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We study the properties of the Heisenberg antiferromagnet with spatially anisotropic nearest-neighbor ex-
change couplings on the kagomé net, i.e., with coupling J in one lattice direction and couplings J� along the
other two directions. For J /J��1, this model is believed to describe the magnetic properties of the mineral
volborthite. In the classical limit, it exhibits two kinds of ground state: a ferrimagnetic state for J /J��1/2 and
a large manifold of canted spin states for J /J��1/2. To include quantum effects self-consistently, we inves-
tigate the Sp�N� symmetric generalization of the original SU�2� symmetric model in the large-N limit. In
addition to the dependence on the anisotropy, the Sp�N� symmetric model depends on a parameter � that
measures the importance of quantum effects. Our numerical calculations reveal that, in the �-J /J� plane, the
system shows a rich phase diagram containing a ferrimagnetic phase, an incommensurate phase, and a decou-
pled chain phase, the latter two with short- and long-range order. We corroborate these results by showing that
the boundaries between the various phases and several other features of the Sp�N� phase diagram can be
determined by analytical calculations. Finally, the application of a block-spin perturbation expansion to the
trimerized version of the original spin-1 /2 model leads us to suggest that in the limit of strong anisotropy,
J /J��1, the ground state of the original model is a collinearly ordered antiferromagnet, which is separated
from the incommensurate state by a quantum phase transition.

DOI: 10.1103/PhysRevB.76.064430 PACS number�s�: 75.50.Ee, 75.10.Jm, 75.30.Kz

I. INTRODUCTION

In the ongoing search for novel states of condensed mat-
ter, frustrated antiferromagnets have played a key role �for a
recent review, see Ref. 1�. Among the many substances that
have been investigated experimentally and the numerous
spin models that have been studied theoretically, those in
which the magnetic ions occupy the vertices of corner-
sharing frustrating entities have attracted particular attention
in this context. The best-known examples are the kagomé
antiferromagnet �KAF�, consisting of corner-sharing tri-
angles, and the pyrochlore antiferromagnet, consisting of
corner-sharing tetrahedra �see Fig. 1�.

The main distinction between the KAF, the pyrochlore
antiferromagnet, and other frustrated and unfrustrated mag-
nets is the large ground-state degeneracy of the first: classical
Heisenberg antiferromagnets with nearest-neighbor interac-
tions on corner-sharing lattices have a large ground-state de-
generacy, which in the above two examples even leads to a
finite ground-state entropy �see, e.g., Ref. 2 and references
therein�. Quantum effects may lift this degeneracy, and, in-
deed, in numerical studies of small cells of the spin-1

2 KAF,
an exponentially large number of very low-lying quantum
states has been observed.3,4 It has been suggested that this
abundance of low-lying states can be understood in a de-
scription of the low-energy physics of the quantum KAF as a
spin liquid consisting of nearest-neighbor spin singlets.5,6

However, a complete picture of the ground state and of the
excitations of the KAF is still missing. Further theoretical
but also experimental studies with emphasis on the quantum
properties of the KAF are therefore highly desirable. In this
last respect, the mineral volborthite is a very promising can-

didate. It has been the subject of several recent experimental
investigations.7–10 The magnetic lattice of this natural anti-
ferromagnet consists of the S=1/2 spins of Cu2+ ions that
are located on the vertices of well-separated planar kagomé-
like nets. A monoclinic distortion of the lattice leads to a
slight difference between the exchange couplings along one
lattice direction �J� and the two other directions �J�� �see Fig.

(a)

(b)

FIG. 1. Kagomé �a� and pyrochlore lattice �b�.

PHYSICAL REVIEW B 76, 064430 �2007�

1098-0121/2007/76�6�/064430�19� ©2007 The American Physical Society064430-1

http://dx.doi.org/10.1103/PhysRevB.76.064430


2�. Since neither signs of long-range order nor signs of a
spin-gapped singlet ground state were found in experiments
on volborthite, the substance seems to be a good candidate
for the observation of the low-energy features that are
thought to be typical for kagomé-type antiferromagnets.1

Whether and to what extent the different exchange cou-
plings along different lattice directions of the kagomé net of
volborthite influence the low-energy physics of the system is
presently unknown. In the present paper, we study this ques-
tion on the basis of the model Hamiltonian

HAKAF = J�
�i,j�

SiS j + J��
�k,i�

SkSi. �1�

The symbols �i , j� and �k , i� denote, respectively, bonds be-
tween nearest-neighbor sites on the horizontal chains �a ,b�
and bonds between the middle sites �c� and the sites a and b
�see Fig. 2�. Since the physics of this model depends only on
the ratio J /J� of the exchange constants, we set J�=1 in the
sequel. We will consider the spatially anisotropic kagomé
antiferromagnet �AKAF�, Eq. �1�, in the full range of J, 0
�J��, since this is of theoretical interest: one expects to
see quantum phase transitions as J is increased. It is of par-
ticular interest to find out whether there is a transition from
two-dimensional magnetic states to a set of decoupled chains
with free spins on the axes between the chains for large
values of J.

The paper is organized as follows. In Sec. II, we consider
the model �1� in the classical limit. At this level, we find no
sign of a transition from the two-dimensional magnet to a set
of decoupled chains as J increases to infinity. Nonetheless,
the ground-state degeneracy, as well as the spin-wave spec-
trum are found to change qualitatively as the anisotropy of
the model varies. In Sec. III, we consider a generalization of
the SU�2� symmetric model �1� to the Sp�N� symmetric
version11,12 and describe its properties in the large-N limit,
where a mean-field treatment of the model is adequate. We
obtain a detailed description of how possible ground states of
the model depend on the coupling J and on the spin length S.
A fairly rich phase diagram with a ferrimagnetic phase for
small J, long-range ordered and short-ranged incommensu-
rate phases for intermediate values of J, and a decoupled-
chain phase for large J emerges. Parts of these results have
been published previously �see Ref. 13�. In Sec. IV, we de-

vise trial quantum ground states of the original S=1/2
model. We chose the states such that they are exact eigen-
states of HAKAF, if the couplings on the upward-pointing
triangles of Fig. 2 are switched off, and we then treat these
couplings perturbatively. In the limit J→� this yields an
effective Hamiltonian for the spins on the c sites which rep-
resents an anisotropic triangular antiferromagnet. The con-
clusions of Starykh and Balents14 about the ground state of
this effective model lead us to conjecture the existence of a
quantum phase transition in the AKAF for large J. In Sec. V,
we summarize and discuss our results. In two Appendixes,
we present technical details of the counting procedure for the
classical ground states and of the Ginzburg-Landau-type pro-
cedure that allows us to determine the boundaries in the
phase diagram analytically.

II. CLASSICAL AND SEMICLASSICAL ASPECTS

Similar to other isotropic spin models on lattices with
triangular elementary cells, the classical ground states of
HAKAF, Eq. �1�, are spin configurations, which satisfy the
condition that for each elementary triangular plaquette of the
lattice, Fig. 2, the energy is minimal.

For J=0, this yields a ferrimagnetic state with the chain
spins aligned in one direction and the middle spins pointing
in the opposite direction, so that the total magnetization is
M =N�S �N� is the number of downward-pointing triangles;
N�=Ns /3 where Ns is the number of sites of the system�. We
illustrate this situation in Fig. 3. According to the Lieb-
Mattis theorem, the exact quantum ground state �GS� of the
model HAKAF also has total spin Stot=N�S for J=0 �see Ref.
15�, i.e., for J=0, the quantum GS is ferrimagnetic too. By
continuity, one expects the quantum GS to remain ferrimag-
netic for sufficiently small finite J. This will be confirmed by
our considerations of the large-N limit of the Sp�N� version
of our model �see the numerical and analytical work in Sec.
III C and Appendix B� and by the block-spin perturbation
approach �Sec. IV�. Classically, the ferrimagnetic state re-
mains stable up to J=1/2. The excitation spectrum of the
ferrimagnetic state obtained in linear spin-wave �LSW� ap-
proximation is shown in Fig. 4.

The analytic expressions for the three frequency surfaces
���q�, �=1,2 ,3, are obtained as solutions of a third-order
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FIG. 2. �Color online� Anisotropic kagomé model. The coupling
J� and the nearest-neighbor distance will be set equal to unity in the
calculations. �1 ��êx�, �2, and �3 are the three primitive lattice vec-
tors of the kagomé net. FIG. 3. �Color online� Ferrimagnetic state for J=0, i.e., when

there is no coupling between chain spins �cf. Fig. 2�.
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secular equation and are too lengthy to be presented here.
However, one can easily assure oneself that the dispersion of
the gapless mode is quadratic at the origin. Thus, one has the
typical mode structure of a ferrimagnet here with one ferro-
magnetic mode and two optical modes; see, e.g., Ref. 16. As
J increases toward 1/2, the ferromagnetic frequency surface
loses its dispersion and turns into a plane of zero modes, one
zero mode for each wave vector in the magnetic Brillouin
zone �BZ�, at J=1/2. The gap of the lower optical mode
closes at this value of J in the center of the BZ and the
dispersion of this mode becomes linear for small wave vec-
tors as for an antiferromagnetic spin-wave mode.

At J=1/2, the classical GS configuration changes from
the unique ferrimagnetic state to an ensemble of degenerate
canted coplanar states. These states are characterized by two
variables: the angle 	, which the middle spin of a given
triangular plaquette forms with the two chain spins of the
same plaquette �see Fig. 5�, and the two-valued chirality 

= ±1, which denotes the direction in which the spins turn as
one moves around the plaquette in the mathematically posi-
tive sense.

For J�1/2, the requirement that the energy of any of the
elementary triangular plaquettes of the lattice Fig. 2 be mini-
mal is 	=arccos�−1/ �2J�� �	�0�. The different degenerate
canted states arise from different possibilities to assign posi-
tive or negative chiralities to the plaquettes of the lattice. We
show in Appendix A that for the general case of 	�2� /3
�J�1�, the number of spin configurations, NGS

aniso, does not
grow exponentially with the number of sites. Rather, NGS

aniso

�2�	N�, where ��3. This implies that the ground-state en-
tropy per spin of the classical AKAF vanishes in the thermo-
dynamic limit. In this respect, the anisotropic model differs
qualitatively from the isotropic KAF in the classical limit,
which has an extensive entropy per spin. In the limit J→1,

the anisotropic model approaches the isotropic KAF. Hence,
one expects that for the anisotropic model there is an exten-
sive number of low-lying excited states that become degen-
erate with the GS in the isotropic limit.

As in the case of the isotropic KAF, the spin-wave Hamil-
tonian is in linear order independent of the particular classi-
cal GS that has been chosen as the starting point of the
expansion.17 This implies that lowest-order quantum fluctua-
tions do not select one or a group of classical GSs as the true
GS, i.e., the possible ordering effects of quantum fluctuations
are not captured by the linear spin-wave approximation. Fig-
ures 6 and 7 show the spin-wave frequency surfaces for J
=0.6 and 3. It is easy to show analytically that, as is illus-
trated in these figures, the plane of zero-frequency modes
persists for all values of J greater than 1/2. The surfaces for
J�1/2 and for J�1/2 join smoothly at J=1/2. Thus, in the
LSW approximation, the transition from the ferrimagneti-
cally ordered state to the canted spin states appears to be of
second order. For J�1, the nonzero frequencies gradually
lose their dispersion perpendicular to the strong-J direction
and take the shape of the spin-wave spectrum of antiferro-
magnetic chains parallel to this direction. However, no sign
of a further transition from the canted spin states to a set of
decoupled spin chains is found in this semiclassical ap-
proach. In the next section, we will consider the symplectic
Sp�N� generalization of the antiferromagnetic model HAKAF

in the large-N limit. This approach, which was first proposed
by Read and Sachdev11,12 as a method to study frustrated
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FIG. 4. �Color online� Spin-wave frequencies ���q�, �=1,2 ,3,
for J=0.4; the contour at the top of the plot marks half the Brillouin
zone.
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FIG. 5. �Color online� Canted spins of the AKAF at J�1/2.
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FIG. 6. �Color online� Same as Fig. 4 for J=0.6.
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FIG. 7. �Color online� Same as Fig. 4 for J=3.
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antiferromagnets, has the benefit of including the ordering
effects of quantum fluctuations self-consistently. It is of par-
ticular interest for spin models with two or more competing
exchange couplings in the different lattice directions or over
different lattice distances such as the present model, the
J1-J2-J3 model,11 the Shastry-Sutherland antiferromagnet,18

and the anisotropic triangular antiferromagnet.19 For these
models, it has provided an unbiased selection of possible
GSs that may or may not be ordered depending on the value
of the parameter �, which is connected with the spin length S
�see below�.

III. MEAN-FIELD Sp„N… APPROACH

A. Brief review of the method

For a general antiferromagnetic Heisenberg model with a
positive interaction matrix Jij,

H = �
i�j

JijSi · S j , �2�

the Sp�N� generalization reads

HSp�N� = − �
i�j

Jij

2N
�J�
bi�

† bj

† ��J��bi

�bj
�� . �3�

Here,

J = 
�

�

�

� �4�

is the 2N�2N generalization of the 2�2 antisymmetric
tensor

� = � 0 + 1

− 1 0

 , �5�

and bi
� with �=1, . . . ,2N are the Sp�N� boson annihilation

operators. �Here and in the following, we closely follow the
notation of Ref. 12; in particular, summation over repeated
upper and lower indices is implied.� Thus, J�
bi�

† bj

† is the

generalization of the creation operator ��
bi�
† bj


† for a singlet
on the bond �i , j�. For the special case N=1, one finds

�J�
bi�
† bj


† ��J��bi
�bj

�� = − 2Si · S j + nbinbj/2 + �ijnbi, �6�

where

nbi = bi�
† bi

� �7�

is the boson number operator at site i and where

Si = bi�
† �


�bi

/2 �8�

is the usual SU�2� spin operator at site i. �� are the Pauli
matrices.� Then, if one imposes the constraint that the num-
ber of bosons is the same for all lattice sites, nbi�nb, the
Hamiltonian HSp�1� is the familiar SU�2�-invariant antiferro-
magnetic Heisenberg Hamiltonian �plus some constants�
with nb=2S.

In the subsequent exposition, we shall consider a Hamil-
tonian of the form �3� in the large-N limit following the

strategy of Refs. 11 and 12. Depending on the values of the
couplings Jij and of �=nb /N, the GS of HSp�N� may either
break the global Sp�N� symmetry and exhibit long-range or-
der �LRO� or it may be Sp�N� symmetric with only short-
range order �SRO�. Breaking of the Sp�N� symmetry will
happen through condensation, i.e., by macroscopic occupa-
tion of one of the Bose fields b�. To allow for this, we intro-
duce the parametrization

bi
m� = �	Nxi

�

b̃i
m̃�


 �9�

with �= �m��, m=1, . . . ,N, m̃=2, . . . ,N, and �= ↑ ,↓. The
field xi

� is proportional to the condensate amplitude, �bi
m��

=	N�1
mxi

�. Aiming at a mean-field treatment of the Hamil-
tonian HSp�N�, which becomes exact in the large-N limit, we
decouple the quartic part by the Hubbard-Stratonovich tech-
nique with complex fields Qij =−Qji and with Lagrange mul-
tipliers �i that enforce the local constraints �7�. The variables
Qij which are defined on nearest-neighbor bonds of the lat-
tice are expectation values of the bond singlet creation op-
erators in the GS, Qij = ������

���bim�
† bjm��

† �, and are to be
determined self-consistently from the mean-field-type
Hamiltonian

HMF = �
i�j
�N

2
Jij�Qij�2 −

1

2
Jij�Qij�����Nxi

�xj
��

+ �
m̃

b̃i
m̃�b̃j

m̃��
 + H.c.��
+ �

i

�i�N�xi
��2 + �

m̃

b̃im̃�
† b̃i

m̃� − nb
 . �10�

The variational ground-state energy EMF of HMF in the large-
N limit is obtained by diagonalizing the bosonic part of
HMF, and by integrating over the 2�N−1�Ns bosonic fields

b̃i
m̃� in the action associated with HMF. One obtains

EMF

N
= �

i�j
�1

2
Jij�Qij�2 −

1

2
Jij�Qij����xi

�xj
�� + H.c.�


+ �
k,�

���k;Q,�� + �
i

�i��xi
��2 − 1 − �� . �11�

Here ���k ;Q ,�� are the positive eigenvalues of the bosonic
part of HMF, and �=nb /N is kept fixed in the limiting
procedure.11,12 The parameter � is a measure for the impor-
tance of quantum fluctuations: by varying � from small to
large values, one drives the system from the regime domi-
nated by quantum fluctuations to the classical regime, i.e.,
from the disordered into the ordered region. Finally, the GS
is obtained by finding the saddle point of EMF in the space of
the variables Qij and xi

� subject to the constraints

�EMF�Q,��/��i = 0. �12�

In addition to the GS itself, the spin-spin correlation function
Gij = �Si ·S j� in the GS is an important piece of information.
In particular, by considering its behavior in the limit �i− j�
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→�, one can distinguish between LRO and SRO. According
to Sachdev,12 to obtain Gij in the Sp�N�-symmetric ap-
proach, the SU�2�-invariant expression Si ·S j must be re-
placed by the Sp�N�-invariant expression

1

4N2 �bi�
† bi


bj

† bj

� − J��J
�bi�
† bi


bj�
† bj

�� . �13�

Within the mean-field approach, Gij can then be calculated
straightforwardly.

B. The anisotropic kagomé antiferromagnet

1. Choice of mean-field variables

We wish to apply the procedure described above to the
AKAF represented by the Hamiltonian �1�. To render the
problem of finding the eigenvalues �� in Eq. �10� and of
optimizing EMF tractable, we have to restrict the number of
variables Qij and �i. We do so by demanding that the mean-
field Hamiltonian HMF for the spinon operators b�†� is sym-
metric under transformations of the projective symmetry
group that is related to the symmetry group of the spin
Hamiltonian HAKAF �Eq. �1�� �see Ref. 20�. We include two
translations, a rotation by � and a mirror axis orthogonal to
the preferred direction of the exchange constants �J�. Thus
generalizing the treatment of Wang and Vishwanath to our
model, we find eight mean-field states with different symme-
tries. Seven of them have flux in the sense of Ref. 21 in
various cells of the lattice. Following the arguments in Ref.
21, we exclude all flux-carrying states and end up with the
solution �cf. Fig. 8� P1,2,3=Q1,2,3, Q3=Q2, and �b=�a.

In order to check the flux argument in Ref. 21, we have
explicitly studied the solution P1,2,3=−Q1,2,3 and found that
it is always of higher energy �for J=1, this agrees with the
result of Ref. 12�.

Thus, the expression Eq. �11� can now be cast into the
form

EMF

NN�

= J�Q1�2 + 2�Q2�2 − �2�a + �c��� + 1�

+
1

N�
�
k,�

���k��1 + �x��k��2� , �14�

where the condensate is written in diagonalized form and
���k� are the three positive solutions of

det D̂��� = 0. �15�

Here,

D̂��� = ��̂ − �Î Q̂

Q̂† �̂ + �Î

 , �16�

with

�̂ = diag��a,�c,�a� , �17�

Q̂ = 
 0 Q̃2�k� − JQ̃1�− k�

− Q̃2�− k� 0 Q̃3�k�

JQ̃1�k� − Q̃3�− k� 0
� , �18�

and

Q̃a�k� =
1

2
Qa�ei�ak/2 − e−i�ak/2�, a = 1,2,3, �19�

�for �1,2,3 : see Fig. 2�.

2. Technical details of the numerical extremalization

Determination of the ground state of the AKAF in the
considered approximation has been reduced to minimization
of Eq. �14� with respect to two variables Q1 and Q2, subject
to the Lagrange constraints with respect to two parameters �a
and �c. Although apparently trivial, the optimization proce-
dure turns out to be quite involved technically. First, we find
it crucial to consider at least two different chemical poten-
tials. Other than for the spatially isotropic KAF, J=1, we
were not able to find a nontrivial solution if we used a single

�, �a=�b=�c. If �a and �c are different, ��̂ ,Q̂��0, the
Lagrange multipliers enter the expressions for the frequen-
cies �� nontrivially, other than in the case of a global uni-
form chemical potential �cf. Ref. 12�. In turn, the Lagrange
constraints cannot be satisfied semianalytically, and require a
numerical treatment. Second, we choose to work directly in
the thermodynamic limit Ns→� of the model �14� by per-
forming a numerical self-adapting integration over the BZ. In
this limit, the singularities can be integrated, and symmetry
breaking is signaled by the appearance of a finite value of the
condensate amplitude x��k� at a certain wave vector k
=qord, which characterizes the type of magnetic order. We
mention here that the extremalization of a mean-field energy
of the type of Eq. �14� can also be achieved by solving the
pertinent stationarity conditions numerically for finite sys-
tems, i.e., for finite Ns �see, e.g., Ref. 22�. Then the type of
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FIG. 8. �Color online� Arrangement of mean-field parameters:
Q1�Qab, Q2�Qbc, and Q3�Qca denote the intratriangle bonds,
P1�Qba�, P2�Qcb�, and P3�Qac� denote the intertriangle bonds.
�a, �b, and �c are the Lagrange multipliers needed to implement the
constraints on the sites a, b, and c.
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magnetic order has to be detected by calculating the structure
factor. Third, we see that Eq. �14� has a minimum with re-
spect to the physical bond parameters Q1 and Q2 only after
the elimination of the chemical potentials. In the full Q-�
space we face an extremalization problem.

Technically, we find it convenient to use a polar coordi-
nate parametrization for the variables Q1 ,Q2 and �a ,�c:

Q1 = Q cos���, Q2 = Q sin��� , �20�

�a = � sin�
�, �c = � cos�
� . �21�

We perform an optimization with respect to the variables
Q ,� ,� ,
, as well as the condensate densities x��k� in ac-
cord with the following algorithm �J and � are kept fixed�.

�i� We fix the angles � ,
 and the amplitude Q, and first
exploit the stationarity condition for EMF with respect to �. It
is convenient to write the corresponding equation in the fol-
lowing form:

�2 sin�
� + cos�
���� + 1� −
1

�
�

BZ
d2k�

�

�x��k��2�����k�

=
1

�
�

BZ
d2k�

�

�����k� , �22�

where �=8�2 /	3 is the volume of the unit cell. One finds
that Q and � enter Eq. �22� only via the ratio �=� /Q.

The requirement that the frequencies must be positive,
���k��0, defines a lower limit �min�� ,
� for �: the frequen-
cies ���k� are positive for ���min�� ,
�; for �=�min�� ,
�,
the lowest mode ��0

vanishes at some point�s� k0 in the BZ.
When this happens, the corresponding condensate density
x�0

�k0� can be set nonzero, if this is necessary to satisfy Eq.
�22�. It is important to note that in order to determine the
actual value of �min�� ,
� �as well as those of Q, �, and 
� it
suffices to only consider Eq. �22� at x��k�=0, irrespective of
whether there is condensate, ��0

�k0�=0, or not, ���k��0
for all k ,�.

We solve the Eq. �22� for � numerically in two steps.
First, we determine �min�� ,
�: we decrease � from large
positive values until the condition ��0

�k0�=0 signals that �
=�min�� ,
�. Second, we set x��k��0 and attempt to satisfy
Eq. �22� in the interval ���min�� ,
�. To this end, we set
�=�Q in Eq. �14� and vary � to determine the extremum of
EMF �i.e., Eq. �22��. We find that the extremum is a maxi-
mum. If this maximum occurs for some ���min�� ,
�, then
Eq. �22� is satisfied with x��k�=0. If, however,
EMF�� ,
 ,�Q ,Q� decreases monotonically as we lower �
down to �=�min�� ,
�, then Eq. �22� cannot be solved with
x��k�=0. In this case, a finite condensate density x�0

�k0�
�0, is required, in order to “compensate” for too large a
value of the left-hand side of Eq. �22�. This fixes both �
=�min�� ,
� and the value x�0

�k0� �cf. Secs. III B and IV B of
Ref. 12�.

�ii� Having determined the value of �, we notice that the
function EMF�� ,
 ,� ,Q� is quadratic in Q and bounded from
below, which allows an analytical determination of Q as the
position of the minimum.

�iii� Finally, knowing the values of � and Q, we proceed
by a numerical extremalization of EMF with respect to the
angles. The calculations show that EMF as a function of the
angle 
 possesses a maximum, and a minimum as a function
of the angle � after 
 has been eliminated. Thus, the varia-
tional energy EMF is bounded from below in the variables Q1
and Q2, as expected.

�iv� We iterate this procedure �i�–�iii� until convergence is
achieved.

C. Numerical results of the Sp„N… formalism

The results of the Sp�N� approach in the large-N limit are
summarized in the zero-temperature phase diagram of the
AKAF, Fig. 9. The central part of the phase diagram is oc-
cupied by the incommensurate �IC� phase with LRO at suf-
ficiently small 1 /�. The phase boundary that separates the
region with SRO from the region with LRO was found by
checking whether or not for a given pair of J and 1/� the
lowest branch of the one-spinon spectrum ���k� has zeros in
the BZ i.e., whether or not there will be condensate at one or
several points in the Brillouin zone. As one might expect,
LRO is maximally suppressed by quantum fluctuations for
J=1, which is the case of maximal frustration.

For J=0, the exact quantum ground state of the AKAF is
ferrimagnetic �FM� according to the Lieb-Mattis theorem.15

In this state, the expectation value Q1 which measures the
singlet weight on the horizontal bonds vanishes. As shown in
Fig. 10, our Sp�N� calculations recover this exact result and
extend it to a finite interval 0�J�JF���, which narrows as
1/� increases. The parameter Q2, which measures the singlet
weight on the diagonal bonds, is independent of J in this
interval; its value decreases as 1/� increases �see Fig. 11�.
Remarkably, the FM state retains its LRO in its entire region
of existence.

As J is increased beyond JF���, Q1 increases in the man-
ner of an order parameter at a second-order phase transition.
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FIG. 9. �Color online� Phase diagram of HAKAF as obtained in
the Sp�N� approach. Symbols and lines, respectively, denote nu-
merical and analytical results for the phase boundaries �see Sec.
III B 2 and Appendix B�. Quantum fluctuations increase along the
vertical axis. LRO, Long-range order; SRO, short-range order; FM,
ferrimagnet; IC, incommensurate phase; DC, decoupled chain. At
J=1, the results of Ref. 12 are recovered. Incommensurate order
�see Fig. 12� occurs between the boundaries of the ferrimagnetic
phase ��� and of the decoupled chain phase ���.
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At the same time, the parameter Q2 begins to decrease, and
eventually it drops to zero at some J=JDC���. Thus, the
large-N approach predicts the existence of a decoupled-chain
phase in the region above the phase boundary JDC���. Q2

decreases to zero continuously so that the phase transition at
JDC��� appears to be of second order again.

Both LRO and SRO phases may be characterized by an
ordering wave vector qord=2kmin, where kmin is that wave
vector at which the one-spinon excitation spectrum ���k�
has its minimum. The static spin structure factor S�q� devel-
ops a peak at qord. In Fig. 12, we display the x component of
the ordering vector, qord

x =qord
x �J� �qord

y =0�. At the kagomé
point J=1, �qord

x � =4� /3 is independent of the value of �. For
1 /��3, the behavior of qord

x as a function of J is as ex-
pected: as J increases, it increases monotonically until the
phase boundary JDC��� is reached and remains constant in-
side the DC phase. However, for 1 /��3 the function qx

ord�J�
develops a minimum at J�1.5, which becomes more pro-
nounced as 1/� increases.

In Sec. III B 2 we emphasized that, contrary to previous
applications of the large-N approach to spin models on
kagomé and anisotropic triangular lattices,11,12,19 we found it
essential to consider two chemical potentials �a and �c here,
one for the spins on the horizontal lattice lines ��a� and one

for the middle spins ��c�. We display the values of these
parameters as functions of J in Fig. 13. We have no physical
explanation for the behavior of �a ,�c as functions of J and �
but it is gratifying to see that �a=�c at J=1 independent of �
in accordance with earlier work.12

As indicated above, along with the numerical study of Eq.
�11�, we performed extensive analytical calculations, both to
corroborate the numerics and to obtain additional insight into
the problem. Details of the analytical techniques are pre-
sented in Appendix B. Here we state that we were able to
analytically determine the Sp�N� phase boundaries between
the SRO and LRO DC phases, between the DC and IC
phases, and between the FM and IC phases �see Fig. 9�.
Moreover, our analytical calculations allowed us to explicitly
confirm the existence of LRO inside the FM phase and im-
mediately to the right of the FM-IC phase boundary. Like-
wise, the regions with SRO and LRO inside and immediately
to the left of the IC-DC phase boundary were determined
analytically. This was achieved by evaluating in these re-
gions the Sp�N� generalization of the spin-spin correlation
function �Si,u ·S j,v� of the model defined by expression �13�. �
u ,v=a ,b ,c denote the sites of the triangular cells i and j of
the model; see Fig. 8.� On the right-hand side of the FM-IC
boundary and inside the FM phase, we find for large dis-
tances between the cells, �r j −ri � �1,
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FIG. 11. �Color online� Mean-field parameter Q2 as a function
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�Si,u · S j,v� � SuSv, �23a�

where

Sw �	3

2

�x3�kmin��2

N���c + �a���c/2, w = a,b ,

− �a, w = c ,
� �23b�

and u ,v=a ,b ,c denote the sites of the triangular cells i and
j of the model �see Fig. 8�. Here, �x3�kmin��2 /N� is the con-
densate density at kmin= �−� ,0�, �x3�kmin��2 /N�=� �see Eq.
�B8��. On the FM-IC transition line and inside the FM phase,
where Eqs. �23� are valid, the parameters �a and �c are not
independent but can be expressed in terms of a single param-
eter � �see Eqs. �B4� and �B12��. The sign pattern on the
right-hand side of Eq. �23b� and the ordering wave vector
qord=2kmin= �−2� ,0� are indeed the properties one expects
to find for the long-distance behavior of the spin-spin corre-
lation function of a ferrimagnetically ordered state. Since
�x3�kmin��2 /N� remains finite for arbitrarily small values of �,
the mean-field Sp�N� approach predicts that this order per-
sists in the extreme quantum limit of our model, 1 /��1.
Together with Eqs. �23�, the fact that the condensate density
�x3�kmin��2 /N� remains constant inside the FM region �see
Eq. �B8�� implies that the magnetization of the FM phase
remains constant up to the FM-IC phase boundary. The same
behavior of the magnetization of a ferrimagnetic phase has
previously been observed in an exact-diagonalization study
of a one-dimensional kagomé-like antiferromagnet.23 At the
FM-IC phase boundary, the magnetization becomes spatially
modulated with an incommensurate wave vector qord
=2kmin.

On the left-hand side of the IC-DC boundary and inside
the DC phase we find the following large-distance behavior
of the spin-spin correlation function:

�Si,c · S j,c� �
3

2
cos�2kmin�ri − r j��� 2q1

2

1 + q1
2
2

� � �x3�kmin��2 + �x3�− kmin��2

N�q2
2�a�3

�2��kmin�

2

, �24a�

�Si,u · S j,v� � 0 for u,v � c,c . �24b�

Here, q1 and �a denote the saddle-point values of these vari-
ables obtained from Eqs. �B31� and �B32�. q2 is a function of
q1, determined by Eq. �B36� or by Eq. �B44� depending on
whether 1 /��1/�s or 1/��1/�s ��s=0.181; see Fig. 22�.
�3

�2��kmin� is the value of the second-order expansion coeffi-
cient of the lowest spinon frequency �3�k� �cf. Eqs. �B20�
and �B21c�� at its minimum, and 2kmin is the ordering wave
vector immediately to the left on the IC-DC phase boundary
and inside the DC phase; it is determined by Eq. �B35�.
�x3�kmin��2 /N�= �x3�−kmin��2 /N� are the condensate densities
at the wave vectors ±kmin. As is shown in Appendix B,
�3

�2��kmin� remains finite for 1 /��1/�s and hence
�x3�±kmin��2 /N� vanishes. Thus, �Si,c ·S j,c��0, i.e., there is
no LRO in this region. By contrast, for 1 /��1/�s both
�x3�±kmin��2 /N� and �̄3

�2��kmin� vanish when the IC-DC phase
boundary is approached from the left. However their ratio,
which determines the spin-spin correlation function, Eqs.

�24�, remains finite in this limit according to Eq. �B42�.
Thus, for 1 /��1/�s, Eqs. �24� show that while the chain
spins Sa, Sb remain disordered, there is long-range IC order
between the middle spins Sc along the IC-DC phase bound-
ary and inside the DC phase for sufficiently large �. The
middle spins occupy the sites of a triangular lattice. Remark-
ably, the correlations between these spins predicted by Eqs.
�24� are compatible with the spin pattern

S j,c = S�cos�2kminr j�êx + sin�2kminr j�êy� �25�

that would obtain if the middle spins Sc were classical spins
coupled by a classical Heisenberg model with exchange con-

stant J̃ along one lattice direction and couplings J̃� along the

other two directions with a ratio J�̃ / J̃ such that incommen-
surate order with a wave vector 2kmin would be established.
This persistence of long-range order in the DC phase of the
AKAF distinguishes our result from the result obtained by
Chung et al.,19 in their large-N Sp�N� treatment of the an-
isotropic triangular antiferromagnet: there the DC phase con-
sists of uncorrelated linear spin chains. Qualitative consider-
ations of the finite-N corrections to the mean-field Sp�N�
result led the authors of Ref. 19 to the conclusion that instead
of the DC phase there is spin-Peierls order in the large-J
region of their model. In the next section, we will present a
different approach, a block-spin perturbation theory, to get
further insight into the properties of the AKAF for the physi-
cal spin-1 /2 case.

IV. BLOCK-SPIN PERTURBATION APPROACH

The basic idea of the block-spin perturbation theory is to
calculate the states of small clusters of a given lattice exactly
and to treat the coupling between these clusters perturba-
tively. The basic building blocks of the kagomé lattice are
triangles. Thus it is natural to consider the trimerized kagomé
lattice in which the spins on the downward-pointing triangles
are assumed to be strongly coupled whereas the coupling on
the bonds of the upward-pointing triangles are assumed to be
weak �see Fig. 14�. �Clearly, the exchange of the roles of the
upward- and the downward-pointing triangles will not affect
the further development to be presented in the current sec-
tion.� The Hamiltonian for this trimerized model reads

FIG. 14. �Color online� The kagomé lattice as a triangular lattice
of downward-pointing triangles. The coupling strength is J on the
horizontal bond and unity on the other two bonds.
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H�J,�� = H��J� + �H��J�, 0 � � � 1, �26�

where H��J� �H��J�� denote those terms in the Hamiltonian
�Eq. �1�� that act on the bonds of the downward-�upward-�
pointing triangles. We will determine approximate GSs of
this trimerized model in different ranges of J in a perturba-
tion expansion with respect to �. The hope is that the results
will provide some qualitative insight into the GS properties
of the nontrimerized model H�J ,1� which is our original
model Eq. �1�. The same strategy has previously been ap-
plied sucessfully to frustrated spin models by several
authors.5,24–26

Obviously, the GSs of the unperturbed Hamiltonian
H�J ,0� are products of GSs of the individual downward
pointing triangular plaquettes. The GSs of a single plaquette
and the corresponding energies are, for J�1,

��� =
1
	6

���↑↑↓� − �↓↑↑�� + ��↑↓↑� − �↓↑↑��� , �27a�

��̄� =
1
	6

���↓↓↑� − �↑↓↓�� + ��↓↑↓� − �↑↓↓��� , �27b�

�� = ��̄ = − 1 + J/4; �27c�

and for J�1,

�
� =
1
	2

��↑↓↑� − �↑↑↓�� , �28a�

�
̄� =
1
	2

��↓↑↓� − �↓↓↑�� , �28b�

�
 = �
̄ = − 3/4J . �28c�

Here, the ket vectors denote the spin state of the plaquette in
the Sz basis. The three arrows inside the �cba� symbol denote
from left to right the spin directions at the sites c, b, and a of

the plaquettes in Fig. 15. The states ��� ���̄�� and �
� ��
̄��
have total z spin 1/2 �−1/2�. They can be depicted graphi-
cally as shown in Fig. 15. From these plaquette states, the
zeroth-order GSs of the Hamiltonian H�J ,�� will be con-
structed. We treat the cases J�1 and J�1 separately.

(a) J�1. Since the states ��� and ��̄� are the GSs of the
individual downward-pointing plaquettes in this case, the
states

�A�M�� = �
i��M�

��i� �
j��N�−M�

��̄ j� �29�

are here the zeroth-order GSs of H�J ,��. The set �M� is a
subset of M out of the N� downward-pointing triangles of
the 3N�-site kagomé lattice; the subscripts i, j denote the
position of individual triangular plaquettes in the lattice of
these plaquettes which is also triangular �see Fig. 14�. The
zeroth-order energy eigenvalues associated with the states
�A�M�� do not depend on M:

EA�M�
�0� = N��− 1 + J/4� . �30�

Hence, there are in total 2N� degenerate zeroth-order GSs
�A�M��. The single-plaquette states ��� , ��̄� satisfy the condi-
tions for the validity of the Lieb-Mattis theorem:15 after a
canonical transformation which rotates the spins on the sites
a and b by � around the z axis �↑ �→ i�↑ �, �↓ �→−i�↓ �, and
which leaves the spins on the site c fixed, the coefficients of
all basis states on the right sides of Eqs. �27a� and �27b�
become positive �+1/	6�. As a consequence, all the GSs
�A�M�� satisfy the conditions for the validity of the Lieb-
Mattis theorem. For J=0 it follows from this theorem that
the total magnetization of the exact quantum GS ��exact� of
the Hamiltonian HAKAF must be an eigenstate of the total
magnetization

m̂tot = �
i

N�

�Si,a
z + Si,b

z + Si,c
z � �31�

with eigenvalue mtot=N� /2, i.e., ��exact� must be a ferrimag-
netic state. By continuity, one expects this to be the case not
only for J=0, but up to a certain finite value of J. This
suggests that the state �A�M =0�� �cf. Eq �29�� is the appro-
priate zeroth-order GS in this case and that the degeneracy of
the states �A�M�� is lifted by the perturbation H� in favor of
the state �A�0��. To confirm this, we determine the creation
energy of a flipped plaquette in first order in �, i.e., the
difference of the energy of the state with one plaquette spin
flipped relative to the ferrimagnetic state, and the energy of
the ferrimagnetic state:

��1�EA�M = 1� = EA�1� − EA�0�. �32�

A simple calculation yields

��1�EA�M = 1� =
4

9
��1 − J� , �33�

i.e., to first order, �A�M =0��, the ferrimagnetic GS is stable
with respect to a flip of a single plaquette spin, as long as
J�1.

As a further check on the stability of the state �A�M =0��,
we calculate the dispersion of the excitation energy of a
propagating single flipped plaquette spin. For this purpose,
we need to determine the overlap matrix elements between
the state with a flipped plaquette spin at the site j and states
with a flipped spin at one of the neighboring sites,

c

ba

c

ba

c

ba
+|α(ᾱ)〉:

∣
∣β(β̄)

〉
:

↑ (↓)↑ (↓)

↑ (↓)

FIG. 15. Ground states of triangular plaquettes. Heavy lines
depict singlets. The coupling strength is J on the horizontal bond
and unity on the other two bonds.
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tj,j±�1
= ��̄ j��� j±�1

��JS jS j±�1
�� j���̄ j±�1

� =
2

9
�J , �34a�

tj,j±�2,3
= ��̄ j��� j±�2,3

��S jS j±�2,3
�� j���̄ j±�2,3

� = −
1

9
� .

�34b�

Here, ��, �=1,2 ,3, are the primitive lattice vectors of the
kagomé net �see Fig. 2�; they connect the sites of the
plaquette lattice. Then, by diagonalizing the ensuing transfer
Hamiltonian

Htrans = ��
j
�2

9
J��j + �1��j� + �j − �1��j��

−
1

9
��j + �2��j� + �j − �2��j��

−
1

9
��j + �3��j� + �j − �3��j��� , �35�

where �j� denotes the state with a flipped plaquette spin at
site j, we obtain for the kinetic energy of this excitation

��k� =
4

9
��J cos�kx� − cos� kx

2

cos�	3ky

2

� . �36�

Adding the energy for the creation of a single flipped
plaquette spin, we find for the total energy of the excitation
in the limit of small wave vector k

��k� =
2

9
���1

4
− J
kx

2 +
3

4
ky

2 + O�k4�� . �37�

Obviously, the ferrimagnetic state �A�M =0�� becomes un-
stable against a propagating flipped plaquette spin already at
J=1/4, i.e., much earlier than suggested by the excitation
energy of a static flipped spin �see Eq. �33��. We remark that
this bound is independent of the actual magnitude of the
perturbation parameter � and, therefore, the qualitative result
may survive in the limit �=1.

(b) J�1. In this region, the states

�B�M�� = �
i��M�

�
i� �
j��N�−M�

�
̄ j� �38�

with eigenenergy

EB�M�
�0� = N��− 3J/4� �39�

are the zeroth-order eigenstates of H�J ,��. These states con-
sist of free spins on the c sites and of spin-singlet dimers that
cover every second bond of the horizontal chains of the lat-
tice. We wish to answer the question of whether the 2N�-fold
degeneracy of these states, which results from the degrees of
freedom of the free spins, is lifted by the perturbation �H�;
in other words, we want to find out whether the middle spins
remain decoupled from the chain spins. We proceed as in
case (a). We compare in a perturbation expansion with re-
spect to � the energy of the state �B�0�� with the energy of
�B�1��, i.e., with the state with one plaquette spin flipped
relative to �B�0��. We denote this difference by ��1�EB�M

=1�=EB�1�−EB�0�. Surprisingly, we find that the matrix ele-
ments �B�M��H��B�M�� vanish for any choice of M. There is
no first-order correction to the energy EB�M�

�0� , ��1�EB�M =1�
=0. Moreover, we observe that the off-diagonal matrix ele-
ments �B��M��H��B�M��, where �B��M�� and �B�M�� contain

identical numbers of states �
�, �
̄� but differ in their distri-
bution over the N� downward-pointing triangles, also van-
ish. This implies that, in contrast to case (a), a flipped
plaquette spin cannot hop to a neighboring site in a first-
order process. Coupling between the spins on the c sites
occurs only in second order in �. It is succinctly described by
an effective spin Hamiltonian for the c-site spins, which are
at the same time total spins of the downward-pointing
plaquettes �see Fig. 15�:

Heff = �
i�c

�
�=1

3

�J��

� Si
zSi+��

z + J��

� �Si
xSi+��

x + Si
ySi+��

y �� . �40�

Here, Si
�, �=x ,y ,z, denote plaquette spin operators; i is the

position of a downward-pointing plaquette on the triangular
lattice formed by these plaquettes. The exchange couplings
J��

� and J��

� are given as second-order matrix elements of H�:

J��

� = �2��
X

�Bi↑,i�↑�H��X��X�H��Bi↑,i�↑�

2�B − �X

− �
Y

�Bi↑,i�↓�H��Y��Y�H��Bi↑,i�↓�

2�B − �Y
� , �41a�

J��

� = �2�
X

�Bi↓,i�↑�H��X��X�H��Bi↑,i�↓�

2�B − �X
, �41b�

with i�� i+��. Here, the states �Bi�,i���� are zeroth order GSs
�Eq. �38�� whose spin patterns are identical on all sites ex-
cept for the sites i and i� where the z components of the spins
take the values � and ��, respectively; �X� and �Y� are ex-
cited states of H�. Of course, since the SU�2� symmetry of
the original Hamiltonian H�J ,�� must be conserved in the
derivation of Heff, the expressions Eqs. �41� must yield iden-
tical results, J��

� =J��

� �J��
. Nonzero contributions to J��

� and
J��

� are obtained if either the same term SiSi� of H� acts in
both matrix elements of the numerators of Eq. �41� �two-
block contributions� or the terms SiSk, SkSi� act in the left
and right elements, respectively, where the plaquette geom-
etry must be as shown in Fig. 16 �three-block contributions�.
In contrast to the case of the isotropic KAF studied by
Zhitomirsky,26 the three-block contributions do not produce
three-spin interactions in the present case. Rather, they con-
tribute to the exchange interactions J�1

� and J�1

� of the Hamil-
tonian Heff, Eq. �40�. The evaluation of the expressions �41�
yields
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J�1
= �2 1

288

1

J
� 56

1 − 1/J
−

1

1 − 1/�4J�
+

98

1 + 1/�2J�

=

17

32

�2

J
�1 + O�J−1�� �42�

and

J�2
= J�3

=
�2

6J
� 1

1 − 1/J
−

1

1 + 1/�2J�
 =
�2

4J2 �1 + O�J−1�� .

�43�

Obviously, these results are useful for J�1. There, Heff rep-
resents a spin-1 /2 Heisenberg Hamiltonian on the triangular
lattice of the c sites with a coupling along the �1 direction
that is strong �O��2 /J�� in comparison to the couplings in the
two other directions �O��2 /J2��. This limiting case of the
anisotropic triangular Heisenberg antiferromagnet �ATHAF�
has recently been analyzed by Starykh and Balents with field
theoretical methods.14 These authors find that, in the limit of
strong anisotropy, K�J�1

/J�2
→�, the GS of the model Eq.

�40� is a collinearly ordered antiferromagnet �CAF� as de-
picted in Fig. 17. Since the ordering wave vector qCAF
= �� ,� /2� of this phase does not evolve continuously from
the ordering wave vector qIC of the incommensurate spiral
phase of the ATHAF �qIC= (qx�K� ,0) with −3� /2�qx�K�
�−� for 1 /2�K���, they conclude that the IC phase and
the CAF phase must be separated by a quantum phase tran-
sition. For the trimerized anisotropic kagomé model, Eq.
�26�, these results have the following implications.

�i� While in the limit of strong anisotropy J�1 there is
long-range collinear antiferromagnetic order among the

c-site spins, the a- and b-site spins are paired in singlets �see
Fig. 18�.

�ii� This picture of the GS of the trimerized anisotropic
kagomé model Eq. �26� differs from the result obtained in
the Sp�N� approach insofar as for sufficiently large � the
Sp�N� approach predicts long-range IC order among the
c-site spins up to arbitrarily large values of J. Thus, if the
picture of a CAF phase for large anisotropy persists in the
nontrimerized limit H�J ,�=1� of the model Eq. �26�, one
would expect a quantum phase transition between the IC
phase and the CAF phase of the AKAF similarly as for the
ATHAF. In closing this section, we remark that the calcula-
tion that led to the effective Hamiltonian Heff, Eq. �40�, i.e.,
to the coupling between the c spins in the strongly aniso-
tropic limit, shows clearly that this coupling arises from
quantum fluctuations of the a and b spins.

V. SUMMARY AND DISCUSSION

In this work, we have studied the ground state phase dia-
gram of the quantum Heisenberg antiferromagnet on the
kagomé lattice with spatially anisotropic exchange. The
model is relevant for a description of magnetic properties of
volborthite, which is a natural realization of a spin-1 /2 anti-
ferromagnet consisting of weakly coupled slightly distorted
kagomé layers. A small monoclinic distortion along one of
the three lattice directions causes the exchange coupling
along this direction, J, to differ from the couplings in the
other two directions, J�, which we set equal to unity �cf. Fig.
2�. We have investigated the problem in the full range of the
anisotropy, 0�J��, using three different approximate
methods: the classical and semiclassical approach, the mean-
field Sp�N� approach, and a block-spin perturbation theory.

The case J=1 is the much studied isotropic kagomé anti-
ferromagnet. Exact diagonalization studies of this model3,4

are available. Their results speak conclusively in favor of a
spin-liquid ground state.1 This view is supported by block-
spin approaches.5,6 Conflicting results have been found in
Refs. 27–30, where various valence bond crystal states are

i

ii i

i′

i′i′

i′

k

FIG. 16. Configurations of � blocks contributing to the inter-
block couplings J��

� and J��

� . Double-dashed lines indicate that the
same term element of H� acts twice between the � blocks at sites
i and i� �see also text�.

FIG. 17. �Color online� Collinear antiferromagnetic state �CAF�
on the triangular lattice �Ref. 14�.

FIG. 18. �Color online� Tentative ground state of the anisotropic
kagomé antiferromagnet in the limit J�1. Double lines: singlet
dimers between the spins on the end points.
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proposed as ground states of the KAF. However, a recent
comparison of the exact spectrum of the 36-site sample of
the KAF against the excitation spectra allowed by the sym-
metries of these states, casts doubts on their validity.31

Within the whole anisotropy range, the case J=0 is spe-
cial, since it allows for an exact characterization of the quan-
tum GS as ferrimagnetic with a total magnetization of M
=SNs /3 for a system of Ns spins of magnitude S. In the
classical picture, this state corresponds to a unique staggered
layout of spins with a nonzero net magnetization of the lat-
tice unit cell �cf. Fig. 3�. In the classical limit, the ferrimag-
netic ground state survives up to J=1/2. For J�1/2, the
“chain” spins �i.e., spins coupled by J� begin to tilt gradually
toward the middle �remaining� spins �see Fig. 5�. This allows
for a formation of a large degenerate manifold of canted spin
states. In contrast to the isotropic case J=1, where the de-
generacy grows exponentially with the system size Ns, its
growth is weaker: 21.26	Ns for J�1. This implies that there
must be an increasingly large number of classical low-energy
configurations as J approaches unity. In the linear semiclas-
sical approximation, the spin-wave spectrum has one zero-
frequency mode for each point of the magnetic Brillouin
zone. The spectrum is identical for the different canted states
for all J�1/2. Thus, in this order of the semiclassical ap-
proximation, no order-by-disorder mechanism appears that
would select one particular state or a particular group of
states from the manifold of canted states as true ground
states. In the limit J→�, the frequency spectrum of nonzero
modes gradually takes the shape of the spectrum that one
would expect for a set of uncoupled antiferromagnetic spin
chains parallel to the strong-J direction. No qualitative
change from the set of canted spin states to the set of decou-
pled chains at a finite value of J is found.

We have further explored the nature of the phases at vari-
ous J exploiting the mean-field �MF� Sp�N� approach, that
incorporates the effect of quantum fluctuations not only per-
turbatively, but self-consistently. The strength of quantum
fluctuations is controlled by a parameter �, which is the ana-
log of the spin value S in the original SU�2�-symmetric
model. In fact, for N=1, when the Sp�1�-symmetric model is
equivalent to the SU�2� model, �=2S. For general N, this
last identity does not hold, but � is still a measure for the
importance of quantum fluctuations that are strong for �
�1 and weak for ��1. In the MF Sp�N� approach, the
nature of the phases that occur can be read from the values of
the mean-field parameters Q1 and Q2 and from the spectrum
of the bosonic spinon excitations. While the mean-field pa-
rameters Q1 and Q2 �cf. Fig. 8� are the GS expectation values
of singlet bond operators, the structure of the spinon spec-
trum, ���k ;Q ,��, determines the existence or nonexistence
of long-range order: If the spectrum becomes gapless at
some wave vector qord, a Bose condensate will form and a
modulated structure with the wave vector 2qord will acquire
LRO.

As was to be expected, the phase diagram of the AKAF
obtained by the MF Sp�N� approach contains an incommen-
surate phase in the vicinity of the isotropic point J=1 which
is ordered for sufficiently large � according to this approach
�see Fig. 9�. Qualitatively, we may gauge the value of �

against the spin length S by looking at the line J=1 of the
phase diagram which is the location of the Sp�N� analog of
the isotropic SU�2�-symmetric kagomé model: since, as we
have argued above, the SU�2� model is disordered for S
=1/2, we may conclude from Fig. 9 that the value of 1 /�
that corresponds to S=1/2 must be greater than 2. Somewhat
surprisingly, the FM phase remains long-range ordered for
arbitrarily small �. This may reflect the fact that in the SU�2�
version of the model, the FM phase is ordered even for the
smallest physical spin value S=1/2. A new feature of the
phase diagram is the prediction of a decoupled chain phase
for large enough J, which has no classical analog. In this
phase, the chains of strongly coupled a- and b-site spins
show no magnetic order. The c-site spins which are inter-
spersed between these chains and which occupy the sites of
triangular sublattice are decoupled from the chain spins.
However, they may or may not exhibit long-range order
among themselves depending on the magnitude of �. Re-
markably, the spin-spin correlations, whose asymptotics were
obtained analytically, are compatible with the spin-spin cor-
relations of an anisotropic classical Heisenberg antiferromag-
net on the triangular lattice whose exchange couplings differ
in one direction from those in the other two directions.

In order to tackle the problem of the GSs of the AKAF
from a third corner, we have used a block-spin perturbation
theory. This method has the advantage of being applicable
directly to the spin-1 /2 version of the model. In applying this
approach, one has to initially group the spins of the model in
clusters. For the kagomé lattice, it is natural to choose the
spins around either the upward- or the downward-pointing
triangles as clusters of strongly coupled units and to consider
the coupling between these clusters, �, as the small expan-
sion parameter. Thus one trimerizes the original model �see
Fig. 14� and, in so doing, one breaks the translational invari-
ance of the original model. In the zeroth order of this expan-
sion, two regions can be distinguished by the eigenenergies
of the individual trimers: J�1 and J�1. For sufficiently
small J, one recovers the FM state as the GS in first order
with respect to �. For J�1, there are no first-order correc-
tions to the energy. Following an earlier application of the
block-spin technique to the isotropic KAF,26 we determine
for J�1 in second order in � an effective Hamiltonian Heff
for the block spins which can be identified as the middle
spins of the original model and that occupy the sites of a
triangular lattice. Heff is a Heisenberg Hamiltonian with a
coupling J�1

of the order of �2 /J along the �1 direction �cf.
Fig. 2� and couplings J�2

=J�3
of the order of �2 /J2 along the

other two directions. The calculations that led to these results
show clearly that the couplings between the c spins of the
AKAF are due to fluctuations of the singlets between the a
and b spins into excited states. In a very recent field theoret-
ical study, Starykh and Balents14 arrive at the conclusion
that, for J�1

�J�2,�3
, the ground state of the anisotropic trian-

gular antiferromagnet represented by Heff is a collinearly or-
dered spin state �see Fig. 17�. Then, together with the singlet
dimers between the a and b spins of the downward-pointing
triangles, the state depicted in Fig. 18 emerges as the candi-
date ground state of the AKAF in the limit of large aniso-
tropy J�1: while nearest-neighbor spins on the strongly
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coupled a-b chains form singlets and decouple magnetically
from the spins on the c sites, the latter order in a collinear
antiferromagnetic structure. This structure cannot be ob-
tained by a continuous deformation of the spiral IC structure
that is predicted by the Sp�N� approach and is believed to
prevail for sufficiently large � in the region of moderate
anisotropy. As a consequence of the trimerization, the state
depicted in Fig. 18 breaks the translational symmetry of our
original model Eq. �1�. If this state survives as the ground
state of the nontrimerized model, i.e., when the expansion
parameter � approaches unity, then, owing to their incompat-
ible symmetries, the spiral IC phase and the large-J phase of
our model must be separated by a quantum phase transition.

Note added in proof. Recently, we became aware of re-
lated work by Wang et al.32
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APPENDIX A: GROUND-STATE DEGENERACY FOR
GENERAL J

We first derive the constraint on the chiralities that leads
to the reduction in the number of degenerate ground states
for general J relative to the special case J=1. Let 
1 , . . . ,
6
be the chiralities of the six triangles surrounding one of the
hexagons of the kagomé lattice, and let �1 , . . . ,�6 denote the
angles that define the directions of the spin vectors on the six
corners of the hexagon �see Fig. 19�.

Then, as is seen in Fig. 19, the following relations be-
tween the angle �1, and the angles �2 , . . . ,�6 are an imme-
diate consequence of these definitions:

�2 = �1 − 	
2, �A1a�

�3 = �1 − 	�
2 + 
3� , �A1b�

�4 = �1 − 	�
2 + 
3� − �2� − 2	�
4, �A1c�

�5 = �1 − 	�
2 + 
3 + 
5� − �2� − 2	�
4, �A1d�

�6 = �1 − 	�
2 + 
3 + 
5 + 
6� − �2� − 2	�
4, �A1e�

and

�6 = �1 + �2� − 2	�
1. �A1f�

From the last two of these relations it follows that the chirali-
ties 
1 , . . . ,
6 are constrained by the sum rule


2 + 
3 + 
5 + 
6 − 2
1 − 2
4 = 0. �A2�

For the isotropic kagomé system, J=1, 	=2� /3, one finds
instead of the constraint �A2� the sum rule

�
j=1

6


 j = n where n = 0,1,2, �A3�

which is obviously less restrictive than �A2�.
Next, we present the arguments that lead to the estimate

NGS
aniso�N�� � 2�	N� with � � 3 �A4�

for the number NGS
aniso�N�� of classical GSs of an anisotropic

kagomé AF with N� downward-pointing triangles �the num-
ber of sites is 3N��. Any planar configuration of a cell of the
kagomé lattice can be constructed by decorating the succes-
sive rows of up- and down-pointing triangles with chirality
values 
= ±1 starting with the first row. We consider only
square cells with 	N� rows with 	N� downward-pointing
triangles. Then, each row consists of 2	N� triangles �see
Fig. 20�.

Obviously, there are 22	N� ways to decorate the first row.
Disregarding certain exceptions, which will be discussed be-
low, one can, for a given configuration of the first row,
choose the chirality of an arbitrary triangle of the second row
to be either +1 or −1. After this choice has been made, the
constraint �A2� fixes the chiralities of all the remaining tri-
angles of the second row uniquely. Proceeding in this manner
from row to row one would generate 22	N� �2	N� distribu-
tions of chiralities over the N� downward-pointing triangles
of the cell. For finite lattice cells, the requirement of periodic
boundary conditions imposes further constraints on the num-
ber of possible chirality distributions in these cells, but the
effect of these constraints will become negligible in the ther-
modynamic limit N�→�. However, there is a further reduc-
tion of the number of possible chirality distributions: For a
given distribution in a row it is not always possible to find
two distributions for the successive row which both satisfy
the constraint �A2�. If in a row the lower half of a hexagon of

5 2

6 1

34

χ1

χ2

χ3

χ4

χ5

χ6

FIG. 19. Chiralities around heaxagonal plaquette. FIG. 20. Example of a chirality distribution; dark and light
shaded triangles represent positive and negative chirality, respec-
tively. Chirality configurations in boxes fix the chirality distribution
of the row above them uniquely. An empty circle inside a triangle
indicates that its chirality can be chosen freely to be positive or
negative.
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the next row is decorated by chiralities in the manner � �
or  � �see boxes in Fig. 20�, then the chiralities of the
next row are fixed uniquely. This reduces the number of
possible chirality distributions. Obviously, this reduction of
the number of possible chirality distributions survives in the
thermodynamic limit so that the exponent in �A4� is less than
3	N�, the value one would have expected without this re-
duction. We have calculated the number of distributions for
cells of up to N�=13�13 and have found the value �
�2.18 for the constant in the expression �A4� �see Fig. 21�.

As we mentioned above, the sum rule �A3� which applies
for the isotropic kagomé AF is less restrictive than the sum
rule �A2�. Consequently, the number of chirality distributions
in the isotropic model,33

NGS
iso � 1.18333N�, �A5�

is larger than in the anisotropic model. Since the transition
from the anisotropic model to the isotropic model happens
through a continuous variation of the coupling constant J,
there should be a continuous transition between the numbers
of GS configurations in these two cases. Presumably, this
transition implies that the density of low-energy states of the
anisotropic model increases exponentially with an exponent
�	N� so that for J→1 a sufficient number of states col-
lapses to the GS to bring about the transition between the
laws �A4� and �A5�.

APPENDIX B: PHASE BOUNDARIES

The FM and DC phases are characterized by the vanish-
ing of the parameters Q1 and Q2, respectively. Our numerical
results in Sec. III C show that, at the respective phase bound-
aries, Q1 and Q2 decrease to zero like order parameters at
second-order phase transitions. This suggests that we expand
the mean-field energy EMF �Eq. �14�� with respect to either
Q1 or Q2 in the manner of a Landau-Ginzburg �LG� expan-
sion and determine the phase boundaries and the properties
of the FM and DC phases from this expansion. We write
EMF/ �N�N�=eLG

����Q�� where

eLG
����Q�� = e� + r��Q��2 + g��Q��4 + O���Q���6� . �B1�

The coefficients e�, r�, and g� are functions of the variables
� and J, of the parameters �a ,�c and of Q2 ,Q1 for �=1,2,
respectively. The saddle point of eLG

����Q�� with respect to �a,
�c, and Q
, 
��, determines the physical values of these
parameters. For eLG

����Q�� to qualify as a bona fide Landau-
Ginzburg energy describing a second-order phase transition
with Q� playing the role of an order parameter, the coeffi-
cients g� have to be positive at the saddle point. For g1, i.e.,
inside and on the boundary of the FM phase, this follows
from the numerical result: Q1 is found to remain zero for all
J�JF���. By contrast, we have no numerical results for J
�JDC���, i.e., inside and on the boundary of the DC phase.
Therefore, we need to show by analytic means that g2�0.

1. The FM phase and the FM-IC phase boundary

Since, as we have just remarked, we know that g1�0, the
remaining task is to determine the coefficients e1 and r1 of
eLG

�1� . To this end, we have to expand the mean-field energy
EMF �Eq. �14�� with respect to Q1 which amounts to expand-
ing the frequencies ���k� with respect to Q1. As can be
inferred from the expressions �16� and �18� the frequencies

depend on Q1 only through the combination �2=J2�Q̃1�2.
Therefore, we write the expansion in the form

���k;�� = ��
�0��k� + �2��

�1��k� + O��4�

= �+��̄�
�0��k� + �̄2�̄�

�1��k� + O��̄4�� �B2�

with �+= ��a+�c� /2, �̄�
�0�=��

�0� /�+, �̄�
�1��k�

=�+��2 ����k ;����=0, and �̄=� /�+.
Here, the introduction of the “dimensionless” quantities

�̄�
�i� and �̄ looks like an unnecessary complication, but it will

help to keep expressions below simple. Setting Q1=0 in the

matrix D̂���, Eq. �16�, and solving Eq. �15� for � we find

�̄1
�0��k� = wF�k� + � , �B3a�

�̄2
�0��k� = 1 − � , �B3b�

�̄3
�0��k� = wF�k� − � . �B3c�

Here

� = �−/�+ with �− = ��c − �a�/2 �B4�

and

wF�k� = 	1 − q̄2
2�sin2�s2/2� + sin2�s3/2�� �B5�

with

q̄2 = �Q2�/�+ �B6�

and sa=�ak, a=2,3 �see Fig. 8�.
From our numerical results �Fig. 13�, we know that �c

��a and hence ��0. Therefore, �̄3
�0��k���̄1,2

�0��k�, and
hence, if the minimum of �̄3

�0��k� vanishes at the point kmin in
the Brillouin zone, �̄1,2

�0��kmin� will be finite. Thus, since con-
densate can occur only when one of the frequencies �̄�

�0�, �
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FIG. 21. �Color online� Number of chirality distributions, NGS
aniso,

of cells of up to N�=13�13. Dotted line, min=2	N�ln 2 �lower
bound�; dashed line, max=3	N�ln 2 �upper bound�; full line,
ln�NGS

aniso�=0.65+2.18	N�ln 2 �linear fit to the numerical results�.
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=1,2 ,3, vanishes, there may be a finite condensate density
�x3�kmin��2, but the densities �x1�2 and �x2�2 will certainly be
zero. With these remarks and with the above results for �̄�

�0�,
we find from Eq. �14�

e1/�+ = 2�+q̄2
2 − �3 − ���� + 1� +

1

N�
�
k

��̄1
�0��k� + �̄2

�0��k�

+ �̄3
�0��k�� + �̄3

�0��kmin��x3�kmin��2/N�. �B7�

Stationarity of e1 with respect to �−, �+, and q̄2
2 �which is

equivalent to stationarity with respect to �a and �c�, and Q2
2

requires the following three conditions to be satisfied:
�e1 /��−=0:

1

N�

�x3�kmin��2 = �; �B8�

�e1 /��+=0:

2�+q̄2
2 −

3

2
� − 1 + E2�q̄2� +

�

2
wF�kmin� = 0; �B9�

�e1 /�q̄2
2=0:

2�+ −
1

q̄2
2 �K2�q2� − E2�q2�� −

�

wF�kmin�
= 0; �B10�

with

K2�q2� =
1

�
�

0

�

ds2
1

�
�

0

�

ds3wF�k�−1,

E2�q2� =
1

�
�

0

�

ds2
1

�
�

0

�

ds3wF�k� . �B11�

According to Eq. �B8�, condensate must be present in the
FM region. This requires that �̄3

�0��kmin� vanishes. From Eq.
�B3c� it is seen that kmin= �−� ,0�, so that �̄3

�0��kmin�=0, if

wF�kmin� = 	1 − 2q̄2
2 =

�−

�+
. �B12�

Within the FM region and on the FM-IC boundary �i.e., for
Q1=0� the saddle-point values of q2, �+, and �− are then
determined as functions of � by Eqs. �B9�, �B10�, and �B12�.
Remarkably, within this region these quantities are indepen-
dent of the value of the exchange constant J. The solution of
these equations shows that 0�q2�2/3 for 0���� �cf.
Figs. 11 and 13�.

The FM-IC phase boundary is the solution of r1�� ,J�=0
�cf. Eq. �B1��, where

r1 = ��eLG
�1� /�Q1

2�Q1=0 �B13�

with eLG
�1� �EMF� from Eq. �14�.

We obtain

r1

J2 =
1

J
−

1

�+

1

N�
�
k

sin2� s2 + s3

2

��1��k�

+
�

�+
lim

k→kmin

�sin2� s2 + s3

2

�̄3

�1��k�� �B14�

with ��1��k�=−�̄1
�1��k�− �̄2

�1��k�− �̄3
�1��k�.

To obtain the expansion coefficients �̄�
�1��k� that appear in

the last equation, we solve Eq. �15� to first order in the ex-
pansion with respect to �̄2. We find

��1��k� =
1

wF�k��wF�k� + 1 − 2��
�wF�k� + 1

+
q̄2

4 sin2�s2/2�sin2�s3/2��2wF�k� + 1 − ��
�wF�k� + 1��1 − ���wF�k�2 − �2�



�B15�

and

lim
k→kmin

�sin2� s2 + s3

2

�̄3

�1��k�� = −
1

2�

1 + �

1 − �
. �B16�

With these results Eq. �B14� can, in the thermodynamic
limit, be cast into the form

r1

J2 =
1

J
−

I3�q2�
�+

−
�

�+

1

2�

1 + �

1 − �
=

1

J
−

1

JF���
, �B17�

where

I3�q2� =
1

�
�

0

�

ds2
1

�
�

0

�

ds32 sin2� s2

2

cos2� s3

2

��1��k� .

�B18�

Then, with q̄2= q̄2��� and �±=�±��� as obtained from Eqs.
�B9�, �B10�, and �B12�, the condition r1=0 is an equation for
the FM-IC phase boundary J=JF��� which yields the graph
shown in Fig. 9. As we have mentioned above, inside the FM
region, i.e., for J�JF���, the saddle-point values of the
quantities q̄ and �± and hence of Q2, �a, �c, and �x3�kmin�� are
independent of the exchange coupling J, i.e., they retain the
values they attain on the FM-IC phase boundary �cf. Figs. 11
and 13�.

2. The DC phase and the IC-DC phase boundary

Proceeding in exact analogy to the development in the
previous section we now expand EMF/ �N�N� in powers of
�Q2�2. However, instead of working with the variables Q1,
Q2, �a, and �c, we work with q1, Q2, �a, and q2 here, where

q1 =
J�Q1�

�a
, �B19a�

q2 =
�Q2�

	�a�c

. �B19b�

The replacement of �Q1� is purely a matter of convenience.
By contrast, the replacement of variables Q2 ,�c, which ac-
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cording to the numerics vanish simultaneously as J ap-
proaches the IC-DC phase boundary, by the pair Q2 ,q2
leaves us with only one vanishing variable, since, as will be
seen below, q2 remains finite throughout.

a. Expansion of eLG
„2…

„Q2…

We write

���k� = ��
�0��k� + ��

�2��k�Q2
2 + ��

�4��k�Q2
4 + O�Q2

6�
�B20�

and determine the coefficients ��
�n�, n=1, . . . ,4, by solving

Eq. �15� for � iteratively. We obtain

�1
�0��k� + �2

�0��k� = 2�awDC�k�, �3
�0� = 0, �B21a�

�1
�2��k� + �2

�2��k� = −
1

�a

1 − cos kx cos ky

wDC�k�
, �B21b�

�3
�2��k� =

1

q2
2�a

�C�k�2 − D�k�2�1/2. �B21c�

Here,

C�k� = 1 − q2
21 − cos kx cos ky

wDC�k�2 , �B22�

D�k� = q1 sin kxq2
2cos kx − cos ky

wDC�k�2 , �B23�

wDC�k� = 	1 − q1
2 sin2 kx. �B24�

The coefficients ��
�4��k�, �=1,2 ,3, will be needed only in

the determination of the coefficient g2 of the fourth-order
term of eLG

�2� �Q2� which will be discussed later. We will first
concentrate on the determination of the zeroth-order term e2,
and of the coefficient r2 of the second-order term of
eLG

�2� �Q2�. Under the assumption that g2 is positive, this will
provide us with an expression for the IC-DC phase boundary.

With the above expressions for �1
���+�2

��� and �3
���, �

=0,2, we obtain for the coefficients of the Landau-Ginzburg
energy from Eqs. �14� and �B1�

e2�q1,�a� =
�a

2q1
2

J
− 2�a�1 + � −

1

N�
�
k

wDC�k�
 ,

�B25�

r2�q1,q2,�a, �x3�kmin��2�

= 2 −
1

�a

1

q2
2 �� + 1� −

1

�a

1

N�
�
k

1 − cos kx cos ky

wDC�k�

+
1

N�
��

k
�3

�2��k� + �x3�kmin��2�3
�2��kmin�
 . �B26�

These are valid for arbitrary values of the parameters q1, �a,
q2, and �x3�kmin��. In the next section, we will calculate their
saddle-point values for given Q2 and thus fix these param-

eters. Here, we have only allowed for the existence of a
condensate component �x3�kmin��2. This is justified since, as
Eqs. �B20� and �B2� show, �3��1,2 for sufficiently small
Q2, so that conceivably �3�k� may vanish at some point kmin

in the Brillouin zone, while �1�k� and �2�k� remain finite at
kmin, and hence a finite condensate density �x3�kmin��2 may
occur at this point.

b. Saddle point, phase boundary

Next we need to determine the saddle point of eLG
�2� �Q2� in

the space of the variables q1, �a, q2, and �x3�kmin��. First, the
saddle-point values of q1 and �a are obtained as expansions
in powers of Q2,

�a = �a
�0� + �a

�2�Q2
2 + O�Q2

4� , �B27a�

q1 = q1
�0� + q1

�2�Q2
2 + O�Q2

4� , �B27b�

where �a
�0� and q1

�0� are the solutions of

��a
e2 = 0, �B28a�

�q1
e2 = 0. �B28b�

Since the first derivatives of e2 vanish at �a=�a
�0�, q1=q1

�0�

�Eqs. �B28��, we have

e2 = e2
�0� + e2

�2�Q2
4 + O�Q2

6� , �B29�

and

r2 = r2
�0� + r2

�1�Q2
2 + O�Q2

4� . �B30�

Here, e2
�0� and r2

�0� are the expressions �B25� and �B26� with
�a and q1 replaced by �a

�0� and q1
�0�. The fourth-order term of

e2 �Eq. �B29�� and the second-order term of r2 contribute
only to the fourth-order term of eLG

�2� , which will be deter-
mined later. Therefore, we postpone the presentation of ex-
plicit expressions for �a

�2� and q1
�2� and the ensuing expres-

sions for e2
�2� and r2

�1� until later. With e2 from Eq. �B25�, Eqs.
�B28� yield the equations

� =
2

�
K�q1

�0�� − 1, �B31�

�a
�0�

J
=

1

�q1
�0��2

2

�
�K�q1

�0�� − E�q1
�0��� , �B32�

which determine the saddle-point values q1
�0� and �a

�0�. �K and
E are the elliptic integrals of the first and the second kind.�

Next we seek the extremum of eLG
�2� with respect to q2.

Since e2 is independent of q2, neglecting terms of order Q2
4,

we have

0 = �q2
r2

�0� =
2

q2
3�a
�� + 1 − I1�q1,q2�

−
1

N�

C�kmin�
�aq2

2

�x3�kmin��2

�3
�2��kmin�

� �B33�

with
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I1�q1,q2� =
2

�
�

0

�/2

dkx 1

�
�

0

�

dky C�k�
�C�k�2 − D�k�2�1/2 .

�B34�

�In these expressions and in the following, we use an abbre-
viated notation: �a, q1, and q2 denote the zeroth-order quan-
tities �a

�0�, q1
�0�, and q2

�0�.� kmin is the location of the minimum
of �3

�2��k�,

kmin
y = 0, �tan� kmin

x

2

� =

1

q1
, − � � kmin

x � −
�

2
.

�B35�

From �B21c� and �B35� it follows that �3
�2��kmin�=0, if

q2
2 = �1 − q1

2�/2. �B36�

As a function of q2 the integral I1�q1 ,q2� increases monotoni-
cally,

1 = I1�q1,0� � I1�q1,q2� � I1�q1� for 0 � q2 � 	�1 − q1
2�/2.

�B37�

We have defined

I1�q1� ª max
�q2�

I1�q1,q2� = I1�q1,	�1 − q1
2�/2� . �B38�

As is seen in Fig. 22, the graphs of the functions �=��q1�
�Eq. �B31�� and of I1= I1�q1� intersect at q1s�0.708, �s

�0.181. Therefore, in solving Eq. �B33� for q2, two cases
have to be considered separately.

�i� q1�q1s, ���s. In this case, a solution exists only if
the last term in parentheses in Eq. �B33� is positive. This
requires that �3

�2��kmin�=0 because, as has been discussed
before, �x3�kmin�� and hence the ratio �x3�kmin��2 /�3

�2��kmin�
would vanish otherwise. The condition �3�kmin�=0 implies
that q2

2= �1−q1
2� /2 �cf. Eq. �B36��. Using this result and Eq.

�B32� to eliminate q2 and �a from Eq. �B26�, we find

r2
�0� = 2�1 −

JDC���
J


 , �B39�

where

JDC��� = ��� + 1��3 − q1
2�/2 + Ĩ2„q1,	�1 − q1

2�/2…�

�
2

�1 − q1
2�

q1
2�

4�K�q1� − E�q1��
�B40�

with

Ĩ2�q1,q2� =
2

�2�
0

�/2

dkx�
0

�

dky�C�k�2 − D�k�2�1/2

�B41�

is the IC-DC phase boundary for ���s, i.e., in the region
where the ratio �x3�kmin��2 /�3

�2��kmin� is finite. According to
the discussion at the end of Sec. III C �cf. Eq. �24��, this is
the region where LRO prevails along the decoupled chains
�cf. Fig. 9�.

In the development leading to Eq. �B40� for the phase
boundary, we have not needed the solution of Eq. �B33� ex-
plicitly, but we note it here for completeness:

1

N�

C�kmin�
�aq2

2

�x3�kmin��2

�3
�2��kmin�

=
1

N�

�x3�2
1

2
	1/q2

2 − 2/�1 + 3q1
2�

1/q2
2 − 2/�1 − q1

2�

= 1 + � − I1�q1� � 0. �B42�

These relations show that while �x3�kmin� � =0, the ratio
�x3�kmin��2 /�3

�2��kmin� remains finite.
�ii� q1�q1s, ���s. In this case, we must have

I1�q1,q2� � I1„q1,	�1 − q1
2�/2… �B43�

�see Eq. �B38��. Consequently q2
2� �1−q1

2� /2 so that
�3

�2��kmin��0 and hence no condensate can develop, �x3�2
=0. Then, Eq. �B33� yields the equation

I1�q1,q2� = 1 + � �B44�

which replaces Eq. �B36� and determines q2 as a function of
q1, q2=q2�q1�. Then, proceeding as in case �i� one finds for
the IC-DC phase boundary in the region ���s

JDC��� = ��� + 1��1 + q2
2� + Ĩ2�q1,q2��

1

q2
2

q1
2�

4�K�q1� − E�q1��
.

�B45�

Here, q1=q1��� from Eq. �B31� and q2=q2��� from Eq.
�B44� �with q1=q1����.

We note here that inside the DC phase, i.e., for J
�JDC���, where Q2=�c=0, the saddle-point values of q1 and
�a /J and hence of Q1 are independent of J �cf. Eqs. �B31�
and �B32��. Hence the graphs of Q1 and �a for J�JDC and
for J�JDC join smoothly at J=JDC �cf. Figs. 10 and 13�.
Furthermore, it follows from Eq. �B42� that the ratio
��x3�±kmin��2 /N�� / ��aq2

2�3
�2��kmin��, which occurs in the am-

plitude of the spin-spin correlation function �cf. Eq. �24a��, is
also independent of J inside the DC phase and retains the
value that it has attained at the IC-DC transition line.

c. Stability of the phase boundary

In deriving the phase boundary from the condition r2
�0�

=0 we have tacitly assumed that the coefficient g2 of the

0.9
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FIG. 22. �Color online� I1 and �+1 as functions of q1.

HEISENBERG ANTIFERROMAGNET WITH ANISOTROPIC… PHYSICAL REVIEW B 76, 064430 �2007�

064430-17



fourth-order term in the LG expansion, Eq. �B1�, is positive.
In the remaining part of this appendix we will sketch the
steps that lead to the conclusion that this is indeed the case.

Expanding in the expression �B1� for eLG
�2� the coefficients

e2 and r2 with respect to the second-order contributions to q1

and �a, q1
�2� and �a

�2� �cf. Eqs. �B27��, we obtain

eLG
�2� = e2

�0� + r2
�0�Q2

2 + �g2 + g2��Q2
4 + O�Q2

6� , �B46�

where

g2 =
1

N�
�
k

��1
�4� + �2

�4� + �3
�4�� �B47�

is the contribution to the fourth-order term of eLG
�2� that arises

from the fourth-order terms of the frequencies �� in the sum
in Eq. �14�, whereas the contribution to eLG

�2� of the expansion
of e2 and r2 is

g2� =
1

2
�q1

�2� �a
�2��� �q1

2 �e2�
0

�q1
��a

�e2�
0

��a
�q1

�e2�
0 ��a

2 �e2�
0

�q1

�2�

�a
�2� 


+ �q1
�2� �a

�2����q1
�r2�

0

��a
�r2�

0

 . �B48�

�In Eq. �B48� the notations ��q1

2 e2�
0
, etc., indicate that after

the derivatives have been taken the variables q1, �a, etc.,
have to be replaced by their zeroth-order values q1

�0�, �a
�0�,

etc.�
The evaluation of the contribution �B47� is straightfor-

ward: the coefficients ��
�4�, �=1,2 ,3, were obtained by solv-

ing Eq. �15� for � iteratively to fourth order. As the explicit
expressions are rather lengthy and contain no direct informa-
tion, we refrain from presenting them here. The sum over k
that is required in Eq. �B47� was done numerically. g2 was
obtained in the form

g2 =
1

�a
3g2̃�q1� , �B49�

where g̃2�q1� is a function of q1 alone, which is always posi-
tive, so that g2�0 throughout. Remarkably, no explicit de-
pendence on the coupling constant J appears in these results.

The evaluation of g2� �Eq. �B48�� requires knowledge of
the explicit expressions for q1

�2� and �a
�2�. These are obtained

by expanding e2 to first order in q1
�2� and �a

�2�, inserting the
results into the expression �B1� for eLG

�2� , and requiring that
the terms of order Q2

2 satisfy the extremum conditions with
respect to q1 and �a:

0 = q1
�2��q1

2 �e2�
0

+ �a
�2��q1

��a
�e2�

0
+ �q1

�r2�
0
, �B50a�

0 = q1
�2��q1

��a
�e2�

0
+ �a

�2���a

2 �e2�
0

+ ��a
�r2�

0
. �B50b�

The solution of these equations reads

�q1
�2�

�a
�2� 
 = − M̂��q1

�r2�
0

��a
�r2�

0

 , �B51�

with

M̂−1 = � �q1

2 �e2�
0

�q1
��a

�e2�
0

��a
�q1

�e2�
0 ��a

2 �e2�
0

 . �B52�

Inserting these results into Eq. �B48�, one finds

g2� = −
1

2
��q1

�r2�
0

��a
�r2�

0
�M̂��q1

�r2�
0

��a
�r2�

0

 . �B53�

While the second derivatives of e2 are obtained straightfor-
wardly from Eq. �B25�, the derivatives ��q1

r2�
0

and ���a
r2�

0
have to be calculated separately for the region q1�q1s,
where there is no condensate, �x3�kmin��2=0, and for the re-
gion q1�q1s, where �x3�kmin��2�0. Finally, the result for g2�
can be cast into the form

g2� =
1

�a
3 �xq x��M̂��xq

x�

 �B54�

where

M̂� =
1

4q1
2��� + 1 − ��
 �

1 − q1
2 − �

− � �2 − q1
2�� − � − 1

�
�B55�

with

� �
1

q1
2

2

�
�K�q1� − E�q1�� �K and E are elliptic integrals�

�B56�

and

xq = q1
2�� − � − 1� + � 1 − q1

2

q2
2 q1�q1

Ĩ2�q1,q2��
q2=q2�q1�

− !�q1 − q1s�
4q1

2

1 − q1
2 �� + 1 − I1�q1�� ,

x� = �� 1

q2
2 + 1
�� + 1� −

1

q2
2 Ĩ2�q1,q2��

q2=q2�q1�
. �B57�

Here " is the step function; the integrals I1�q1� and Ĩ2�q1 ,q2�
have been defined above �cf. Eqs. �B38� and �B41�, respec-
tively�. After numerical evaluation of these integrals, we find
that g2�=g2��q1� is positive for all values of q1.
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