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Experiments and simulations on Al-Au mixtures and mixtures laws
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We measured the thermodynamical and transport properties of aluminum-gold mixtures in the warm dense

matter regime and for various concentrations. We compare these measurements with quantum molecular
dynamics (QMD) simulations. We find that the calculated pressures and resistivities of both the mixtures and
pure phases are in good agreement with the measurements. This further allows us to test the mixing rules
usually employed to predict the properties of the mixed phases from the pure ones. We show, in this regime,
that the partial densities mixing rule predicts the pressure of the mixture rather accurately but fails in its

prediction of the optical conductivity. To improve this latter prediction, we find that we must invoke an
isothermal-isobaric mixture rule to compute the pure phase contributions at the correct densities.
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I. INTRODUCTION

Our understanding of matter at the thermodynamical con-
ditions encountered in some astrophysical objects or in laser
fusion experiments relies on our ability to describe the prop-
erties of mixtures properly. Giant planets are made of a mix-
ture of hydrogen and helium (with traces of other
elements),'? the interior of the Sun is a mixture of iron and
hydrogen,?® and inertial confinement fusion pellets are always
subjected to the mixing of the different layers constituting
the envelope (beryllium, CH plastics, deuterium, gold, etc.)
during the compression process.* In the latter case, we are
interested here by the warm dense matter regime (WDM)
which is characterized by a strong coupling and a high elec-
tronic degeneracy. This regime is rather difficult to describe
for pure phases but becomes even more challenging for mix-
tures. When using hydrocodes to model such systems, one
needs to know the thermodynamical properties of the system
from the tabulated values of pure phases, following some
given mixing rule. There are different mixing rules in use,
starting from the simplest, the partial densities mixing rule
(PDMR), to more complex ones such as the isothermal-
isobaric mixing rule (IIMR) or isoelectronic mixing rule
(IEMR). These mixing rules have their own range of validity
but have only been scarcely tested in the WDM regime.’ Our
purpose in this paper is to provide experimental data on
aluminum-gold mixtures with varying concentration, and to
test this conventionally used mixing rule using both these
data and quantum molecular dynamics simulations. Alumi-
num and gold were chosen because the pure phases have
been previously studied in detail both numerically and
experimentally.®~

Starting our numerical work from a pure aluminum phase
(MO) at a density of 0.1 g/cm® (16 atoms in a box of
19.08 A), we substituted an increasing number of aluminum
atoms by gold atoms while keeping the total number of at-
oms constant and until we reach the pure gold phase (M5).
For the mixture M1, we used 32 atoms in a box of 24.04 A.
For the pure phase of gold (M5), we increased the size of the
box up to 21.08 A to comply with the experimental limita-
tions. This leads to a density of 0.5 g/cm’ instead of
0.76 g/cm?. The composition of intermediate mixtures (M1
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to M4) are presented in Table I. (M1) is aluminum rich
(96.8% aluminum) while (M4) is gold rich (62.5% gold).
(M2) and (M3) are rich in number of aluminum atoms but
not in mass. Except for the (M2) mixture for which no ex-
periment was performed, all compositions have been studied
both experimentally and theoretically.

The partial density of each species i=1,2 made of N;
atoms in a box of side a is given by pi=%}, where N is the
Avogadro number. Using the total number N=N;+N,, we
define the atomic fractions by x;=N;/N and x,=N,/N and
the mass concentrations by

XA, XA,
ci=—— andcy=—"—,

A A
where A is the average mass given by

A=x1A1+x2A2. (1)

II. EXPERIMENTS

The experimental measurements were performed in the
“Enceinte a Plasma Isochore” (EPI) described in previous
papers.”!'% We just recall here that the EPI combines two
existing techniques: a high-pulse power-bank to obtain a fast
heating of the metallic sample and a high-pressure closed-

TABLE 1. Properties of studied mixtures. The box is larger for
M5 to comply with the experimental limitations.

A PAl PAu Prot
g

Nt Nat Naw XA Xau g/em® g/em® g/em?

MO 16 16 0 1 0 27 0.1 0 0.1

M1 32 31 1 0968 0.031 3224 0.1 0.024 0.124
M2 16 13 3 0.812 0.187 5886 0.084 0.141 0.225
M3 16 10 6 0.625 0.375 90.75 0.064 0.283 0.348
M4 16 6 10 0.375 0.625 133.25 0.039 0.471 0.510

16 0 16 0.0 1 197 0 0.5 0.5
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FIG. 1. Experimental configuration of the EPI device.

vessel sketched in Fig. 1. The body of the vessel consists in
an alternate stack of autofrettaged bimetallic rings (1 cm
thickness) and electrical insulator Kapton foils (125 wum)
leading to a volume of the inner plasma channel of 20 cm?.
There is no particular difficulty in setting up mixture experi-
ments. Proper quantities of each component of the mixture
are introduced in the vessel, following the partial densities
given in Table L. For this mixture we used a bundle of mixed
wires cut at the proper length. The input energy is adjusted to
comply with the pressure limit of the vessel. Energies, pres-
sures, and conductivities are measured in an absolute way
and the interpretation does not need any external model. The
temperature is not measured and to be consistent our results
are presented versus the internal energy. For each shot, the
input energy and the plasma resistance R(z) are inferred from
the current and voltage measurements. The resistivity « of
the plasma is determined by using the relation «(r)
=mr’R(t)/1, where I and r are, respectively, the length and
the radius of the plasma channel, determined by the geom-
etry of the vessel. The uncertainty in the current and voltage
measurements produces a 15% uncertainty in the resistance
of the plasma. The internal energy variation 6U can be evalu-
ated from the electrical energy input E, and is given by
SU=(Eq—E,q)+6W, where E, is the thermal loss at the
vessel walls. The mechanical work loss 6W due to the vessel
expansion under pressure is less than 1% of E, and can be
neglected. The thermal losses are assumed to be radiative
during the plasma phase, and negligible before. Radiative
losses of a blackbody of surface S are given by dE,4/dt
=g X S§X T, where o is the Stefan-Boltzmann constant. Pi-
ezoelectric measurements of the pressure at each end of the
plasma channel are also leading to an uncertainty of 15%.

III. SIMULATIONS

In the thermodynamical regime of interest (p=py/10 and
5000 K<T<40000 K), quantum molecular dynamics
(QMD) simulations have shown to be an efficient tool to
predict simultaneously both thermodynamics properties and
transport properties. Despite some well known limitations at
high temperatures (beyond 5 €V) resulting from the use of
pseudopotentials and the number of states that can be in-
cluded, the QMD method is particularly suited to describe
various situations in the WDM regime. The method is by
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construction particularly adapted to mixtures without any
further assumptions in contrast to average atom models'!
which are limited to the description of pure phases.

The simulations were performed using PAW
pseudopotentials'? with the electronic structure package VASP
developed at the University of Vienna.'> For aluminum, the
pseudopotential used three active electrons (3s23p') with a
cutoff energy of 240 eV. 11 electrons are included in the Au
pseudopotential (54'%s') with an energy cutoff of 229 eV.
The exchange and correlation terms were treated at the level
of the LDA approximation'* and using the Ceperley-Alder
parametrization.!> During the molecular dynamics simula-
tions, the Brillouin zone was sampled at the I" point, whereas
we used more refined k-point sampling such as 23 and 33 in
the Monkhorst-Pack scheme, for the optical calculations. The
ionic trajectories were generated for 16 atoms of mixture
during 1000 time steps of 0.2 fs after equilibration. The mix-
ture simulations were performed in the microcanonical en-
semble, at constant total energies, as well as the isokinetic
ensemble for the simulations at partial densities in order to
ensure an easier control of the temperatures. For each tem-
perature, the initial conditions were taken from a previous
simulation performed at lower temperature to speed up the
equilibration time. We assume that we reach equilibrium
when records of pressures versus time are showing a steady
average and enough oscillations around the average value (5
to 10 oscillations). We also tested the convergency of the
simulations with the number of atoms by running 4, 16, and
32 ions simulations, without noticeable changes. The fact
that at high temperature and low density the system can be
accurately simulated by a small number of ions was already
pointed by Desjarlais for simulation of aluminum at very low
density and high temperature.®

From the knowledge of the Kohn-Sham orbitals i, ener-
gies €,, and occupations f,, the conductivity was computed
using the Kubo-Greenwood formulation on selected ionic
configurations

o@=12 S S W~ )

w ‘Q’ n,a k

X KAV PO~ € - hw), (2)

where k and W(k) are the vectors and the weight in the
Brillouin zone, V, is the velocity operator in each direction
(a=x,y,z) between two states n and m with occupation f,,
and f,,. The dc conductivity is obtained by taking the zero
frequency limit of o(w). Optical properties are obtained'®
from the computation of the imaginary part of the conduc-
tivity o, given by the Kramer-Kronig relations

o(v)v

o (w)=— ;P f (Vz——wz)dy’ (3)

where P stands for the principal value of the integral. From
the complex conductivity, we get the real and imaginary part
of the dielectric function
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FIG. 2. (Color online) Pres-
sures (top) and resistivities (bot-
tom) versus energy for the three
mixtures M1, M3, and M4 as
given in Table I. Gray circles with
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errors bars: experimental data, red
squares: QMD simulations of the
mixtures. The red line is to guide
the eyes. The blue triangles are the
composition of QMD simulations
- performed at partial densities
(PDMR) as given in Table I.
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elw)y=1- _7TO'2(0)) and &(w)= —Wa(w). (4)
) 1)
This dielectric function leads to indexes given by e=n?,
e(w) = € +i€; = [n(w) + k(@) ], )

from which the reflectivity r(w) and the absorption coeffi-
cient a(w) are computed,

_[1—n(w)]2+k2(w) 4 oz 4
THtn(P+(w ¢ 4T

r(w)

IV. RESULTS
A. Direct simulations of mixture

For each composition (M1, M3, and M4), we performed a
direct QMD simulation of the mixture using the atom num-
bers given in Table I and at four different temperatures
(15 000, 20 000, 25 000, and 30 000 K). By comparing the
total energy obtained with the one resulting from the mixing
of the energies of the solid phases at 300 K (E=cE,
+c¢,E,), we obtain the reference energy for each mixture.
This allows a direct comparison with the experimental mea-
surement as shown in Fig. 2. For each composition, we can
see that the pressures (Fig. 2, top panel) obtained by QMD
are in good agreement with the experimental results except
for the mixture M1 (3.2% Au by number) for which the
agreement is less satisfactory. For the resistivities (Fig. 2,
bottom panel), we have a good agreement in all cases. We

6 8 10 12 14 16

point out that these results recover the now well known prop-
erty of warm expanded metals where the resistivity decreases
with temperature and hence with the energy.!”!'® QMD simu-
lations outside the experimental domain are showing a dra-
matic increase of the resistivity at low energy. This is a low
temperature metal-to-insulator transition.

B. Equation of state of pure elements

To test mixture rules, one must first rely on the equations
of state (EOS) for the pure phases. As shown in Fig. 3, we
have for aluminum a very good agreement between the ex-
perimental data and the EOS computed by Bushman,
Lomonosov, and Fortov (BLF).!” We point out that the QMD
simulations are closer to the SESAME No. 3719 (Ref. 20)
which overestimates significantly the experimental data. This
difference explains the disagreement observed in Fig. 2 for
the aluminum rich mixture M1. We also find that this dis-
crepancy increases with the energy (or with the temperature).
While this may indicate a shortcoming of the DFT at describ-
ing this element in this regime, we do not completely rule
out, however, some imperfections in the pressure measure-
ments for this particular data set.

For gold, we find a very good agreement between the
experimental data, the QMD simulations, and the SESAME
EOS No. 2710, as shown in Fig. 4. It must be stressed that,
for gold, the previous SESAME EOS No. 2700 as well as the
QEOS model?! were both overestimating the experimental
and QMD pressures in this regime. For gold, we also find
that the BLF EOS strongly underestimates the experimental
pressures.
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‘ \ L , TABLE II. Linear fits coefficients [Eq. (7)] for the Al and Au
1.5 Pure Al @ 0.1 g/lcm — isotherms.
i 4 | T (K) a b
25000 K 15 000 -0.001 0.543
~ 1k B Al 20 000 -0.001 7.954
£ 25 000 ~0.068 11.94
= 30 000 -0.074 15.0
g i 18500 K i
? 15 000 0.044 0.527
(=}
15000 K Au 20 000 0.034 0.927
05 7 25 000 0.078 1.324
30 000 0.048 1.851
SESAME #3719
L OMD i
exp.
- BLF each species concentrations as given in Table I. To facilitate
th 20 20 6‘0 20 the graphical interpretation, we also plot the symmetric line

Internal Energy (MJ/kg)

FIG. 3. (Color online) Aluminum equation of state at 0.1 g/cm?.
Experimental data (circles) are compared with SESAME No. 2719
(thick line), BLF EOS (dashed line), and QMD (squares). QMD
temperatures are also indicated.

We have built a linear fit, accurate in the range of densi-
ties and temperatures investigated here, to facilitate the use
of the QMD results in a mixture model. These linear fits are
in the form

P(GPa)=a+ b X p(glem?), (7)

where the coefficients are given in Table II. In Fig. 5, we
show the variation of pressure as a function of volume for
aluminum and gold. V; is the partial volume, V;=x;A;/p, for

[ I \3 i
1.5 Pure Gold @ 0.5 g/cm =
= 1 _
A
O\E o
Y
5 - i
g
Ay
0.5+ _
g — SESAME #2710
m  QMD
o exp. i
---- BLF
0 \ \ \ \
2 4 6 8 10 12 14 16

Internal Energy (MJ/kg)

FIG. 4. (Color online) Gold equation of state at 0.5 g/cm?>. Ex-
perimental data (circles) are compared with SESAME No. 2710
(thick line), QMD (squares), and BLF (dashed line). Temperatures
of the QMD simulations are indicated.

Vai— —Va on the volume axis for aluminum.

C. Mixture rules

The question is now how to predict mixtures properties
from the pure elements ones. The determination of the ther-
modynamical conditions of the pure phases, and the way to
combine the associated properties, are known as mixture
rules. The simplest one is the partial densities mixing rule
(PDMR), which directly results from the ideal gas law. For
this first rule, the components of the mixture are filling the
entire volume V and the total pressure is given by the sum of
the partial pressures

P=P1+P2,
Partial densities { V=V, =V, (8)
E=C1E] +C2E2.

A second approach was proposed by More to mix the
equation of state in the framework of the QEOS model.?! In
this model, known as the isothermal-isobaric mixing rule
(IIMR), each component of the mixtures occupies a volume
V,. The volume V, is adjusted until the partial pressures are
equal and this under the constrain of total volume conserva-
tion

()
T

Pressure (GPa)
T

E)20() -100
Volume (cmrS)

(=]

100 200
Volume (cm73)

FIG. 5. (Color online) Left: Pressure vs volume for aluminum
along two isotherms 20000 K (dashed line) and 30000 K (full
line). Right: same for gold. The heavy horizontal line shows the
total volume of the mixture and the partial volumes are indicated by
arrows.
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P = Pl = Pz,
Isothermal-isobaric { V=V, + V,, 9)
E= C1E1 + C2E2.

We can thus define a volume fraction a;=V;/V,, for each
species.

A third approach, based on the equality of the electronic
densities, is referred to the iso-electronic mixing rule
(IEMR). In this case, the partial volumes are adjusted in
order to get the equality of the electronic densities at a given
total volume. Practically, this approach rest on an ionization
model, such as the More ionization models,?? to predict the
ionization state at a given thermodynamical condition. Un-
fortunately, ionization models based on Thomas-Fermi de-
scription are strongly overestimating the ionization state in
the expanded regime. In this situation, a perfect gas estima-
tion of the ionization is usually preferred and is expressed as

PV=(1+Z")NkT. (10)
By comparing Eq. (10) with Figs. 3 and 4, we can compute
an average ionization for each species. For aluminum, we
obtain Z°=0.27 and 0.54 at a temperature of, respectively,
20 000 and 30 000 K. For gold, we have Z'=0.15 and 0.53
for the corresponding temperatures.

Mixture rules can be also used to predict the conductivity
spectra and the absorption spectra. Mixing conductivities is
highly nontrivial and depends on the conductivities of each
species as well as on their spatial arrangement. We can ex-
press the conductivity of the mixture in a “parallel” formu-
lation

Tmix = Q10| + 0,07, (11)
where «; are the volume fraction for each species. One can
also invoke a “serial” formulation for the resistivities «

PHYSICAL REVIEW B 76, 064204 (2007)

(12)

Kmix = Q1K + QK>

A more sophisticated model has also been proposed by
Landauer? and used by Shepherd® to interpret conductivity
experiments of strongly correlated plasmas of C,H;. In this
model, the conductivity of the mixture is given

Bay—1)oy+ Ba; - 1)

Omix =

¢
+{[(3C¥2— 1)0’2+ (30{1 - 1)0’1]24' 80'10'2}1/4).
(13)

For microscopically homogeneous plasmas and similar con-
ductivity values, we found that the two formulations (11) and
(13) of the mixture properties are leading to similar results.
This is also the case for the “serial” only if a volume fraction
can be defined as it is the case in the IMR formulation. With
the PDMR, each phase fills the whole volume. This leads to
a volume fraction equal to 1 and to a simple addition rule. In
this case, formulations (11) and (12) are giving a signifi-
cantly different estimation. We believe that the “serial” law is
not valid for microscopic mixtures. For the sake of simplicity
we will take the formulation (11) extended at finite fre-
quency, to obtain the conductivities of the mixture

Omix(@) = 101 (w) + @05 (w). (14)

D. Partial pressure mixing

To test the PDMR, we performed simulations for mixtures
M4 and M3 for each pure phase at the partial densities given
in Table I and for temperatures of 15 000, 20 000, 25 000,
and 30 000 K. As shown in Fig. 2 the PDMR yields an esti-
mation of the total pressure (triangle) in excellent agreement
with the results of the direct simulation of the mixture. These
pressures can also be predicted using the fit (7). For the M4
mixture at a temperature of 20 000 K, we obtain a pressure

1500
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Conductivity (Qxcm)
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-1

0 . .
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Conductivity (Qxcm)

Al 0.038 g/cm3

T

FIG. 6. (Color online) Calculated conductiv-
ity spectra for the pure Au (a) and Al (b) phases
at 20 000 K for the M4 mixture partial densities
and (c) comparison of the direct simulation re-
sults for the mixture (black line) with the results
L obtained using the PDMR mixing rule (red

-1

Conductivity (Qxcm)

T surface).

Energy (eV)

—_
[6;]
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TABLE III. Densities and volumic fractions determined with the IIMR for species 1 and 2 (aluminum and
gold), for mixture M4 and various temperatures. P, is the pressure after solving Eq. (9).

T Proix P P2

K GPa g/cm? g/cm? a a
15 000 0.48 0.089 0.832 0.435 0.565
20 000 0.76 0.097 0.782 0.399 0.601
25000 1.11 0.098 0.776 0.394 0.606
30 000 1.45 0.102 0.759 0.380 0.620

of 0.308 GPa for aluminum and 0.471 GPa for gold at the
partial densities of, respectively, p;=0.039 g/cm’® and p,
=0.471 g/cm? (see Table I). The sum of the partial pressures
yields a total pressure of 0.779 GPa for the mixture which is
in very good agreement with the direct computation of the
pressure (0.742 GPa).
The PDMR formulation (11) leads to a simple addition
rule for the conductivity
dc dc

Omix = 071

+ 0. (15)
This expression is consistent with a Drude model where the
total conductivity results from the total number of charge
carriers, if we assume the same relaxation time. The resistiv-
ity of the mixture is compared with the direct calculation of
the mixture in the lower panel of Fig. 2 and appears system-
atically lower than the direct computation, i.e., the conduc-
tivity of the mixture is lower than the sum of the conductivi-
ties in the PDMR.

Panels (a) and (b) of Fig. 6 show the optical conductivi-
ties of the pure phases at partial densities computed for mix-
ture M4 at 20 000 K. The interband transitions 3s-3p for
aluminum and 6s-6p, 5d-6p for gold are clearly identified as
well as the Drude behavior at low photon energy. The com-
parison between the sum of the partial contributions and the

direct computation of the mixture, shown in panel (c), brings
about two comments. First, as mentioned before, the pre-
dicted dc resistivity is much lower than the resistivity of the
mixture. Second, the interband transitions for gold are sys-
tematically shifted to higher energy. This shift is a density
effect which indicates some weakness in the PDMR formu-
lation. In other words, the atoms feel an effective density
much higher than the partial density p;=N,;/V,,. This effect is
corrected by the isothermal-isobaric mixture law.

E. Isothermal-Isobaric mixing

We now turn to the [IMR, as given by Eq. (9). This leads
to a rather different procedure to compute the partial densi-
ties. Starting from equal densities, we use the fit (7) to get
the partial pressure of each component. By varying the den-
sities, we then search for the combination which leads to the
same pressure for both species. The sum of the partial vol-
umes is then compared to the total volume. The partial den-
sities are corrected and the iterative process is restarted until
equal pressures and total volume conservation are obtained.
This procedure leads to very different partial densities as
shown in Table III for the M4 mixture. For example, at a
temperature of 20 000 K, we get a density of 0.097 g/cm?
for aluminum instead of 0.0387 g/cm? and 0.782 g/cm? for
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FIG. 7. (Color online) Same as Fig. 2 but with
the [IMR. Note the change in the partial densities.
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FIG. 8. (Color online) Resistivities versus internal energy. Com-
parison between PDMR (triangles), IIMR (open circles), direct cal-
culation with QMD (squares), and experimental data (black full
circles).

gold instead of 0.471 g/cm? for a pressure (equal for each
specie) of 0.76 GPa. In contrast with the PDMR model, the
partial densities are now depending on temperature.

A graphical interpretation of this process is shown in Fig.
5. In this scheme, the partial volumes are obtained by search-
ing the pressure value at which the horizontal distance be-
tween the two corresponding isotherms of aluminum and
gold exactly matches the total volume (heavy line in Fig. 5)

given by V,.;=A/p. The corresponding volumes and pres-
sure are indicated by arrows. It must be noted that the lead-
ing pressure is the result of the IIMR optimization procedure
and thus has no reason to coincide with the total pressure of
the mixture. Nevertheless, as shown in Table III, the result-
ing pressures are in close agreement with the direct simula-
tion.

The composition of the optical conductivities follows Eq.
(14), with the volume fractions given in Table III. The result
is shown in Fig. 7. The features of the pure phases are similar
to the one obtained in Fig. 6 with the same atomic transitions
but with broader peaks and shifted to lower energies. The
composition of the conductivities is now different. The total
dc conductivity is closer to the direct result, as shown in Fig.
8. We also note that the atomic transitions are now positioned
at the correct energy. In contrast, the intensity of the peaks is
reduced.

If we estimate the ionization using Eq. (10), we obtain the
electronic density using the partial densities given in Table
III. At 20000 K, we get a density of 5.8 10?° cm™ for
aluminum and 3.6 X 10%° cm™ for gold. At 30 000 K, we get
a density of 1.22X10?' cm™ for aluminum and 1.23
X 10?! cm™ for gold. From these results, we conclude that
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FIG. 9. (Color online) Computed absorption coefficient versus
energy. (Left) PDMR (red thick line) and direct mixture computa-
tion (thin line). (Right) same with the IIMR.

the IIMR is equivalent to the IEMR at high temperature, but
fails at low temperature due to a larger kinetic contribution
for the ions.

F. Absorption spectra

By using formulas (3), (4), and (6) we deduced the ab-
sorption spectra from the optical conductivities. The absorp-
tion spectra for both mixing models are shown in Fig. 9. In
black we show the spectrum obtained from the direct simu-
lation of the mixture. The red-thick lines correspond to the
spectra resulting from the composition of the pure phases
obtained using the PDMR (left figure) or IIMR (right figure).
It is clear from these results that the IIMR prediction from
the absorption spectrum is closer to the direct computation
than PDMR calculations. Once again, while the position in
energy of the maxima are correct, their intensity appears un-
derestimated when compared to the direct simulation results.
The high values of the partial densities obtained in the
PDMR model are clearly at the origin of this effect. It is not
clear, however, how the mixture law can be modified to in-
clude this effect.

V. CONCLUSION

To summarize, we have presented experimental and simu-
lation results for various aluminum and gold mixtures in the
warm dense matter regime. Direct QMD simulations of the
mixtures are in excellent agreement with experimental data
both for the pressure and resistivities. Overall, we also have
a good agreement for the pure elements equations of states
and conductivities. Various mixing rules have been tested
against full QMD simulations. We found that the predicted
total pressures are in good agreement with the direct simula-
tion results when using the PDMR. In contrast the resistivi-
ties of the mixture are underestimated when using this ap-
proach. The partial densities predicted with IIMR leads to
improved resistivity results for the mixture when compared
to the experiment. The optical conductivities and absorption
coefficients obtained using this scheme are also in much bet-
ter agreement with the result of the direct simulation of the
mixture.
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