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We study the effect of antiferromagnetic interactions on the single spin-flip Glauber dynamics of two
different one-dimensional Ising models with spin ±1. The first model is an Ising chain with antiferromagnetic
exchange interaction limited to nearest neighbors and subject to an oscillating magnetic field. The system of
master equations describing the time evolution of sublattice magnetizations can easily be solved within a linear
field approximation and a long time limit. Resonant behavior of the magnetization as a function of temperature
�stochastic resonance� is found, at low frequency, only when spins on opposite sublattices are uncompensated
owing to different gyromagnetic factors �i.e., in the presence of a ferrimagnetic short range order�. The second
model is the axial next-nearest-neighbor Ising �ANNNI� chain, where an antiferromagnetic exchange between
next-nearest neighbors is assumed to compete with a nearest-neighbor exchange interaction of either sign. The
long time response of the model to a weak, oscillating magnetic field is investigated in the framework of a
decoupling approximation for three-spin correlation functions, which is required to close the system of master
equations. The calculation, within such an approximate theoretical scheme, of the dynamic critical exponent z,
defined as 1/���1/��z �where � is the longest relaxation time and � is the correlation length of the chain�,
suggests that the T=0 single spin-flip Glauber dynamics of the ANNNI chain is in a different universality class
than that of the unfrustrated Ising chain.
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I. INTRODUCTION

After the publication of fundamental papers1,2 on stochas-
tic resonance �SR�, it was realized that the response ampli-
tude of a nonlinear dynamic system to an external periodic
signal is greatly enhanced as a function of noise strength, in
the presence of a matching between the frequency of the
external force and the escape rate across an intrinsic energy
barrier. Most of the SR research3 was pursued on dynamic
systems with a double well potential, subject to both periodic
and random forces, while only a few investigations of SR in
extended or coupled systems have yet been conducted.4

The Ising model with Glauber dynamics5 can be viewed
as a set of coupled two-state oscillators, where the coherent
signal is provided by an external oscillating magnetic field
and thermal fluctuations are the only source of random noise.
Each spin is assumed to be in interaction with a heat reser-
voir of some sort, which causes it to flip between the values
�= +1 and �=−1 randomly with time. In the presence of
magnetic coupling between the spins, the transition probabil-
ity for one spin to flip is assumed to depend on the configu-
ration of the neighboring spins. The time evolution of the
system is described by a master equation where the transition
rates verify the detailed-balance condition. Solving the mas-
ter equation, the time dependence of the magnetization and
of the spin correlation functions can be obtained. For ex-
change interaction limited to nearest-neighbor �NN� spins,
the response of the Ising model with Glauber dynamics to an
oscillating magnetic field was investigated in one,5,6 two,7

and three8,9 spatial dimensions. For the one-dimensional
�1D� NN Ising ferromagnet, Brey and Prados6 obtained an
analytic expression, within the linear field approximation, for

the amplitude and the phase of the induced magnetization.
The amplitude always presents a maximum as a function of
temperature, with a genuine resonant behavior only for low
frequencies. The Glauber dynamics of the 1D Ising model
with antiferromagnetic next-nearest-neighbor �NNN� ex-
change interaction competing with the NN one was investi-
gated by Yang,10 who employed a decoupling approximation
to solve the master equation and get an analytical expression
for the time-dependent magnetization. He also found, by
heuristic arguments, the dynamic critical exponent z, defined
as 1/���1/��z �where � is the longest relaxation time and �
is the correlation length of the chain�,11 to be z=2, the same
as that of the unfrustrated 1D NN Ising model.

In this paper, we study—at finite temperature T�0—the
effect of antiferromagnetic �AF� exchange interactions on the
single spin-flip Glauber dynamics of two different one-
dimensional Ising models. Our interest in kinetic 1D Ising
models with AF interactions is motivated by recently synthe-
sized cobalt-based12,13 and rare-earth-based14,15 single chain
magnets, showing slow relaxation of the magnetization at
low temperature. The magnetic properties of the former
chain compound, �Co�hfac�2NITPhOMe�, can be described
in terms of a 1D Ising model with AF NN exchange
coupling.13,16 However, the resulting short range order is fer-
rimagnetic, owing to the alternation along the chain of two
different kinds of magnetic centers �a metal ion, Co2+, and a
nitronyl-nitroxide radical, PhOMe�, both with S=1/2 but
with different gyromagnetic factors. In spite of further com-
plications due to noncollinearity of the spins,16 this system
was shown to be the first experimental realization of a 1D
NN Ising model with Glauber dynamics.13 The single chain
magnets belonging to the latter class of rare-earth-based
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compounds, of general formula �M�hfac�3�NiTPhOPh��,
where M =Eu, Gd, Tb, Dy, Ho, Er, or Yb, and PhOPh is a
nitronyl-nitroxide radical, are characterized by strong Ising-
type anisotropy and by the simultaneous presence of both
NN and NNN exchange interactions between the magnetic
centers, with the last ones being antiferromagnetic in
nature.14,15

The paper is organized as follows. In Sec. II we investi-
gate the Glauber dynamics in a collinear Ising chain, with
antiferromagnetic exchange interaction limited to nearest
neighbors and different gyromagnetic factors on the two op-
posite sublattices, subject to an oscillating magnetic field.
The system of master equations describing the time evolu-
tion of sublattice magnetizations can easily be solved within
a linear field approximation and a long time limit. Resonant
behavior of the magnetization as a function of temperature
�stochastic resonance� is found, at low frequency, only when
spins on opposite sublattices are uncompensated owing to
different gyromagnetic factors �i.e., in the presence of a fer-
rimagnetic short range order�. In Sec. III we investigate the
1D axial next-nearest-neighbor Ising �ANNNI� model, where
an antiferromagnetic exchange between next-nearest-
neighbor spins is assumed to compete with a nearest-
neighbor exchange interaction of either sign. The long time
response of the model to a weak, oscillating magnetic field is
investigated in the framework of a decoupling approximation
�required in order to close the system of master equations�
for three-spin correlation functions, which in principle is
more accurate than the one reported in Ref. 10. As a conse-
quence, our approximate calculation of the dynamic critical
exponent z suggests that the T=0 single spin-flip Glauber
dynamics of the ANNNI chain is in a different universality
class than that of the unfrustrated Ising chain. Finally, the
conclusions are drawn in Sec. IV.

II. GLAUBER DYNAMICS IN THE NEAREST-NEIGHBOR
FERRIMAGNETIC ISING CHAIN

We consider a one-dimensional Ising model with a
nearest-neighbor antiferromagnetic exchange interaction, J
�0, in the presence of a time-dependent external field. The
Hamiltonian of the system is

H = − J�
j=1

N

� j
z� j+1

z − �0H�t��
j=1

N/2

�gA�2j−1
z + gB�2j

z � , �1�

where �0 is the Bohr magneton, and H�t�=H0e−i�t is an ex-
ternal magnetic field applied along the z direction and oscil-
lating in time with frequency �. Spins on opposite sublat-
tices are allowed to take possibly different gyromagnetic
factors �gA�gB�, while we assume � j

z= ±1 ∀j. Hereafter, the
z index will be dropped for ease of notation. In the absence
of a magnetic field, if gA�gB the ground state is ferrimag-
netic, with opposite uncompensated magnetizations on the
two sublattices; if gA=gB the ground state is antiferromag-
netic, with compensated sublattice magnetizations.

When the system is endowed with single spin-flip Glauber
dynamics,5 its time evolution is described by the master
equation

�

�t
p��,t� = �

j

�Wj�Rj��p�Rj�,t� − Wj���p��,t�� , �2�

where p�� , t� is the probability for the system to assume the
configuration �= ��1 , . . . ,� j , . . . ,�N� at time t, Rj� is the
configuration obtained from � by flipping spin j, and Wj���,
Wj�Rj�� are the transition rates between such configurations.

For a 1D Ising model of spins �� j = ±1� with ferromag-
netic NN exchange interaction J�0 and gyromagnetic factor
g, Brey and Prados6 showed that, for low frequency, a sto-
chastic resonance phenomenon occurs: i.e., the induced mag-
netization M�t�=g�0� j=1

N 	� j ; t
 oscillates at the same fre-
quency as the magnetic field, and the amplitude of M�t�
presents a sharp maximum as a function of temperature T.
The resonance temperature Tr is determined by the matching
between the frequency � of the external field and the inverse
of the statistical time scale 1 /��Tr� associated to the sponta-
neous �i.e., in zero field� decay of the magnetization. In zero
field, the magnetization of the 1D NN Ising ferromagnet was
found5,6 to relax to its equilibrium value, M =0, with the
asymptotic t→� behavior M�t��e−t/��T� /�t. The relaxation
time � was found to be exponentially divergent for T→0,
��T��e4J/kT �where k denotes Boltzmann’s constant�, and to
become of the order of the inverse of the transition rate of an
isolated spin for T→�, ��1/	.5,6

For a 1D Ising model with antiferromagnetic NN ex-
change interaction �J�0�, the master equation �2� is still the
starting point for the study of the chain dynamics. In this
case, if gA�gB, the transition rates in the presence of a field
are assumed to be different for even �A� and odd �B� lattice
sites j,

Wj��� = Wj
�0�����1 − � j tanh�
A,B��

=
1

2
	�1 −

1

2
�� j�� j−1 + � j+1�
�1 − � j tanh�
A,B�� ,

�3�

where Wj
�0���� denote the transition rates in zero field. The

transition rate of an isolated spin, 1
2	, is considered as tem-

perature independent and sets the time scale. In the case of
interacting spins, the probability per unit time of the jth spin
to flip depends on the orientation of its nearest neighbors.
The magnetic field favors one orientation with respect to the
other. A correspondence between the parameters �, 
A,B of
the stochastic model and the parameters J, gA,B�0H�t� of the
statistical Ising model can be obtained5,6 observing that at
equilibrium �

�t p�� , t�=0, so that

�
j

�Wj�Rj��peq�Rj�,t�� = �
j

�Wj���peq��,t�� . �4�

Next, requiring the detailed balance �i.e., the microscopic
reversibility� condition to be satisfied,

Wj�Rj��
Wj���

=
peq��,t�

peq�Rj�,t�
, �5�

with peq�� , t�=e−H���/kT and peq�Rj� , t�=e−H�Rj��/kT, one
readily obtains
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� = tanh� 2J

kT

, 
A,B = tanh�gA,B�0H�t�

kT

 . �6�

The evolution equation for the spin expectation value
	� j ; t
=��� jp�� , t� is directly obtained from the master
equation to be �

�t 	� j ; t
=−2	� jWj��� ; t
.5,6 Considering that
for model �1� the spins belong to two opposite sublattices,
the system of evolution equations in the presence of an os-
cillating field is

�

��	t�
	�2j−1;t
 = − 	�2j−1;t
 +

1

2
��	�2j−2;t
 + 	�2j;t
�

+ 
A�1 −
1

2
��	�2j−2�2j−1;t


+ 	�2j−1�2j;t
�
 ,

�

��	t�
	�2j;t
 = − 	�2j;t
 +

1

2
��	�2j−1;t
 + 	�2j+1;t
�

+ 
B�1 −
1

2
��	�2j−1�2j;t
 + 	�2j�2j+1;t
�
 .

�7�

The system is not closed owing to the presence of two-
spin, time-dependent correlation functions on the right hand
sides. In order to solve it, a linear field approximation is
made5,6 so that tanh��gA,B�0H0� / �kT�� can be expanded for
small values of the argument and two-spin correlations can
be evaluated in the absence of a field. Moreover, if in the
long time limit t→� the NN correlation functions are
assumed5,6 to take their equilibrium value 	� j� j+1 ; t
→�
=tanh�J / �kT��, the system of two coupled equations of mo-
tion for the two sublattice magnetizations

M1�t� = gA�0�
j=1

N/2

	�2j−1;t
, M2�t� = gB�0�
j=1

N/2

	�2j;t
 �8�

can be written in matrix form,

�
�

��	t�
M1�t�

�

��	t�
M2�t� � +� 1 −

gA

gB
�

−
gB

gA
� 1 � �M1�t�

M2�t�



= N�T��gA
2

gB
2 
e−i�t. �9�

Taking into account that �= 2�
1+�2 , the temperature dependent

coefficient N�T� can be expressed as

N�T� =
N

2

�0
2H0

kT
�1 − ��� =

N

2

�0
2H0

kT

1 − �2

1 + �2 . �10�

The above system can be decoupled diagonalizing the 2
2
nonsymmetric matrix on the left hand side �lhs� of Eq. �9�.
Denoting by M1�t� and M2�t� the normal modes, one ob-
tains

�
�

��	t�
M1�t�

�

��	t�
M2�t� � + ��1 0

0 �2

�M1�t�

M2�t� 
 = N�T�� f1

f2

e−i�t,

where the eigenvalues �n �n=1,2� turn out to be independent
of the gyromagnetic factors gA and gB,

�1 = 1 − �, �2 = 1 + � , �11�

and the fn �n=1,2� coefficients are

f1 =
gB

2
�gB + gA�, f2 =

gB

2
�gB − gA� . �12�

The relationships between the normal modes Mn�t� and
the sublattice magnetizations Mn�t� �n=1,2� are

M1�t� =
1

2
�M2�t� +

gB

gA
M1�t�� ,

M2�t� =
1

2
�M2�t� −

gB

gA
M1�t�� �13�

�i.e., M1�t� and M2�t� are related to the net and the stag-
gered magnetization, respectively�. Conversely, one has

M1�t� =
gA

gB
�M1�t� − M2�t��, M2�t� = M1�t� + M2�t� .

�14�

The general solution for the normal modes is �n=1,2�

Mn�t� = Mn�t0�e−�t−t0�/�n + N�T�fn�
t0

t

dt�e�t�−t�/�ne−i�t�,

�15�

where the relaxation times �n are expressed, in terms of the
eigenvalues �n of the nonsymmetric 2
2 matrix, as �n
=1/ �	�n�, so that

�1 =
1

	�1 − ��
, �2 =

1

	�1 + ��
. �16�

In the absence of an external magnetic field, N�T�=0, the
normal modes Mn�t� are found to relax exponentially. In the
low temperature limit, T→0, one has �=tanh� 2J

kT
�� J

�J� �1
−2e−4�J�/kT�, so that for antiferromagnetic NN exchange �J
�0�, the first relaxation time is simply �1� 1

2	 , while the
second relaxation time is exponentially diverging with de-
creasing T, �2� 1

2	e4�J�/kT. For high temperatures, kT� �J�,
both relaxation times become of the order of the inverse of
the transition rate of an isolated spin, �1��2�1/	.

For nonvanishing magnetic field, the time dependence of
the normal modes is obtained letting t0→−� in Eq. �15�,

Mn�t� = N�T�
fn

�n

1

1 − i��n
e−i�t �n = 1,2� �17�

The total magnetization is
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Mtot�t� = M1�t� + M2�t� =
gB + gA

gB
M1�t� +

gB − gA

gB
M2�t�

= ���,T�H0e−i�t, �18�

where the complex susceptibility ��� ,T� is given by

���,T� = N
�0

2

kT
��gB + gA

2

21 + �

1 − �

1

1 − i��1

+ �gB − gA

2

21 − �

1 + �

1

1 − i��2
� . �19�

In the limit �→0, the static susceptibility of the Ising
ferrimagnetic chain in zero field is correctly recovered: see
the Appendix Sec. I, Eq. �A6�, for details. As regards the
dynamic response of the system to a weak, oscillating mag-
netic field, from Eq. �19� it is apparent that, for antiferromag-
netic NN exchange �J�0� and T→0, the first term on the
right hand side �rhs� is associated with a fast relaxation,
while the second term with an exponentially slow relaxation.
Thus a resonant behavior, similar to the one observed in the
ferromagnetic NN Ising chain endowed with single spin-flip
Glauber dynamics,6 is possible only when spins on opposite
sublattices are uncompensated owing to different gyromag-
netic factors �i.e., in the presence of ferrimagnetic short
range order�. See Fig. 1, where the temperature dependence

of the amplitude of ��� ,T� is reported, for selected values of
the frequency, both in the compensated �J�0 and gA=gB�
and uncompensated �J�0 and gA�gB� case.

The resonant behavior shown by the ferrimagnetic chain
at low frequency �see Fig. 1�c�� is a manifestation of the
stochastic resonance phenomenon:3 i.e., the response of a set
of coupled bistable systems to a periodic drive is enhanced in
the presence of a stochastic noise when a matching occurs
between the fluctuation induced switching rate of the system
and the forcing frequency. In the ferrimagnetic chain, the
role of stochastic noise is played by thermal fluctuations and
the resonance peak occurs when the deterministic time scale
of the external magnetic field matches with the statistical
time scale associated to the spontaneous decay of the net
magnetization Mtot�t�. For low frequency ��	 �i.e., low
temperature�, the resonance condition for the uncompensated
case is

�−1 � �2�Tpeak� , �20�

while for the compensated case only the mode with fast re-
laxation �1�O�	−1� contributes, providing a broad peak
rather than a genuine resonance. For high frequency ��	
�i.e., high temperature� a broad peak is found, both for the
uncompensated and the compensated case, since the two re-
laxation times �1 and �2 become of the order of 1 /	, so that
the resonance condition cannot be fulfilled.6

FIG. 1. �Color online� Temperature dependence of the amplitude of the complex susceptibility ���� ,T�� for an Ising chain with antifer-
romagnetic nearest-neighbor interaction J=−1, subject to a weak external magnetic field oscillating at frequency �. �a� and �b� refer to the
compensated case �gA=gB=2�, while �c� and �d� refer to the uncompensated case �gA=2, gB=3�, for selected values of the frequency �
� /	=0.001 and 10�. In �c� and �d� the thin �color� lines represent the contributions to the amplitude of the two terms on the rhs of Eq. �19�,
while the thick �black� line is their sum. A resonant behavior �similar to the one predicted for the NN Ising ferromagnetic chain endowed
with single spin-flip Glauber dynamics� �Refs. 5 and 6� is observed only in the uncompensated case for low frequency �notice the enhanced
vertical scale in �c��.
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The frequency dependence of the peak temperature Tpeak
is reported in Fig. 2 both for the compensated �antiferromag-
netic� and the uncompensated �ferrimagnetic� chain, and
compared with the ferromagnetic counterpart.6 In the com-
pensated case, the frequency dependence of the peak is very
smooth, owing to the smooth temperature dependence of the
relaxation time �1, ranging between 1/ �2	� at low T and 1/	
at high T. In the uncompensated case, a behavior very similar
to the ferromagnetic one is observed for low frequency: the
reason is that for low � the dominant contribution to ���� is
provided by the second term on the rhs of Eq. �19�. At inter-
mediate frequency, a maximum is observed owing to the
coming into play of the first term on the rhs of Eq. �19�.
Finally, for ��	, the amplitude of ���� becomes

����,T�� � N
�0

2

kT

	

�
��gB + gA

2

21 + �

1 − �
�1 − ��

+ �gB − gA

2

21 − �

1 + �
�1 + ��� , �21�

where both terms in square brackets on the rhs of Eq. �21�
present a maximum at the same temperature, which is nu-
merically determined to be Tpeak�1.667 11�J�.

III. GLAUBER DYNAMICS IN THE AXIAL NEXT-
NEAREST-NEIGHBOR-ISING (ANNNI) CHAIN

We consider a 1D axial next-nearest-neighbor Ising
�ANNNI� model with spins alternating on two interlacing
sublattices �denoted by A and B�, with Hamiltonian

H = − J1�
i=1

N/2

��2i−1
z �2i

z + �2i
z �2i+1

z �

− J2�
i=1

N/2

��2i−1
z �2i+1

z + �2i
z �2i+2

z �

− �0H�t��
i=1

N/2

�gA�2i−1
z + gB�2i

z � . �22�

The intrasublattice antiferromagnetic next-nearest-neighbor
coupling J2�0 competes with the intersublattice nearest-
neighbor coupling J1, which may be of either sign. In what
follows, we shall assume J1�0 �ferromagnetic coupling�.
H�t�=H0ei�t is an external magnetic field applied along the z
direction and oscillating in time with frequency �, �0 de-
notes the Bohr magneton, and the spins �i

z= ±1 are allowed
to assume possibly different gyromagnetic factors on odd
and even sites �gA�gB�; the z index shall be dropped for
ease of notation.

In the limiting case gA=gB=g, Eq. �1� reduces to the well-
known ANNNI �axial next-nearest-neighbor Ising� model.17

Depending on the competition ratio r=−J2 /J1, this model in
zero field is known to admit a ferromagnetic ground state for
r�1/2, and a �2, 2� antiphase structure �two spins up, two
spins down�, with zero magnetization, for r�1/2; for r
=1/2 the ground state is degenerate and disordered.18 At
finite temperatures, the model cannot support long range or-
der; however, a strong short range order is present in the
paramagnetic phase. For zero applied field, as far as the ther-
modynamic properties are concerned,19 the 1D ANNNI
model can be mapped into an equivalent 1D Ising model
with only nearest-neighbor interaction in an effective field,
and analytic results �see the Appendix, Sec. 2� can be ob-
tained for the partition function and the spin correlation
functions.21,22 In the presence of a static magnetic field, the
ground state of the generalized ANNNI model, i.e., a chain
of alternating spins with different quantum numbers and dif-
ferent NNN exchange interactions on the two sublattices,
was thoroughly investigated,20 and the thermodynamic prop-
erties were exactly calculated �though numerically� by the
transfer matrix method.23,24

Here we aim at investigating the long-time dynamic re-
sponse of the ANNNI chain, Eq. �22�, to a weak, external
magnetic field oscillating in time. The time evolution of the
system is still described by the master equation �2�, but with
respect to the case of the NN Ising chain, the transition rates
in zero field, Wj

�0����, are now assumed to take the form

Wj
�0���� =

1

2
	�1 −

1

2
�1� j�� j−1 + � j+1�



�1 −
1

2
�2� j�� j−2 + � j+2�
 �23�

meaning that the probability per unit time of the jth spin to
flip depends on the status of both its nearest neighbors and
next-nearest neighbors; 1

2	, the transition rate of an isolated
spin, is arbitrary and sets the time scale. In the presence of a
field applied along the z axis, the transition rates Wj��� are
given by

Wj��� = Wj
�0�����1 − � j tanh�
A,B�� . �24�

As usual, a correspondence between the parameters �1,
�2, 
A,B of the stochastic model and the parameters J1, J2,
gA,B�0H�t� of the statistical ANNNI model can be obtained
requiring the detailed balance �i.e., the microscopic revers-
ibility� condition, Eq. �5�, to be satisfied at equilibrium. One
finds10

FIG. 2. �Color online� Frequency dependence of the peak tem-
perature of the amplitude of the complex susceptibility ���� ,T�� of
an Ising chain with nearest-neighbor exchange interaction. Tri-
angles: compensated antiferromagnet �J=−1, gA=gB=2�; circles:
uncompensated ferrimagnet �J=−1, gA=2, gB=3�; squares: ferro-
magnet �J= +1, gA=gB=2� �Ref. 6�. The dashed lines are guides to
the eye.
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�1 = tanh�2J1

kT

, �2 = tanh�2J2

kT

 ,


A,B = tanh�gA,B�0H�t�
kT


 . �25�

The stochastic equation of motion for the spin expectation
value 	� j ; t
=��� jp�� , t� in the presence of an oscillating
field is then obtained, from the master equation, to be
�
�t 	� j ; t
=−2	� jWj��� ; t
, giving10

�

�t
	� j;t
 = − 	� j;t
 +

1

2
�1�	� j−1;t
 + 	� j+1;t
� +

1

2
�2�	� j−2;t


+ 	� j+2;t
� −
1

4
�1�2�	� j� j−1� j−2;t


+ 	� j� j−1� j+2;t
 + 	� j� j+1� j−2;t
 + 	� j� j+1� j+2;t
�

+ tanh�gA,B�0H�t�
kT


�1 −
1

2
�1�	� j� j−1;t


+ 	� j� j+1;t
� −
1

2
�2�	� j� j−2;t
 + 	� j� j+2;t
�

+
1

4
�1�2�	� j−1� j−2;t
 + 	� j−1� j+2;t
 + 	� j+1� j−2;t


+ 	� j+1� j+2;t
�� , �26�

where we remind that the subscripts A and B refer to the case
of j odd and j even, respectively. This set of equations is not
closed, owing to the time-dependent two-spin and three-spin
correlation functions on the rhs. In order to solve it, we make
the following approximations.

�i� For sufficiently weak fields �x= �gA,B�0H0� / �kT��1�,
the hyperbolic tangent on the rhs of Eq. �26� is expanded for
low values of the argument �tanh x�x� and two-spin corre-
lation functions are calculated in the absence of a field.

�ii� Three-spin correlation functions are decoupled, in all
possible ways, into products of a single-spin expectation
value and a two-spin correlation function,

	� j� j+m� j+n;t
 � 	� j;t
	� j+m� j+n;t
 + 	� j+m;t
	� j� j+n;t


+ 	� j+n;t
	� j� j+m;t
 . �27�

Notice that a different, and incomplete, decoupling was
adopted in Ref. 10, thus leading to different results with re-
spect to the present work.

�iii� For sufficiently long times, two-spin correlation func-
tions between nth neighbors are assumed to be independent
of the initial conditions and to take their static equilibrium
values 	� j� j+n ; t
→�n for t→�. Static two-spin correlation
functions �n= 	� j� j+n
 can be exactly calculated in one di-
mension via the transfer matrix method.21–24 For gA=gB and
H0=0, analytic results21,22 can be obtained for �n: see the
Appendix, Sec. II, for details.

Under these approximations, the master equation for the
spin expectation value on a generic site j becomes

�

��	t�
	� j;t
 = − �1 +

1

2
�1�2��1 + �3�
	� j;t


+
1

2
�1�1 − �2�2��	� j−1;t
 + 	� j+1;t
�

+
1

2
�2�1 − �1�1��	� j−2;t
 + 	� j+2;t
�

+ �gA,B�0H�t�
kT


�1 − �1�1 − �2�2

+
1

2
�1�2��1 + �3�
 . �28�

In the range of the competition ratio r corresponding to
weak NNN antiferromagnetism 0�r�

1
2 , the ground state of

the model is ferromagnetic �since we have assumed J1�0�,
while for strong NNN antiferromagnetism 1

2 �r��, the
ground state is the so-called �2, 2� antiphase state, consisting
of two spins up followed by two spins down. The two dif-
ferent regimes shall be investigated separately since they re-
quire different order parameters.

A. Weak NNN antiferromagnetism (competition ratio
0�r�

1
2 )

In the range of the competition ratio r corresponding to
the ferromagnetic ground state �0�r�

1
2

�, owing to the dif-
ferent gyromagnetic factors on odd �gA� and even �gB� lattice
sites, it is necessary to consider the magnetizations over two
sublattices, like in Eq. �8�, as the order parameter. From the
master equation, Eq. �28�, one is thus led to consider a sys-
tem of two coupled equations of motion, which can be writ-
ten just like Eq. �9�, with the elements of the 2
2 nonsym-
metric matrix now being

a11 = 1 − �2�1 − �1�1� +
1

2
�1�2��1 + �3� = a22,

a12 = −
gA

gB
�1�1 − �2�2�, a21 = −

gB

gA
�1�1 − �2�2� ,

�29�

and the temperature dependent coefficient

N�T� =
N

2

�0
2H0

kT
�1 − �1�1 − �2�2 +

1

2
�2�1��1 + �3�
 .

�30�

After diagonalization, the eigenvalues now turn out to be

�1 = 1 − �1�1 − �2�2� − �2�1 − �1�1� +
1

2
�1�2��1 + �3� ,

�2 = 1 + �1�1 − �2�2� − �2�1 − �1�1� +
1

2
�1�2��1 + �3� ,

�31�

independent of the gyromagnetic factors gA and gB. The re-
lationships between the normal modes Mn�t� and the sublat-
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tice magnetizations Mn�t� �n=1,2� are the same as in Eqs.
�13� and �14�. Also the expressions for the f coefficients are
the same, i.e., f1=

gB

2 �gB+gA�, f2=
gB

2 �gB−gA�. As before, the
general solution for the normal modes takes the form in Eq.
�15�, where the relaxation times are �n= 1

	�n
, with the eigen-

values now given by Eq. �31�. Finally, in the case of weak
NNN antiferromagnetic coupling, the complex susceptibility
of the ANNNI chain turns out to be

���,T� = N
�0

2

kT
�1 − �1�1 − �2�2 +

1

2
�1�2��1 + �3�



 ��gB + gA

2

2 1

�1

1

1 − i��1

+ �gB − gA

2

2 1

�2

1

1 − i��2
� . �32�

In the limiting case r=0, the well-known result for the NN
Ising chain5,6 is correctly recovered. In the case 0�r�

1
2 , we

show in Fig. 3 that the approximate static susceptibility, cal-
culated from Eq. �32� for zero frequency, turns out to be in
good agreement with the exact transfer matrix result,21,22 Eq.
�A14�, only at high temperatures �kT�J1�. In contrast, an
unphysical �negative� static susceptibility is obtained at low
temperatures, as a consequence of the negative values as-
sumed by the eigenvalue �1 for kT�J1.

The low-temperature failure of Eq. �32� can be attributed
to the decoupling �27� of three-spin correlation functions,
which was made in order to close the set of master equations,
Eq. �26�: in fact, decoupling approximations have the draw-
back to be uncontrollable, but in principle they are expected
to be more accurate the higher the temperature. Moreover, at
low temperatures one can guess another source of error to lie
in the assumption that, for sufficiently long times, the spin-
spin correlation functions take their static equilibrium val-
ues: 	� j� j+n ; t
→�n for t→�. In fact, for competition ratio

in the range 0�r�1, the 1D ANNNI model with Glauber
dynamics is known to be lacking in ergodicity at T=0: the
ground state cannot be reached by single spin-flip Glauber
dynamics, after a sudden cooling of the system down to T
=0 starting from high temperature. The difference between
the static �r=1/2� �Ref. 18� and the dynamic �r=1� �Ref. 25�
ground state phase boundary of the 1D ANNNI model was
pointed out by Redner and Krapivsky,25 who showed that for
0�r�1/2 the ferromagnetic ground state cannot be reached
because of the repulsion between domain walls which forces
them to be at least two lattice constants apart, while for
1 /2�r�1 the �2,2� antiphase ground state cannot be
reached owing to the persistence of isolated domains of
length �3.25 In contrast, both for r=0 �1D NN Ising
model�5,26 and r�1 �1D ANNNI model with strong NNN AF
coupling�25 the ground state can asymptotically �t→�� be
reached at T=0.

The low temperature failure of our approximate theory in
the case 0�r�

1
2 prevented us from calculating the tempera-

ture dependence of the amplitude of the complex susceptibil-
ity. However, it is worth observing that, since for T→0 the
zero-field static susceptibility diverges,21 a resonant behavior
might be expected for low frequency provided that the sys-
tem admits also a diverging relaxation time for low tempera-
ture.

B. Strong NNN antiferromagnetism (competition
ratio 1

2 �r��)

In the range of the competition ratio r corresponding to
the �2,2�-antiphase state � 1

2 �r���, it is necessary to con-
sider the magnetizations over four sublattices,27

M1�t� = gA�0 �
j=0

N/4−1

	�1+4j;t
, M2�t� = gB�0 �
j=0

N/4−1

	�2+4j;t
 ,

M3�t� = gA�0 �
j=0

N/4−1

	�3+4j;t
, M4�t� = gB�0 �
j=0

N/4−1

	�4+4j;t
 ,

�33�

as the order parameter. One is thus led to consider a system
of four coupled equations of motion, which can be written in
matrix form as

�
�

��	t�
M1�t�

�

��	t�
M2�t�

�

��	t�
M3�t�

�

��	t�
M4�t�

� +�
A B C B
D A D C
C B A B
D C D A

� �
M1�t�
M2�t�
M3�t�
M4�t�

�
= N�T��

gA
2

gB
2

gA
2

gB
2
�e−i�t,

where

FIG. 3. �Color online� Temperature dependence of the static
susceptibility ���=0,T� of an ANNNI chain with J1=1,
J2=−0.35, and gA=gB=2, corresponding to a value r=0.35 of the
competition ratio �weak NNN antiferromagnetism�. The thick line is
the exact transfer matrix result, while open circles denote the ap-
proximate calculation, Eq. �32�. The temperature dependence of the
eigenvalues �1 and �2, Eq. �31�, is also shown by the dashed lines.
The approximations made to close the set of master equations �26�
are found to fail for low temperatures.
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A = a11 = a22 = a33 = a44 = 1 +
1

2
�2�1��1 + �3� ,

B = a12 = a14 = a32 = a34 = −
1

2

gA

gB
�1�1 − �2�2� ,

C = a13 = a31 = a24 = a42 = − �2�1 − �1�1� ,

D = a21 = a23 = a41 = a43 = −
1

2

gB

gA
�1�1 − �2�2� ,

and

N�T� =
N

4

�0
2H0

kT
�1 − �1�1 − �2�2 +

1

2
�2�1��1 + �3�
 .

�34�

Diagonalizing the matrix of coefficients, the time depen-
dence of the eigenmodes is found to be �n=1,2 ,3 ,4�

Mn�t� = Mn�t0�e−�t−t0�/�i + N�T�fn�
t0

t

dt�e�t�−t�/�ie−i�t�,

�35�

where �n= 1
	�n

are the relaxation times and f1= f2=0, f3

=
gB

2 �gB−gA�, f4=
gB

2 �gB+gA�. The eigenvalues ��n� of the 4

4 nonsymmetric matrix of the coefficients turn out to be
independent of gA and gB,

�1 = �2 = 1 + �2�1 − �1�1� +
1

2
�2�1��1 + �3� ,

�3 = 1 + �1�1 − �2�2� − �2�1 − �1�1� +
1

2
�2�1��1 + �3� ,

�4 = 1 − �1�1 − �2�2� − �2�1 − �1�1� +
1

2
�2�1��1 + �3� .

�36�

For nonvanishing magnetic field, the time dependence of the
eigenmodes is

Mn�t� = N�T�
fn

�n

1

1 − i��n
e−i�t �n = 1,2,3,4� . �37�

The relationships between the eigenmodes Mn�t� and the
sublattice magnetizations Mn�t� �n=1,2 ,3 ,4� are

M1�t� =
1

2
�M4�t� − M2�t�� ,

M2�t� =
1

2
�M3�t� − M1�t�� ,

M3�t� =
1

4
��M4�t� + M2�t�� −

gB

gA
�M3�t� + M1�t��
 ,

M4�t� =
1

4
��M4�t� + M2�t�� +

gB

gA
�M3�t� + M1�t��
 ,

�38�

and conversely

M1�t� =
gA

gB
�M4�t� − M3�t�� − M2�t� ,

M2�t� = M4�t� + M3�t� − M1�t� ,

M3�t� =
gA

gB
�M4�t� − M3�t�� + M2�t� ,

M4�t� = M4�t� + M3�t� + M1�t� . �39�

The total magnetization is

Mtot�t� = �
i=1

4

Mi�t� = 2
gB + gA

gB
M4�t� + 2

gB − gA

gB
M3�t�

= ����H0e−i�t, �40�

where the complex susceptibility ��� ,T� is given by

���,T� = N
�0

2

kT
�1 − �1�1 − �2�2 +

1

2
�2�1��1 + �3�



 ��gB + gA

2

2 1

�4

1

1 − i��4

+ �gB − gA

2

2 1

�3

1

1 − i��3
� . �41�

The approximate static susceptibility, calculated from Eq.
�41� for zero frequency, is shown in Fig. 4�a� for 1

2 �r�1.
One immediately notices that, in striking contrast with the
case 0�r�

1
2 displayed in Fig. 3, the low temperature be-

havior of the static susceptibility is correctly reproduced.
The latter feature appears at odds with the expectation

that a decoupling approximation should work better the
higher the temperature. However, it is worth noticing that,
for the 1D ANNNI model, the T→0 asymptotic behavior of
the static two-spin correlation functions is very different de-
pending on the value of r. For 0�r�

1
2 both the inter- and

the intrasublattice spin-spin correlations are strong ��1��2

��3�1, see Ref. 32 later�. In contrast, for r�
1
2 the inter-

sublattice correlations are strong ��2�−1, see Eq. �45�
later�, whereas the intrasublattice correlations are exponen-
tially vanishing ��1��3�0, see Eq. �45��. At intermediate
temperatures intrasublattice correlations become significant,
too, and the decoupling approximation becomes less satisfac-
tory; at high temperatures, it works well again, since all cor-
relations �both intra- and intersublattice� decrease.

It should be remarked that the above considerations about
the behavior of static correlation functions cannot, on their
own, account for the good agreement found, at low T, in the
case 1

2 �r�1. In fact, the use of equilibrium values for the
spin correlations might be questionable, since the T=0
Glauber dynamics does not lead to the ground state of the 1D
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ANNNI model in the entire region 0�r�1.25 To this regard,
first we observe that the physical mechanism which at T=0
prevents the system from reaching the ground state is differ-
ent, for 1

2 �r�1, with respect to the case 0�r�
1
2 .25,27,28

Next, considering that at T=0 a 1D model is simultaneously
in the ordered phase and at its critical point, while our theory
applies at T�0, we believe that some insight into the prob-
lem might be provided by a careful study of the role of a
small but nonzero temperature on the coarsening of the 1D
ANNNI model.26,29

In Fig. 4�b� the approximate static susceptibility, calcu-
lated from Eq. �41� for zero frequency in the case r�1, is
reported. A nice overall agreement with the exact transfer
matrix result21,22 is obtained. In this case our approximate
results are expected to be quite reliable since the long-time
approximation is well founded �for r�1, the static equilib-
rium state can asymptotically be reached even at T=0,25 and
thus the use of static spin-spin correlation functions is justi-
fied�; moreover, the decoupling approximation is expected to
be satisfactory both at high and low temperatures. Finally it
is worth mentioning that, in the limiting case 1/r=0 �i.e.,
J1=0�, the transfer matrix result for the static susceptibility is
exactly reproduced by Eq. �41� for �=0 �not shown�.

In Fig. 5 the temperature dependence of the amplitude of
the complex susceptibility ���� ,T��, obtained from Eq. �41�,

of an ANNNI chain with NNN antiferromagnetic coupling
dominating over the NN ferromagnetic one �competition ra-
tio r=1.25� is reported—for selected values of the oscillation
frequency � of the external magnetic field—both in the com-
pensated �gA=gB=2� and uncompensated �gA�gB� cases. No
resonant behavior was observed even in the uncompensated
case since, in the T→0 limit, both the zero-field static sus-
ceptibility and the relaxation times ��3 and �4 in Eq. �41�� fail
to diverge. Thus for low frequency, a resonance condition—
similar to the one in Eq. �20�—cannot be fulfilled. In the case
1
2 �r�1 a qualitatively similar behavior for ���� ,T�� was
found �not shown�.

C. Critical dynamics of the 1D ANNNI model for r�1

The identification of r=0, r=1, and 1/r=0 as dynamic
critical transition points for the 1D ANNNI model with
single spin-flip Glauber dynamics was recently proposed in
theoretical studies of T=0 coarsening25 �i.e., the relaxation of
the system into the ground state after a quench from high
temperature� and T=0 persistence27 �i.e., the probability for a
spin to remain in its original state after a quench from high
temperature�. In such T=0 studies, the dynamic critical ex-
ponent z is customarily defined as the inverse of the growth
exponent n of the domain size,

L�t� � tn � t1/z�. �42�

For the 1D NN Ising model, analytical calculations26 pro-
vided z�=2. For the 1D ANNNI model with r�1 numerical
calculations27,30 predicted a somewhat higher dynamic expo-
nent, z��2.3. Finally, it is worth noting that Sen and
Dasgupta,27 in their study of t=0 persistence in the ANNNI
chain, found that the dynamic critical exponent z� undergoes
abrupt changes for r=0 �when a slight amount of NNN in-
teraction is added to the NN one�, for 1 /r=0 �when a slight
amount of NN interaction is added to the NNN one�, as well
as for r=1.27

The fair accuracy of our approximate theoretical approach
in describing the low temperature static susceptibility of the
ANNNI chain with r�1, see Fig. 4�b�, encouraged us to
tentatively estimate the dynamic critical exponent. However,
since we work at finite temperature, rather than at T=0, we
use a different definition, namely11,31

1

	�1
= �1 � �1

�

z

, �43�

where �1 is the smallest eigenvalue of the dynamical matrix,
see Eq. �36�, and � is the static correlation length of the
infinite system �the lattice constant c along the chain was set
to 1�. For the compensated case gA=gB, the latter quantity
can be analytically calculated using the transfer matrix
method,21 see Eq. �A18�, and for r�1 its expansion in the
T→0 limit turns out to be

�1

�

2

�
1

4
e2�J1−2�J2��/kT, �44�

where we have explicitly taken into account that J1�0 and
J2�0.

FIG. 4. �Color online� Temperature dependence of the static
susceptibility ���=0,T� of an ANNNI chain with J1=1, gA=gB

=2, for two different values of the NNN exchange constant: �a�
J2=−0.75 and �b� J2=−1.25, corresponding to competition ratio 1

2
�r�1 and r�1, respectively, �strong NNN antiferromagnetism�.
The thick line is the exact transfer matrix result, while open circles
denote the approximate calculation, Eq. �41�. The temperature de-
pendence of the eigenvalues �1=�2, �3, and �4, Eq. �36�, is also
shown by the dashed lines.
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Taking into account the T→0 asymptotic behavior, for r
�1/2,32 of the �i and �i coefficients,

�1 � 1 − 2e−4J1/kT, �2 � − 1 + 2e−4�J2�/kT,

�1 �
1

2
e�J1−2�J2��/kT, �2 � − 1 + e�J1−2�J2��/kT

�3 � −
3

2
e�J1−2�J2��/kT, �45�

for the inverse of the longest relaxation time we obtain, pro-
vided that J1�0,

1

	�1
= �1 � e�J1−2�J2��/kT. �46�

In the special case J1=0 �i.e., 1 /r=0�, letting �1=0 in Eq.
�36� and using the T→0 expansion for �2 in Eq. �45�, we
obtain

1

	�1
= �1 � 2e−4�J2�/kT. �47�

In conclusion, within our approximate theoretical scheme,
the dynamic critical exponent of the 1D ANNNI chain with
competing NN and NNN exchange interactions was found to
be z=1 for any finite r�1, while in the absence of compet-
ing interactions �i.e., for r=0 and 1/r=0� we found z=2.
Notice that, for the 1D Ising model with exchange limited to
the NN �r=0�, the value z=2, obtained using the definition in

Eq. �43�,31 coincides with the value z�=2, obtained using the
definition in Eq. �42�.26 This appears not to be the case for
the 1D ANNNI model with 1�r� +�, where the values z
=1 �present work� and z��2.3 �Refs. 27 and 30� were found.
In order to ascertain the origin of this discrepancy, we be-
lieve that it would be useful to study the role of a small but
nonzero temperature �T�0� on the coarsening dynamics of
the 1D ANNNI model.29

IV. CONCLUSIONS

In conclusion, in this paper we have studied the effect of
antiferromagnetic interactions on the single spin-flip Glauber
dynamics of two different one-dimensional �1D� Ising mod-
els with spin ±1. For the first model, an Ising chain with
antiferromagnetic exchange interaction limited to nearest
neighbors and subject to an oscillating magnetic field, the
system of master equations describing the time evolution of
sublattice magnetizations can easily be solved within a linear
field approximation and a long time limit. Resonant behavior
of the magnetization as a function of temperature �stochastic
resonance� is found, at low frequency, only when spins on
opposite sublattices are uncompensated owing to different
gyromagnetic factors �i.e., in the presence of a ferrimagnetic
short range order�. For the second model, the axial next-
nearest-neighbor Ising �ANNNI� chain, where the NNN an-
tiferromagnetic exchange coupling is assumed to compete
with the NN ferromagnetic one, the long time response of the
model to a weak, oscillating magnetic field is investigated in

FIG. 5. �Color online� Temperature dependence of the amplitude of the complex susceptibility ���� ,T�� for an ANNNI chain with J1

=1, J2=−1.25 �r=1.25�, subject to a weak external magnetic field oscillating at frequency �. �a� and �b� refer to the compensated case
�gA=gB=2�, while �c� and �d� to the uncompensated case �gA=2, gB=3�, for selected values of the frequency �� /	=0.001 and 10�. In �c� and
�d� the thin �color� lines represent the contributions to the amplitude of the two terms on the rhs of Eq. �41�, while the thick �black� line is
their sum. No resonant behavior is observed.
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the framework of a decoupling approximation for three-spin
correlation functions, which is required to close the system
of master equations. Within such approximate theoretical
scheme, the T=0 dynamics of the Ising-Glauber chain with
competing interactions is found to be in a different univer-
sality class than that of the Ising chain with antiferromag-
netic exchange limited to nearest neighbors �r=0� or limited
to next-nearest neighbors �1/r=0�. In particular, we find an
abrupt change in the T=0 dynamic behavior of the model in
the neighborhood of the dynamic critical point 1 /r=0 since,
when a slight amount of ferromagnetic NN exchange is
added to the antiferromagnetic NNN exchange, we find that
the critical exponent z, defined by Eq. �43�, changes abruptly
from z=2 to z=1. Considering that z=2 is also the value of
the dynamic critical exponent for the unfrustrated NN Ising
chain, one might expect similar abrupt changes in z to occur
also in the neighborhood of the dynamic critical points r=0
�i.e., when a slight amount of AF NNN exchange is added to
the NN ferromagnetic exchange� and r=1, as suggested by
studies of T=0 coarsening dynamics25 and T=0 persistence27

in the ANNNI chain. Unfortunately, the inaccuracy of our
approximate theoretical scheme in reproducing the static sus-
ceptibility of the 1D ANNNI model with 0�r�1 for low
temperature prevented us from calculating the dynamic criti-
cal exponent in this range of the competition ratio.
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APPENDIX: ANALYTIC TRANSFER MATRIX RESULTS
FOR THE STATIC PROPERTIES OF 1D ISING

MODELS

1. The 1D nearest-neighbor Ising model with alternating spins
in a static field

In this subsection we calculate, within the transfer matrix
formalism,33 the static properties of the 1D Ising model, Eq.
�1�, with nearest-neighbor coupling J of either sign, subject
to a static magnetic field H �i.e., �=0�. Two types of spins
with different gyromagnetic factors �gA�gB� are assumed to
alternate along the chain. Taking periodic boundary condi-
tions, the partition function of the chain of length N �with N
even without loss of generality� can be expressed as

ZN = Tr�e−H/kT�

= �
�1=±1

�
�2=±1

¯ �
�N=±1

K��1,�2�


L��2,�3� ¯ K��N−1,�N�L��N,�1� , �A1�

where, letting J=J / �kT�, hA= �gA�0H0� / �kT�, hB

= �gB�0H0� / �kT�, the two different kernels K and L are de-
fined as

K��2i−1,�2i� = eJ�2i−1�2ie�1/2��hA�2i−1+hB�2i�,

L��2i,�2i+1� = eJ�2i�2i+1e�1/2��hB�2i+hA�2i+1�. �A2�

Summing over the even sites, ZN can be expressed as

ZN = ��+�N/2 + ��−�N/2 �A3�

in terms of the eigenvalues

�± = e2J cosh�hA + hB� + e−2J cosh�hA − hB�

± �e4J cosh2�hA + hB� + e−4J cosh2�hA − hB� + 2 cosh�hA + hB�cosh�hA − hB� + 2 − e4J − e−4J �A4�

of the real symmetric 2
2 matrix

S = �e2J+hA+hB + e−2J+hA−hB ehB + e−hB

ehB + e−hB e2J−hA−hB + e−2J−hA+hB

 .

�A5�

It is immediate to verify that, in the limit gA=gB, the well-
known result for the 1D NN Ising chain in a static external
field is recovered.33 In the thermodynamic limit N→�, only
the larger eigenvalue �+ matters, ZN→ ��+�N/2, and the static
susceptibility in zero field can be expressed in terms of its
second derivative with respect to the field H,

��� = 0,T� =
N

2
kT� 1

�+

�2�+

�H2 

H=0

=
N�0

2

kT
��gA + gB

2

2

e2J/kT + �gA − gB

2

2

e−2J/kT� .

�A6�

2. The 1D ANNNI model in zero field

In this subsection we collect, for the reader’s conve-
nience, some exact results for the static properties of the 1D
ANNNI model in zero field, Eq. �22�, which were obtained
by Stephenson22 and Harada22 in the case of a linear chain
with N identical spins �gA=gB=g and �= ±1�. Using the
transfer matrix method, the partition function can be exactly
expressed as
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ZN = ��+�N + ��−�N �A7�

in terms of the eigenvalues of the symmetric 2
2 matrix

S = �a c

c b

 = �e�J2+J1�/kT e�J2−J1�/kT

e�J2−J1�/kT e−J2/kT 
 . �A8�

The eigenvalues take the form21

�± =
1

2
�a + b ± ��

= eJ2/kT�cosh� J1

kT

 ±�sinh2� J1

kT

 + e−4J2/kT� ,

�A9�

where

� = ��a − b�2 + 4c2 = 2eJ2/kT�sinh2� J1

kT

 + e−4J2/kT.

�A10�

Both �+ and � are always real positive quantities.
In the thermodynamic limit N→�, the static two spin

correlation function �n take the form21

�n = 	� j� j+n


=
1

2��+�n���+�n�1 +
a2 − b2

���

 + ��−�n�1 −

a2 − b2

���

�
�A11�

where the quantities ��, defined as

�� = ��a + b�2 − 4c2 = 2eJ2/kT�cosh2� J1

kT

 − e−4J2/kT

�A12�

and

�± = eJ2/kT�sinh� J1

kT

 ±�cosh2� J1

kT

 − e−4J2/kT� ,

�A13�

may be complex. More precisely, the quantities �± are real
for T�TD and complex conjugates for T�TD. TD is the
so-called disorder point, defined by the equation ���TD�=0,
which has solutions for 0�r�1/2 at some finite tempera-

ture TD. For T�TD the static equilibrium two-spin correla-
tion functions �n= 	� j� j+n
 present a monotonic exponential
decay, while for T�TD they have an oscillating exponential
decay.21

Summing over all pair correlations, the exact zero field
static susceptibility can be expressed as21

��� = 0,T� = �g2�0
2

kT

�a + b

�

�a�a − b + �� + 2c2

b�b − a + �� + 2c2
 .

�A14�

The wave-vector dependent susceptibility, defined as

��q� = N
g2�0

2

kT �
n

	� j� j+n
eiqn, �A15�

presents a maximum at a wave vector qm, which is given
by22

cos qm =
��+ + �−���+ − �−�

4�+�−
. �A16�

For 0�r�1/4 one has qm=0 at all temperatures, while for
1 /4�r�1/2 there is a definite temperature TL ��TD� above
which qm�0, whereas for T�TL one has qm=0. When
1/2�r, one has qm�T=0�=� /2. In the limit of T→�, qm

tends to the mean field value cos qm=1/ �4r�. Expanding ��q�
in the neighborhood of qm up to second order in �q=qm−q,
one obtains a Lorentzian form, and the correlation length �
can be defined in terms of its full width at half maximum as

��q� =
��qm�

1 + �2��q�2 �A17�

and turns out to be

�1

�

2

=
��+ − �− − �+ − �−�2

��+ + �−���+ − �−� − 4�+�−
for qm = 0,

�1

�

2

=
��+ − �−�2��+ + �−�2

��+ + �−�2��+ − �−�2 − 16�+
2�−

2 for qm � 0.

�A18�

For 1/4�r�1/2, it turns out that at TL the correlation
length becomes zero, which is a characteristic of the Lifshitz
point.34
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