of the
environment. Unlike the standard OC caused by a scattering
potential �but not a vector potential� where the exponent is
determined by sum of squares of the phase shifts, here the
sum of the squared derivatives of the phase shifts determines
the exponent of the OC. Still there is some similarity be-
tween the two problems. In the standard OC the sum of the
phase shifts is finite because of the Friedel sum rule �see,
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e.g., the tunneling via the localized level considered in Ref.
36�, while in the discussed problem the asymptotic limits of
the AB phase shifts make the sum of the derivatives of the
phase shifts to be finite, see Eq. �36�. As a result of this “AB
sum rule” the OC exponent given by Eq. �37� is similar to
that given by Eq. �10� in Ref. 36.

One may conclude from Eqs. �36� and �37� that the ran-
domization of the phase shifts due to the disorder can only
increase the value of the exponent KOC. �In the general case,
� should be substituted by the index of the states diagonal-
izing the scattering matrix.� The scattering by impurities
leads to the randomization of the phase differences, while the
asymptotic limits of the phase shifts remain the same, ±	�2 .
Therefore, the value of the exponent KOC, which is deter-
mined by the squares of the phase differences, should in-
crease in the presence of disorder. This conclusion is in ac-
cordance with the existing theoretical results on the en-
hancement of the OC exponent by not too strong dis-
order.37,38

The sum over the channels �harmonics� enters in a natural
way into the exponent KOC, while in the calculation of the
“tunneling with dissipation” the sum is absent. The scheme
of calculation of the “tunneling with dissipation” for the
Eddy currents corresponds to the OC expression calculated
in the perturbation theory up to the second order with respect
to the change of the vector potential. It is merely finding the
elements of the scattering matrix in the Born approximation.
However, the AB effect is a nonperturbative phenomenon.
When the current is calculated in the linear response the
asymptotic limits of the phase shifts are not captured. One
may also see that in the linear response scheme only one
channel remains in the sum over the channels that is present
in the OC expression. Therefore, the additional factor of �
cannot be reproduced within the “tunneling with dissipation”
scheme. This is the reason why KOC is significantly larger
than the obtained KE.

The idea to use a double layer system to study the dynam-
ics of vortices is well known.39–41 In addition to the magnetic
coupling between the film and the gate, one may consider a
capacitive coupling between them. In the case of the Joseph-
son junction arrays �or granular superconductors� the capaci-
tive coupling reduces the fluctuations of the phase of the
superconducting order parameter.41,42 As a result, the system
may undergo a transition from an insulating to a supercon-
ducting state. However, for a homogenous film with a rela-
tively small resistance 	1.5k� /� used in Ref. 9 the phase
fluctuations are not so effective.43 This is confirmed by the
observed insensitivity of the critical magnetic field Hc to the
presence of the gate. Furthermore, in homogeneous super-
conductors the motion of vortices is not accompanied by the
redistribution of the charge density. Therefore, there are good
reasons to ignore here the capacitive coupling between the
film and the gate.

VII. SUMMARY

In this work we have studied how a metallic gate placed
above a superconducting film affects the tunneling rate of the
vortices. The gate and the film are coupled by the magnetic

field of the vortices that pierces through the gate. We analyze
the renormalization of the tunneling rate by the gate. We
consider two approaches to describe the response of the elec-
trons inside the gate on the tunneling event: �i� the Eddy
current in the gate generated by the motion of vortices and
�ii� the OC caused by the change in the vortex position. The
OC is due to the Aharonov-Bohm scattering of electrons in-
side the gate. The exponent determining the renormalized
tunneling rate �G�T�=�unG�T�tun�K is given by Eq. �26� for
the effect of the Eddy current, and by Eq. �30� for the OC.
We find that for the experimental setup of Ref. 9 the effect of
the OC provides an exponent sufficient for a substantial sup-
pression of the tunneling rate of the vortices, KOC	1.

The peculiarity of the discussed problem results from
combination of two elements: the extended size of the tun-
neling vortex and the unique features of the AB scattering. In
general, the tunneling of an extended object creates excita-
tions in many channels of the environment. The sum over the
channels �harmonics� enters in a natural way into the expo-
nent describing the effect of the OC, while in the calculation
of the “tunneling with dissipation” the sum is absent. This is
the reason why KOC is significantly larger than the obtained
KE. The scheme of calculation of the “tunneling with dissi-
pation” for the Eddy currents corresponds to the OC expres-
sion calculated in the perturbation theory up to the second
order with respect to the change of the vector potential. Be-
cause of the nonperturbative character of the AB effect, the
phase shifts cannot be found within the Born approximation.
Therefore the action Senv, being formulated in terms of the
macroscopic charge and current densities in the regime of the
linear response, is unable to describe the response of all fluc-
tuation modes that can be excited by a vortex as a result of
tunneling.

We address our analysis to a recent experiment9 in which
the resistance of a superconducting film has been measured
in a magnetic field both with and without a gate. We interpret
the experiment by assuming that the origin of the resistance
at low temperatures is tunneling vortices. From our point of
view, the difference in the resistance of the gated and un-
gated film indicates that the gate reduces the tunneling rate
of the vortices making them localized. Indeed, we show here
that adding a gate may effectively suppress the vortex tun-
neling. The gated system discussed here can be used as an
effective experimental tool for investigating the vortex mo-
tion at low temperatures. The gated system provides a unique
opportunity to study the vortex tunneling in thin supercon-
ducting films by such simple means as varying the charac-
teristics of the gate, in particular the gate thickness and/or the
sheet conductance of the gate. This may help to identify the
different mechanisms that contribute to the suppression of
the vortex tunneling rate.
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APPENDIX: LOCALIZATION-DELOCALIZATION
PHASE DIAGRAM FOR EQ. (24)

The renormalized tunneling rate as given by Eq. �25� cor-
responds to the RG equation
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d ln��G��/d ln��/�̃tun� = �1 − KE� . �A1�

This equation is valid as long as the logarithmic factor in Eq.
�24� is independent of the time difference ��1−�2�. The time
dependence in the logarithmic factor is essential for the
energy interval �̃tun

−1�1/����
−1, where ��

−1=c2 /4��d�.
Then, the RG equation has to be modified by replacing the
dissipation coefficient KE in the above equation by the en-

ergy dependent parameter K̃E=KE�1−ln��� / �̃tun� / ln�� /d�
+� / ln�� /d�, with the logarithmic variable �=ln�� / �̃tun�.
For the discussed energy interval the “RG equation” be-
comes

d ln��G��/d� = �1 − K̃E��� . �A2�

One should not be confused with the appearance of � in the
right-hand side of the “RG equation.” Here we just integrate
Senv in the exponent determining the renormalized tunneling
rate �G exp�−Senv�. In a sense we calculate something like
the Debye-Waller factor created by the dissipative environ-

ment.44 �The � dependence of the parameter K̃E can be re-
formulated as an RG equation, additional to Eq. �A2�.
Namely,

dK̃E/d� = �const 0� �� ln���/�̃tun� ,

0 �� ln���/�̃tun� ,
� �A2a�

where const=KE / ln�� /d�. Because of the different depen-

dencies of K̃E on �, the RG process may develop in two
steps. We discuss the details below.

Localization occurs if in the course of the RG process the
tunneling rate �G decreases faster than the running scale �−1.
Hence, the line separating the localized and delocalized

states is determined by the condition K̃E��G�=1 as long as

�G���
−1. Since the expression for K̃E assumes that �

� ln��� / �̃tun�, the modified K̃E is smaller than KE. Therefore,
the condition for localization �the inability to tunnel� be-
comes harder. It is worth noting that in the discussed prob-
lem the phase transition occurs at a finite energy scale

ln�1/�G�̃tun� =
ln��/d�

KE
− �ln��/d� − ln���/�̃tun� . �A3�

To avoid unnecessary complications, from now on we limit
ourselves to the case when the energy cutoff 1 / �̃tun is deter-
mined by c2 /4��d2. Then ln��� / �̃tun�=ln�� /d� and Eq. �A3�
reduces to ln�1/�G�̃tun�=ln��� / �̃tun� /KE. Note that the line of
the phase transition exists for all KE�1 and in the delocal-

ized phase �G���
−1. Clearly for KE�1 the tunneling rate

always remains finite.
In order to find the line of the delocalization-localization

transition in the plane of the dimensionless parameters
��unG�̃tun� and KE, one has to integrate back Eq. �A2� starting
at ln��G��=0. �The value of �G corresponding to the line of

transition should be found from the condition K̃E��G�=1.
This procedure yields for the boundary between the two
phases

ln�1/�unG�̃tun� = ln���/�̃tun�/2KE. �A4�

One may see that along the boundary ��G�̃tun�= ��unG�̃tun�2.
In the delocalized phase, the renormalized tunneling rate

can be found by integrating the RG equation starting from
the bare tunneling rate down to the energy when ln��G��
=0. Since for KE�1 the condition ln��G��=0 is satisfied
before the running scale �−1 reaches ��

−1, the RG process
involves only Eq. �A2�. For KE�1 the situation is more
delicate. In the first step of the RG process Eq. �A2� is inte-
grated. If �−1 reaches ��

−1 before ln��G��=0 �i.e., �G���
−1�,

the process should be continued. �In terms of the bare param-
eters, this occurs when �unG���

−1��� / �̃tun�KE/2. In the second
step one has to integrate Eq. �A1� using ��

−1 as an upper
cutoff instead of �̃tun

−1 and �G���
−1���� as an initial value;

here ��=�unG��̃tun /���KE/2 is the result of the integration in
the previous step for �G. Finally, after the two-steps renor-
malization the tunneling rate is

�G 	 ��
−1������1/�1−KE�, �A5�

which is equivalent to

�G�̃tun 	 ��unG�̃tun�1/�1−KE����/�̃tun�KE/2�1−KE�. �A6�

The delocalization-localization phase diagram for the tunnel-
ing of vortices in the plane of �unG�tun and the dissipation
coefficient KE at zero temperature is presented in Fig. 3.

Finally, we touch upon the role of the relativistic effects.
In the derivation of the effective action �24� the integration
over the momenta has been limited to the Ohmic regime q
!2��2D ��n � /c2. We are interested in a gate with high con-
ductivity, such that 2��2D/c�1. In this case there are rela-
tivistic effects that have been left out from the action. As it
has been mentioned in Sec. III, at high frequencies ��n � /c
�q the dissipation occurs through the Cherenkov radiation.
The produced dissipation is equivalent to an effective two-
dimensional conductivity that is approximately c /2�. There-
fore, this source of the dissipation is negligible compared to
the Ohmic dissipation and cannot change our conclusions.
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