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We face the problem of detecting and featuring footprints of quantum criticality in the finite-temperature
behavior of quantum many-body systems. Our strategy is that of comparing the phase diagram of a system
displaying a T=0 quantum phase transition with that of its classical limit, in order to single out the genuinely
quantum effects. To this aim, we consider the one-dimensional Ising model in a transverse field: while the
quantum S=1/2 Ising chain is exactly solvable and extensively studied, results for the classical limit
�S→�� of such model are lacking, and we supply them here. They are obtained numerically, via the transfer-
matrix method, and their asymptotic low-temperature behavior is also derived analytically by self-consistent
spin-wave theory. We draw the classical phase diagram according to the same procedure followed in the
quantum analysis, and the two phase diagrams are found unexpectedly similar: Three regimes are detected also
in the classical case, each characterized by a functional dependence of the correlation length on temperature
and field analogous to that of the quantum model. What discriminates the classical from the quantum case are
the different values of the exponents entering such dependencies, a consequence of the different nature of
zero-temperature quantum fluctuations with respect to the thermal ones.
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I. INTRODUCTION

One of the most fascinating aspects of many-body sys-
tems is the possible occurrence of a phase transition, either at
finite or at zero temperature. This latter case is generally
referred to as a genuine quantum phase transition �QPT�, by
this meaning that it is exclusively observed in quantum
many-body systems. Zero-point quantum fluctuations are
recognized as the fundamental ingredient of a QPT, in the
same sense as thermal fluctuations are in ordinary finite-
temperature phase transitions: Whenever fluctuations are fro-
zen, as in the T=0 classical case, no phase transition may
possibly occur.

In the literature, a QPT is also commonly said to occur
when, for a given value of one of the Hamiltonian param-
eters, the ground state of the model qualitatively changes its
structure. This definition is not quite rigorous; firstly, because
it labels QPT any change in the universality class of the
model, as well as mean-field phenomena such as saturation;
secondly, because it may paradoxically be extended to clas-
sical systems. As a matter of fact, qualitative changes in the
structure of the minimum-energy configuration may well be
observed, for a given value of some Hamiltonian parameter,
also in classical systems at T=0, despite fluctuations being
frozen. In this framework, therefore, the comparison between
the behavior of a quantum system displaying a QPT and that
of its classical limit becomes meaningful even at zero tem-
perature, as shown in the next section.

When temperature is switched on, the very same defini-
tion of QPT loses its meaning; however, it is well established
that a QPT induces a peculiar finite-temperature behavior
which is qualitatively described by the best known phase

diagram introduced in Ref. 1, and reported in Fig. 7, where
three different regimes appear �renormalized classical, quan-
tum critical, and quantum disordered�, separated by cross-
over lines thoroughly discussed in Ref. 2. The relevance of
this phase diagram is mostly due to its suggesting that sig-
natures of a genuine quantum critical behavior may survive
also at finite temperature, a fact that opens the possibility to
observe them experimentally. Moreover, a renewed interest
has arisen since entanglement properties have entered the
physics of many-body systems, and questions such as “how
resistant to thermal noise are certain quantum properties?”
became essential in order to test possible realizations of
quantum devices.

Despite the above phase diagram being considered as
strictly peculiar to quantum systems, especially as far as the
quantum critical and quantum disordered regimes are con-
cerned, its structure results from the interplay between ther-
mal �classical� and quantum fluctuations: A precise analysis
of the role played by these two components is therefore nec-
essary in order to ascertain whether the latter play an essen-
tial role or not, and to distill genuine footprints of quantum
criticality to be experimentally looked for. To this end, know-
ing the behavior of the quantum system at finite temperature
is not enough, and a careful comparison with the correspond-
ing classical limit is necessary. The quite unexpected lack of
results for the classical limit of quantum models displaying a
QPT has made such comparison unavailable until now.

This paper is aimed at filling this gap: We consider one of
the paradigmatic models displaying a QPT, namely, the one-
dimensional quantum Ising model in a transverse field �QIF�,
and compare its behavior with that of its classical limit,
namely, the classical Ising model in a transverse field �CIF�,

PHYSICAL REVIEW B 76, 064405 �2007�

1098-0121/2007/76�6�/064405�9� ©2007 The American Physical Society064405-1

http://dx.doi.org/10.1103/PhysRevB.76.064405


which we study numerically, via the transfer-matrix method,
and analytically, via self-consistent spin-wave theory. The
result is unexpected: A finite-temperature phase diagram is
disclosed also for the CIF, and it has the same structure of
that for the QIF. In full analogy with the quantum case, we
identify three different regimes on the basis of the field and
temperature dependences of the correlation length; moreover,
we show that the algebraic behavior, which was thought to
specifically characterize the quantum critical and quantum
disordered regimes, does, in fact, show up also in the classi-
cal system, though with different exponents. This result jeop-
ardizes the experimental renderings based on the statement
that the observation of an algebraic dependence of the corre-
lation length implies the occurrence of a quantum critical or
disordered regime.3–6 In fact, an accurate analysis of the ex-
ponents is here shown to be necessary in order to discrimi-
nate genuine quantum effects.

The structure of the paper is as follows: in Sec. II, we
introduce the model and discuss its zero-temperature behav-
ior. In Sec. III, we first summarize the known results for the
QIF, and then present our results for its classical limit, the
CIF: numerical data for the magnetization and the suscepti-
bility in the field direction, and for the specific heat are
shown and discussed. The analysis of the field and tempera-
ture dependences of the correlation length is considered in
Sec. IV, where the classical phase diagram is finally obtained
and compared with that for the QIF. Conclusions are drawn
in Sec. V.

II. ISING MODEL IN A TRANSVERSE FIELD: T=0

A. Quantum model

One of the best known examples of a many-body system
displaying a QPT �Refs. 2 and 7� is the one-dimensional QIF,
whose Hamiltonian reads

Ĥ
J

= − �
i

�Ŝi
xŜi+1

x + HŜi
z� , �1�

where i runs over the sites of an infinite chain, Ŝi are
S=1/2 spin operators, J is the exchange energy constant,
and H is the transverse field in units of J; this model is
exactly solvable8,9 by means of a Jordan-Wigner transforma-
tion to Fermi operators, and displays a QPT at T=0 and

H=Hc=1/2: The discrete Ŝi
x→−Ŝi

x global symmetry of the
Hamiltonian is spontaneously broken for H�Hc, where the

order parameter mx= �Ŝi
x� /S becomes nonzero; long-range or-

der sets in at the critical point, as testified by the divergence
of the order-parameter correlation length. In particular, it is

mx � �Hc − H�� for H → Hc
−, �2�

and

�x � �H − Hc�−� for H → Hc
+, �3�

with the exponents �=1/8 and �=1, as in the finite-
temperature phase transition of the classical two-dimensional
Ising model.10 Together with the other usual exponents, they

obey typical scaling relations which, due to the intrinsically
dynamical nature of quantum fluctuations, entail2 the dy-
namical critical exponent z. On the other hand, the magneti-

zation along the field direction, mz= �Ŝi
z� /S, is an analytic

function of the field and changes its curvature at Hc, where
the uniform susceptibility consequently displays a maximum.
These T=0 behaviors are reported as dashed lines in Fig. 1.

B. Classical model

The classical limit of any given quantum system is
unique, although the converse is not true. For a spin system,
the limit �→0 must be taken while keeping finite the spin

angular momenta �Ŝi.
From Eq. �1�, one thus obtains the Hamiltonian of the

CIF,

H
Jc

= − �
i=1

N

�si
xsi+1

x + 2hsi
z� , �4�

where si= �si
x ,si

y ,si
z� are classical spins, i.e., three-

dimensional vectors of fixed length �si�2=1, while11

Jc = lim
�→0

S→�

JS2, 2h = lim
�→0

S→�

H

S

are the classical exchange interaction and reduced field, re-
spectively. Taking the exchange interaction as the energy
unit, the dimensionless temperature will be denoted with
t=T /Jc, so that all thermodynamic quantities depend upon
the pair �h , t�. Periodic boundary conditions are assumed
�sN+1=s1� and the thermodynamic limit �N→�� will be con-
sidered.

It is important to distinguish between the CIF and what is
often called the classical Ising model, which is obtained
from Eq. �1� with H=0, by regarding the quantum operators

Ŝi
x as classical discrete variables taking the values ±1/2. Re-

sults for the CIF are lacking, apart from the zero-field
case,12–14 probably because, at variance with the QIF, the
CIF does not allow for an exact solution.

FIG. 1. Zero-temperature limit of mx, mz, and �x of the classical
�solid lines� and of the quantum �dashed lines� Ising model in a
transverse field.
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Writing the classical spin variables in terms of polar
angles as

si � �sin �i,cos �i sin 	i,cos �i cos 	i� , �5�

the Hamiltonian �4� is expressed as

H
Jc

= − �
i

�sin �i sin �i+1 + 2h cos �i cos 	i� . �6�

Its minimum corresponds to a translation-invariant configu-
ration 	si= �sin �m ,0 ,cos �m�
, with

�m�h� = �±cos−1h for h 
 1

0 for h � 1.
� �7�

The minimum energy per spin is

u�h,0� = �− 1 − h2 for h 
 1

− 2h for h � 1
� �8�

and shows a singularity at h=1. The magnetization mz is
proportional to the field for h
1 and saturates for h�1,

mz�h,0� = �h for h 
 1

1 for h � 1,
� �9�

so that the corresponding susceptibility is discontinuous at
h=1,

�z�h,0� = �hmz = �1 for h � 1

0 for h 
 1.
� �10�

Finally, the behavior of the magnetization along the ex-
change,

mx�h,0� = �±
1 − h2 for h 
 1

0 for h � 1,
� �11�

reflects the fact that for h�1 the minimum is twofold.
It may sound odd but, as seen in Fig. 1, the CIF displays

a zero-temperature behavior which is analogous to that ob-
served in the QIF, even if no fluctuations are present at t
=0. Equation �11� shows indeed that a critical field hc=1
separates a symmetry-broken minimum-energy configuration
with mx�0 from one with mx=0.

An even closer analogy is found if one considers that
from the low-temperature expression derived in Appendix B,
one can obtain the exact zero-t limit of the correlation length,
�x�h ,0�=1/
h−1. The counterparts of both Eqs. �2� and �3�
are then available, and read

mx � �hc − h�� for h → hc
−, �12�

and

�x � �h-hc�−� for h → hc
+, �13�

with Gaussian critical exponents �=�=1/2, to be compared
with those for the QIF, �=1/8 and �=1.

III. THE ISING MODEL IN A TRANSVERSE FIELD: T
0

A. T
0: The quantum model

The field and temperature dependences of the specific
heat c�H ,T� and of the susceptibility �z�H ,T� can be easily

obtained from the analytic results of Ref. 9. The most promi-
nent feature is the occurrence of maxima of both quantities
in the H-T plane. Indeed, the quantum specific heat just
shows the behavior of a free Fermi gas with dispersion
�k��+k2 in the neighborhood of a vanishing gap
���H−Hc�, which appears, for fixed low T, as two symmet-
ric peaks at linearly displaced positions �H−Hc��T. This fea-
ture is made evident in Fig. 2, by the density plot of the
second derivative of c�H ,T� with respect to H. The positions
of the maxima draw two symmetric lines in the H-T plane
which coincide with those obtained15 from the analysis of
entanglement properties.

B. T
0: The classical model

The thermodynamic behavior of the CIF for h�hc is es-
sentially determined by the energy landscape of the model.
In a mean-field approach, i.e., setting 	�i=�, 	i=0
, this is
described by the double-well energy profile e���=−sin2 �
−2h cos �, with minima in �m= ±cos−1h and the barrier top
at �=0, the barrier energy being �e= �1−h�2= �hc−h�2. The
two wells correspond to the Ising configurations.

Domain-wall excitations connecting the two Ising con-
figurations can appear on the chain, the energy of a domain
wall being ew=2�1−h2�. A simple statistical argument gives
a finite number of domain walls at any finite temperature,
nw�N / �1+eew/t�, so that when temperature is switched on
the ordered state is destroyed �i.e., mx=0 for t
0� by these
excitations, which rule the low-temperature thermodynamics
in what we will hereafter call the Ising regime.

When the temperature reaches the order of the barrier
energy, t��hc-h�2, thermally activated transitions between
the wells can occur and the Ising regime breaks down. The
dependence of the barrier height on the field is responsible
for the fact that as h→hc

−, this regime gets confined into the
narrow interval 0� t� �hc−h�2. The above mechanism, that
we call thermal hopping, is at the hearth of the phenomenol-
ogy of the model below hc, and it already suggests the oc-
currence of a crossover from an Ising-like behavior toward a
critical one, ruled by an effectively flat energy landscape.

On this basis, let us discuss the finite-temperature data
obtained16 by the transfer-matrix method, briefly described in
Appendix A.
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FIG. 2. �Color online� Second derivative of the specific heat of
the QIC, �H

2 c�H ,T�.
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The temperature behavior of the magnetization along the
field, mz�h , t�, is shown in Fig. 3, and clearly is related to that
of the mean-square fluctuations of the Ising order parameter,
��si

x�2�; indeed, the initial increase with temperature corre-
sponds to the reduction of ��si

x�2� due to the fact that the
probability distribution of si

x, initially frozen in the bottom of
one of the two wells �±
1−h2�, extends more likely toward
the barrier at si

x=0. The further decay of mz is due to the
isotropic spin fluctuations occurring after thermal hopping
has taken place. On the other hand, for h�hc, mz simply
decreases from its t=0 saturation value.

The susceptibility �z�h , t� is shown in Fig. 4: the zero-
field result agrees with that derived in Ref. 13 and shows a
broad maximum in temperature, at t�0.37. Upon rising the
field, such maximum is squeezed toward lower temperatures,
meanwhile getting sharper. At the critical field, the maximum
disappears and the susceptibility is a monotonic function of
temperature for whatever h�hc. The zero-t limiting value of
�z�h , t� is given by Eq. �10�. The overall behavior of �z�h , t�
in the h-t plane is evidently characterized by the occurrence
of the above described maxima for h�hc.

The specific heat c�h , t�, shown in Fig. 5, is also charac-
terized by the occurrence of maxima for h�hc, which dis-
appear above the critical field; noticeably they fall into al-
most the same positions as those observed in �x�h , t�, as it
appears in Fig. 6.

The maxima observed both in the susceptibility and in the
specific heat correspond to the onset of thermal hopping, and
their positions indicate the region where thermal fluctuations
overcome the Ising domain-wall energy, i.e., the crossover
region from the Ising to the critical regime. In order to better
characterize the corresponding crossover line, we have fitted
the maxima positions for low t in the h-t plane with the
function t� �hc-h��, finding the exponent quite close to the
value �=3/2 derived by analytical arguments in the next
section.

IV. PHASE DIAGRAM

A. Quantum model

The finite-temperature phase diagram for the QIF, shown
in Fig. 7, essentially features the occurrence of three regions,
characterized by qualitatively different behaviors of physical
observables with respect to h and t. These regions have been
identified1 with the so called renormalized-classical �A�,
quantum-critical �B�, and quantum-disordered �C� regimes,
which have been singled out according to the qualitatively
different behaviors of the correlation length,

FIG. 3. Magnetization along the field direction, mz�h , t� vs tem-
perature for selected field values. The “critical” value is hc=1.

FIG. 4. Magnetic susceptibility �z�h , t�.

FIG. 5. Specific heat c�h , t�.

FIG. 6. Region h�hc of the phase diagram of the CIF. Circles
and squares indicate the position of the maxima of c�h , t� and
��h , t�, respectively. The dashed curves are obtained fitting the data
with t� �1−h�3/2. Inset: log-log plot of the same data and curves.

CUCCOLI et al. PHYSICAL REVIEW B 76, 064405 �2007�

064405-4



�x � �eu�Hc−H�/T for Hc − H � T �A�
T−1/y for �H − Hc� � T �B�
�H − Hc�−� for H − Hc � T �C� ,

� �14�

where u is a constant and the critical exponents are y=1 and
�=1. The power-law divergence in Eqs. �14� �B and C� fol-
low from the temperature-dependent scaling law for �x lying
at the hearth of the renormalization group �RG� approach to
critical phenomena.2,7 We remind that the exponent y, ruling
the scaling of energy, is bound to equal the dynamical critical
exponent z by the uncertainty principle. In the same frame-
work, the above regimes are shown to be separated by the
crossover lines T� �H−Hc�.

This phase diagram has been extensively discussed �see,
e.g., Refs. 2 and 7� over the last decade: in particular, the fact
that �x is independent of the field and inversely proportional
to T in region �B�, and independent of temperature and in-
versely proportional to H−Hc in region �C�, has always been
considered as a signature of the genuinely quantum character
of the corresponding regimes, which have consequently been
labeled as “quantum” �critical and disordered, respectively�.

In fact, as we argue in the remaining part of this paper,
this is not truly the case.

B. Classical model

As seen in Sec. III B, hints of the possible occurrence of
at least two different regimes, separated by a crossover re-
gion, do already come from the behavior of the susceptibility
and of the specific heat for h�hc. However, in order to
closely mimic the procedure followed in drawing the quan-

tum phase diagram, we analyze the field and temperature
dependences of the correlation length �x�h , t� of the classical
model, heading toward expressions analogous to those of
Eqs. �14�. The overall behavior of �x�h , t�, as from our nu-
merical data, is plotted in Figs. 8 and 9.

1. Correlation length for h�hc

If one considers the t dependence for h�hc, it clearly
appears from Fig. 8 that ln �x�1/ t, with a slope that in-
creases with the difference hc−h. As for the field depen-
dence, the logarithm of �x�h , t� is seen in Fig. 9 to be linear
in h, with negative slope: this is more evident the smaller the
temperature, and the angular coefficient decreases with in-
creasing t, consistently with Eq. �14� �A�. In fact, from Fig.
10 for hc−h� t, we see that t ln �x�h , t�� f�t�+u�hc−h�, with
f�t� weakly dependent on t, meaning

�x�h,t� � eu�hc−h�/t for hc − h � t �a� . �15�

2. Correlation length for hÐhc

From Figs. 8 and 9, we see that for field close and above
the critical value, the temperature and field dependences of

FIG. 8. Correlation length �x�h , t� vs 1/ t for selected field
values.

FIG. 9. Correlation length �x�h , t� vs field for different tempera-
tures. The vertical dotted line marks the critical field hc=1.

FIG. 7. Phase diagram of the quantum Ising model in a trans-
verse field.

FIG. 10. Classical phase-diagram region �a�. The function
t ln �x�h , t� vs hc-h for different fixed temperatures. One can see that
the better the condition hc−h� t is satisfied, the more the curves
become straight.
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�x�h , t� become much less pronounced with respect to those
displayed below the critical field, suggesting power-law be-
haviors of the same type observed in the quantum regimes
�B� and �C�.

In particular, using our numerical data, we can ascertain
that, for �h−hc�� t, the correlation length behaves as �x
� t−1/3, as evidenced in Fig. 11; on the other hand, for �h
−hc � � t, the log-log plot reported in Fig. 12 emphasizes a
power-law field dependence, �x� �h−hc�−1/2. These behaviors
are fully analogous to the quantum ones described by Eqs.
�14� �B and C�, the only difference being in the exponents.

In order to strengthen this result, we develop the analyti-
cal treatment reported in Appendix B, which makes use of
self-consistent spin-wave theory �SSWT� for h�hc. The
asymptotic behavior of the correlation length derived there,
valid at low temperature and close to criticality, is given by
Eq. �B9� and yields

�x�h,t� � t−1/3 for �h − hc� � t �b� , �16�

and

�x�h,t� � �h − hc�−1/2 for �h − hc� � t �c� , �17�

in full agreement with the analysis of our numerical data.

3. Crossovers

Let us now consider the problem of identifying the cross-
over regions between phases where Eqs. �15�–�17� hold, i.e.,
between the three classical regimes, that we have labeled a,
b, and c, respectively.

As for the �ab� crossover, a reasonable localization can be
obtained by relating it to thermal hopping. According to the
mean-field analysis presented in Sec. III B, the latter occurs
when the temperature overcomes the energy-barrier height,
i.e., for hc−h� t1/2. However, the mean-field approach ne-
glects correlated fluctuations, while to get a correct estimate
it is necessary to keep nearest-neighbor fluctuations at least
within a quadratic approximation of the Hamiltonian �6�
around one of the minima. Setting �i=�m+�i and expanding,
one finds for the quadratic part

H
Jc

� Ne��m� + h2�
k

	k
2 + �

k

�1 − h2 cos k��k
2, �18�

from which the mean-square fluctuation of �i around the
minimum results

��i
2� �

t

2N
�

k

1

1 − h2 cos k
=

t

2
1 − h4
. �19�

As soon as these fluctuations reach the size of the width of
the barrier, ��m�=sin−1
1−h2, the Ising excitations disappear
and the crossover between the exponential- and the power-
law behaviors of the correlation length is expected. This con-
dition is fulfilled when ��i

2����m�2, i.e., for h close to the
critical field hc=1,

t � �hc − h�3/2 �ab� . �20�

This prediction gives the correct exponent and is also fully
consistent with that obtained in Sec. III B by fitting the po-
sitions of the maxima observed, in the h-t plane, for both the
susceptibility and the specific heat.

It is worth mentioning that thermal hopping is the ulti-
mate cause of the finite-temperature phase transition to the
ordered state occurring for h�hc in more than one dimen-
sion: the crossover turns indeed into the sharp critical line
tc�h�, with the critical temperature vanishing at the quantum
critical point, tc�hc�=0. In one dimension, the onset of order-
ing is forbidden at finite t and only the broad crossover be-
tween regimes a and b survives.

Coming to the bc crossover, from Eqs. �16� and �17� one
deduces it to occur for

t � �h − hc�3/2 �bc� . �21�

4. Phase diagram

Eqs. �15�–�17� can be summarized as

FIG. 11. Classical phase-diagram region �b�. Longitudinal cor-
relation length �x�h , t� vs t for fields close to the critical value hc

=1. The log-log plot emphasizes that the slope of the curve for h
=hc is −1/3.

FIG. 12. Classical phase-diagram region �c�. Log-log plot of
�x�h , t� vs h−hc for different low temperatures. The slope of the
low-t curves is seen to be −1/2.
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�x � �eu�hc-h�/t for hc − h � t �a�
t−1/y for �h-hc� � t �b�
�h − hc�−� for h − hc � t �c� ,

� �22�

with y=3 and �=1/2. Via the different behaviors of the cor-
relation length, three different regimes can thus be singled
out also in the classical phase diagram and, according to our
discussion, it makes sense to call them Ising �a�, critical �b�,
and disordered �c�. Different regimes are again separated by
crossover lines, which in the classical model are described by
the relation t��h−hc�3/2.

C. Classical vs quantum phase diagram

Equations �22� clearly show that the CIF is characterized
by a phase diagram on the h-t plane which is fully analogous
to the celebrated quantum one described by Eqs. �14�. In
particular, the observed power-law divergence of �x in re-
gimes �b� and �c� suggests the scaling hypothesis to hold also
in the classical case: This is confirmed in Appendix B where
we obtain an explicit expression for �x�h , t�, which turns out
to be a homogeneous function.

The nexus between the quantum and the classical case can
be drawn as follows: Let us introduce the unifying param-
eters ḡ and t̄, defined as ḡ=H−Hc, t̄=T /J in the quantum
model, and ḡ=h−hc, t̄= t in the classical model, and write the
equation

�x�ḡ, t̄� = b�x�b1/�ḡ,byt̄� , �23�

which, within RG, rules the scaling of observable quantities
and model parameters in the proximity of critical points after
a length-scale transformation by a factor b. From Eq. �23�,
both the quantum equations �14� �B and C�, and the classical
equations �22� �b and c� follow, as well as the crossover lines
t̄� ḡ�y: The critical exponents entering the above expressions,
despite getting different values in the quantum �y=1, �=1�
and in the classical �y=3, �=1/2� case, consistently fulfill
the hyperscaling relation

2 − � = ��d + y� , �24�

where 2−� is the exponent for free-energy density f ,
defined2 by f�ḡ ,0���ḡ�2−� ��=0 in both cases�. We remind
that, in the quantum case, the scaling exponent of energy y is
unavoidably related to the dynamical critical exponent z by
the uncertainty relation, y=z. As for the classical case, we
notice that � takes the typical Gaussian value, due to fluctua-
tions freezing as t→0.

V. CONCLUSIONS

In this paper, we have compared the finite-temperature
phase diagram of a quantum model displaying a QPT,
namely, the S=1/2 Ising chain in a transverse field, with that
of its classical limit. To this end, we have obtained numerical
and analytical results for the classical model. In particular,
we have studied the magnetizations, the specific heat, the
magnetic susceptibility, and the correlation length along the
exchange direction: all quantities have been analyzed below,

at, and above the saturation field, with the temperature raised
from zero up to values of the order of the exchange interac-
tion.

The classical phase diagram emerging from our work is
fully analogous to that of the quantum model. Three regimes
are identified: the Ising regime �a� �hc−h� t�, corresponding
to the quantum renormalized-classical regime, where �x be-
haves exponentially with �hc−h� / t; the critical regime �b�
��h−hc�� t�, corresponding to the quantum-critical regime,
where �x behaves algebraically with t; the disordered regime
�c� �h−hc� t�, corresponding to the quantum-disordered re-
gime, where �x behaves algebraically with h−hc. Two cross-
over lines, t��h−hc�3/2, separate the regions of the phase
diagram where the above regimes occur.

The essential message of this work is that, in order to
discriminate quantum critical effects, it is not sufficient to
observe, say, an algebraic behavior of the correlation length
with respect to temperature, but a precise determination of
the exponent is rather due. Our analysis does also suggest
that the role of genuinely quantum fluctuations at finite tem-
perature is not as relevant as commonly believed, given the
fact that most of the features regarded as typical of the quan-
tum model are disclosed also in its classical limit, even, and
most noticeably, at very low temperature.

Given the very weak model dependence of the overall
discussion, we believe that the above conclusions hold in
general, and not only for the Ising chain in a transverse field.
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APPENDIX A: TRANSFER MATRIX FOR THE CIF

We outline here the numerical transfer-matrix technique,17

by which we have investigated different static thermody-
namic quantities of the CIF, focusing the attention on their
low-temperature behavior in the neighborhood of the point
h=hc.

Using cylindrical coordinates, one can map the classical
spins appearing in the Hamiltonian �4� as

si = �xi,
1 − xi
2 sin 	i,
1 − xi

2 cos 	i� , �A1�

with xi� �−1,1� and 	i� �−� ,��. The partition function can
then be expressed as the trace of the Nth power of an integral
kernel K�x ,y�,

Z = �
i=1

N �
−1

1 dxi

2
�

−�

� d	i

2�
e�xixi+1+2h
1−xi

2 cos 	i�/t = �
−1

1

dxKN�x,x�

= �
�

��
N, �A2�

where the kernel is real and symmetric,
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K�x,y� =
exy/t

2
�I0�2h

t

1 − x2�I0�2h

t

1 − y2��1/2

= �
�

�����x����y� , �A3�

I0�x� is the modified Bessel function, 	��
= 	�0 ,�1 , . . . 
 are
the �positive� eigenvalues of K �say, in decreasing order�, and
	���x�
 the corresponding �real� eigenfunctions. The diago-
nalization of K was performed numerically after discretizing
the integral with a five-point Simpson’s formula18 on a mesh
of up to 1040 intervals, also accounting for the definite parity
of the eigenfunctions.

In the thermodynamic limit, the free energy per site is a
function of the largest eigenvalue only,

f�h,t� = − t lim
N→�

1

N
ln ZN = − t ln �0�h,t� . �A4�

The internal energy u= t2�t ln �0 and the specific heat c=�tu
were obtained by numerical differentiation �five-point
Lagrange formula18�.

The probability distribution for the variable x=xi is

w�x� = �0
2�x� . �A5�

One can reduce to averages with this probability both the
expressions for the magnetization along the field mz= �si

z�
= �t /2��h ln �0 and for the corresponding susceptibility �z

=�hmz. On the other hand, the joint probability for two sites
at a distance r, x=xi and y=xi+r, is

wr�x,y� = �
�
���

�0
�r

�0�x����x��0�y����y� . �A6�

Using this result, one can write the correlation function of
the spin components in the direction of the exchange as

�si
xsi+r

x � = �
�
�� dx x�0�x����x��2���

�0
�r

. �A7�

As the eigenfunction �0�x� is even, the leading term for large
r is that for �=1,

�si
xsi+r

x � �
r→�

��1

�0
�r

, �A8�

so that the corresponding correlation length is given by

�x�h,t� = �ln��0/�1��−1. �A9�

APPENDIX B: SELF-CONSISTENT SPIN-WAVE
THEORY

For h�hc, the minimum configuration of the classical
Hamiltonian, Eq. �6�, corresponds to the saturation one, i.e.,
	�i=0, 	i=0
. In order to estimate the low-temperature be-
havior of the correlation length, we use self-consistent spin-
wave theory �SSWT�, i.e., we assume a Gaussian distribution
�0=e−�H0 in terms of a trial quadratic Hamiltonian H0 whose
coefficients are self-consistently determined by requiring the

identity of the �0 averages of H and H0, as well as of their
first and second derivatives.

In terms of the relevant Gaussian variances D= ��i
2�0, D�

= ��i�i+1�0, E= �	i
2�0 �by symmetry �	i� j�0=0�, the SSWT

amounts to set

sin �i sin �i+1 =
1

2
�cos��i − �i+1� − cos��i + �i+1��

� e−D��1 + D�sinh D� − D� cosh D�

− sinh D�
�i

2 + �i+1
2

2
+ cosh D���i�i+1�� ,

and

cos �i cos 	i =
1

2
�cos��i − 	i� + cos��i + 	i��

� e−F�1 + F −
�i

2 + 	i
2

2
� ,

where F��D+E� /2 and we used the SSWT identity cos x

�e−�x2�/2�1+ 1
2 ��x2�−x2��.

The SSWT Hamiltonian is diagonal in Fourier space:

H0

Jc
= − Ne0�t� + �

k

��A + B�k���k�2 + C�	k�2� , �B1�

with �k=1−cos k and

A = he−F − e−D−D�,

B = e−D cosh D�,

C = he−F, �B2�

while e0�t� collects the uniform contributions. It follows that
the self-consistent expressions for the variances are

D =
t

2N
�

k

1

A + B�k
=

t

2
A�A + 2B�
,

D� =
t

2N
�

k

cos k

A + B�k
= D −

t

2N
�

k

�k

A + B�k
,

E =
t

2C
. �B3�

The stability condition for H0 is A�0, which defines a
threshold field,

h0�h,t� = eF−D−D� � 1, �B4�

above which the SSWT is meaningful. Note that the present
approach can describe the finite-temperature behavior of the
system also for h�hc=1, because the configuration density
can still be approximated by a Gaussian centered in 	�i=0,
	i=0
 as long as thermal fluctuations are large enough to
overcome the barrier between the two symmetric minima
�i= ±�m of H, as explained in Sec. III B.
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From the SSWT Hamiltonian �B1�, the Fourier transform
of the correlation function is immediately found,

Gx�k� = ���k�2�0 =
t

2�A + B�k�
, �B5�

and can be used to evaluate the correlation length �x,

�x
2 = − � Gx��k�

2G�k�
�

k=0
=

B

2A
=

eF−D cosh D�

h − h0�h,t�
. �B6�

Therefore, when the field is close to the critical value
hc=1, the behavior of the correlation length is given by
�x��h−h0�h , t��−1/2. In this region, the variance D is en-
hanced �A�0� and it can be easily seen that D��D and
F�D /2, so that

��h,t� � 1 − h0�h,t� � D + D� − F �
3

2
D

�
3t

4
��h − 1 + ���h + 1 + � − D��−1/2

� ct�g + ��−1/2, �B7�

with g�h−1 and the constant c=3/4
2.

Rewriting this equation as

�

t2/3 � c� g

t2/3 +
�

t2/3�−1/2

, �B8�

it appears that � / t2/3=F�x�, with x=g / t2/3 and the
asymptotic behaviors F�0�=c2/3, F�x→���cx−1/2. From
Eqs. �B6� and �B7�, the leading behavior of the correlation
length is given by

�x � �g + ��−1/2 � t−1/3F�x� , �B9�

and it follows that near the critical point it is a homogeneous
function,

�x�b2g,b3t� � b−1�x�g,t� , �B10�

which coincides with Eq. �23�, with the exponents �=1/2
and y=3. For the crossover line �bc�, identified by imposing
x�1, one finds t�g3/2.
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