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We report on a statistical approach to mode-locking transitions of nanostructured laser cavities characterized
by an enhanced density of states. We show that the equations for the interacting modes can be mapped onto a
statistical model exhibiting a first-order thermodynamic transition, with the average mode energy playing the
role of inverse temperature. The transition corresponds to a phase locking of modes. Extended modes lead to
a mean-field-like model, while in the presence of localized modes, as due to a small disorder, the model has
short-range interactions. We show that simple scaling arguments lead to observable differences between tran-
sitions involving extended modes and those involving localized modes. We link the thermodynamic transition
to a topological singularity of the phase space, as previously reported for similar models. Finally, we solve the
dynamics of the model, predicting a jump in the relaxation time of the coherence functions at the transition.

DOI: 10.1103/PhysRevB.76.064202

I. INTRODUCTION

Laser mode locking (ML) is well known in standard op-
tical resonators, which are characterized by equispaced
resonances.> ML in such a kind of system is a valuable
route for the generation of ultrashort pulses, in particular,
when it is “self-starting,” as due to the nonlinear interaction
between laser longitudinal modes.? Given the growing inter-
est in high-Q microresonators and photonic crystals,*> it is
interesting to consider ML in integrated devices, which could
trigger a new generation of highly miniaturized lasers emit-
ting ultrashort pulses (see, e.g., Ref. 6).

In this respect, there is a remarkable difference between
standard resonators and nanostructured cavities; indeed, the
latter are characterized by a nonuniform distribution of reso-
nances, given by a strongly modulated density of states
(DOS).> This situation favors a formulation of the analysis of
the self-mode-locking transition, based on a mean-field ther-
modynamic approach: this is the topic of the present paper,
also including the effect of some disorder in the system. The
thermodynamic approach to multimode interactions in vari-
ous physical frameworks is well established.” For example, it
was recently applied to transverse-mode interaction in
resonators®® as well as to standard-laser mode-locking
transition.!%-!2 This transition can be described in terms of an
effective temperature 7, which encompasses the level of
noise due to spontaneous emission and the amount of energy
stored into each mode. At high 7, the mode phases are inde-
pendent and rapidly varying (“free-run” or “paramagnetic
phase”); conversely, either reducing the spontaneous emis-
sion noise or increasing the pumping rate, a low-temperature
(“ferromagnetic”) phase can be reached, corresponding to the
mode phases locked at the same value. In the present paper,
we use a statistical mechanics approach to describe the
mode-locking transition, introducing a phase-dependent in-
teracting Hamiltonian and discussing its scaling property and
how it depends on the extended and/or localized nature of
the involved lasing modes.

A paradigm that has been recently shown to be very ef-
fective for describing the nonlinear interaction of many
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“modes” and the resulting phase transitions and/or kinetic
arrest is the potential energy landscape (PEL) approach (see,
e.g., Refs. 13 and 14). The PEL, as a manifold in the con-
figurational phase space, has many stationary points (typi-
cally minima and saddles),'> whose distribution strongly af-
fects the thermodynamics (and the dynamics) of the system.
Recently, this paradigm, developed to investigate the glass
transition phenomena, has been applied to the field of pho-
tonics, including optical solitons'®!7 and random lasers.'-!
In this respect, it is worth to note that the geometrical inter-
pretation of the laser threshold was recognized since the be-
ginning of laser theory, and is considered as one of the suc-
cessful applications of catastrophe theory, which classifies
the singularities of multidimensional manifolds.”? It is not
surprising, therefore, that the mode-locking transition can be
interpreted according to the thermodynamic and/or topologi-
cal transition point of view. Extending the topological ap-
proach to the nanolaser is interesting for different reasons: on
one hand, this provides an elegant and comprehensive theo-
retical framework to laser theory, and on the other hand, it
can be relevant from a fundamental physical perspective.

In this respect, we also investigate here the link between
thermodynamic properties (the presence of phase transitions
and their order) and topological changes of the energy hy-
persurface. Indeed, in recent years a “topological
hypothesis?!?? has been suggested to hold for systems un-
dergoing thermodynamic phase transitions: the latter are sup-
posed to be manifestation of topological discontinuities of
certain submanifolds in configuration space. Subsequently,
this topological hypothesis has been formalized in a theorem
for a strict class of systems, described by smooth, bounded
below, confining, and finite-range potentials: a topology
change is a necessary condition for the appearance of a phase
transition.?*>> Many works have been devoted to the study
of solvable model systems in order to test the correctness of
the above hypothesis and/or theorem,?0—3? obtaining a variety
of results (for a recent review, see Ref. 31). However, it is
worth noting that many of the analyzed models do not fulfill
the hypotheses of the theorem (being long range, not confin-
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ing, or not smooth). Also, the multimode laser model we
study in this paper does not fulfill the above hypotheses.
However, by analytically analyzing the topology of the en-
ergy hypersurface, we find that the topological hypothesis is
verified, finding a topological change at the same energy at
which a phase transition take places.

Finally, we report on the dynamics of the lasing modes.
We are able to give explicit expressions of the single-mode
and multimode first-order coherence functions of the laser
emission. Our analysis predicts a jump in the relaxation time
(and correspondingly in the laser linewidth) at the mode-
locking transition. The scaling properties of the threshold
average mode energy at the transition are found to be
strongly sensible to the degree of localization of the involved
modes.

The outline of this paper is as follows: In Sec. II, we will
recall the mode-coupling approach to multimode lasers. In
Sec. III, we will discuss the physical signatures of transitions
involving either localized or delocalized modes. In Sec. IV,
we will report on the thermodynamic approach. The analysis
of the topological origin of the laser transition is given in
Sec. V. In Sec. VI, we discuss the dynamics of the model,
focusing on measurable correlation functions. Conclusions
are drawn in Sec. VIIL

II. MULTIMODE LASER EQUATIONS

The coupled-mode theory equations in a nonlinear cavity
can be written in the form!!-19-32-34

dag JoH
= o () + [y - gl (0Flayo) + 7,0
t c9a‘Y
IH
== =t 7]6.(1‘), (1)
dag
with
H = HO + HI, (2)
and
1
H,= 2 (as - ys)|as|2 + Egs|as|4 = 2 Vs(as)~ (3)

In Eq. (1), s=1,2,...,N with N the total number of modes,
while a, is the complex amplitude of the mode at w,, such
that £, =w,|a,|? is the energy stored in the mode. Radiation
losses and material absorption are represented by the coeffi-
cient a,, while y,—g,|a,|*> represents the saturable gain term
and, as usual, the quantum noise term due to spontaneous
emission is given by a random term 7, such that
(n() (")) =2kpT 05, (2 —1"), where kp is the Boltzmann
constant and T}, is an effective temperature.'® The nonlin-
ear interaction term is

1 EE
HI = Re[ Z 2 g.quraxapaqar:| ’ (4)
{spqr}

where the sum is extended over all mode resonances such
that w;+w,=w,+w,. The term s=p=g=r is not included as
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it is already described by g,; the Hamiltonian H; describes
mode interaction due to the nonlinearity of the gain medium.
The field overlap is given by

\(I) w,w,W,
gqur Xaﬁyé( Wy W,

XEﬁ(r)Eﬁ(r)E;(r)Ef(r)dv, (5)

,— ),T)

where V is the cavity volume, y is the third-order suscepti-
bility tensor due to the resonant medium, and E;“ are the
components (a@=1,2,3) of the vectorial mode of the cavity
at the resonance w,. x is given, in the simplest formulation,
by the Lamb theory32 33 and, neglecting mechanisms like
self- and cross-phase modulation (which give phase-
independent contribution to the relevant Hamiltonian, see be-
low), can be taken as real valued; under standard approxima-
tions, the tensor g is a quantity symmetric with respect to the
exchange of any couple of indexes.

By letting a (t)=A,(t)explip,(t)], the H can be rewritten
as

H(G’ qD) = Hu + E Gqur COS(QDS + Cp =Py~ qu) d (6)
{spqr}

where H,=3,V(A,) only depends on the amplitudes and
Gopr=285psAAAA,. As discussed in the literature,'" Eqgs.
(1) are Langevin equations for a system of N particles mov-
ing in 2N dimensions and the invariant measure is given by
exp(=H/kgTpan)-

In a standard laser, the resonant frequencies are equis-
paced and this gives rise to various formulations of laser
thermodynamics, which are based on the fact that the w,
0=, t o, will only involve a limited number of interact-
ing modes. 111 The situation is drastically different for nano-
structured systems displaying a photonic band gap. It is in-
deed well established that in proximity of the band edge, a
DOS enhancement with respect to vacuum is obtained. All
the corresponding modes will have overlapping resonance
such that w,= wy, (Where ), is the position of the peak in the
density of states, which is assumed to be in correspondence
of the resonance of the amplifying atomic medium); addi-
tionally, the resonance condition w,+ w,=w,+ , need not be
exactly satisfied, but it is sufficient that the linewidth of the
corresponding modes needs to be overlapped for a relevant
interaction.>® Hence, for such a kind of system, it is interest-
ing to consider a mean-field regime where all the modes
interact in a limited spectral region around w,. For the mode-
locking transition, one can limit to consider the phase dy-
namics. Indeed, ML entails the passage from a regime in
which the mode phases are independent and rapidly varying
(free-run regime or paramagnetic phase in the following)®’
on times scales of the order of 10 fs (Ref. 37) to a regime in
which they are all locked at the same values (ferromagnetic
phase). In correspondence of this transition, the laser output
switches from a continuous wave noisy emission to a highly
modulated signal (which is a regular train of short pulses for
equispaced resonances). Mode-amplitude dynamics is not af-
fected (at the first approximation) by the onset of ML. In-
deed, for lasing modes y,> a,, so that the potential V(A,)
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(entering in the equations for the A, variables) has a single
minimum at A=+/(y,—«,)/g,. Provided that the potential
well is deep enough, i.e., the V; term dominates with respect
to the thermal noise 7, and the interaction term H;, we can
treat the dynamics of the A, variables as small fluctuations
around the minimum. As zero-order approximation, we can
neglect these fluctuations and consider the A as quenched
variables [A(r) = A? = A, having neglected also the mode de-
pendence of loss and/or gain terms in H,]. Within the above
approximations, the relevant subspace spanned by the system
is then given by the phases that are taken as the dynamic
variables (see, for example, Ref. 1 for a discussion of the role
of mode phases with respect to amplitudes in ML processes).

III. LOCALIZED VERSUS DELOCALIZED MODES IN
THE SELF-MODE-LOCKING TRANSITION

In previous works,'®!° we made reference to a completely

random resonator, for which the G coefficients were taken
Gaussian distributed with zero mean. This is the natural ap-
proach when dealing with strongly disordered resonators, in
which the involved modes can be localized or delocalized in
the structure and the corresponding resonances and spatial
distribution can have different degrees of overlaps (as in
Refs. 38-40). Here, we make reference to the opposite re-
gime, corresponding to the case in which the structure is
quasiordered, with the presence of a small amount of disor-
der. The disorder is such that the variations in the coupling
coefficients g, can be taken as negligible with respect to
their statistical average (g,,,,) = g; however, it is sufficient to
induce the existence of a tail of localized modes in the pho-
tonic band gap.*!

As discussed above, we consider mode resonances packed
in a small spectral region Aw (if compared with the central
carrier angular region, i.e., Aw <<€ wg). This kind of system is
very different from the standard laser cavity, with equispaced
mode frequencies. A prototypical structure is given by a pho-
tonic crystal doped by active materials. In the absence of
disorder, the involved modes are Bloch modes, which are
extended over the whole sample and are absent in the forbid-
den band gap. Their DOS is peaked at the band-gap edge.’ In
this case, the modes have overlapping resonances (the width
of each spectral line being determined by material and radia-
tion losses) and they also have non-negligible spatial overlap
(with exception of those mode combinations which are van-
ishing for symmetry reasons). In the presence of a small
amount of disorder, it is well established*! that a tail of lo-
calized states appears in the photonic band gap. Hence, the
localized states also have overlapping resonances in tiny
spectral regions in proximity of the band edge. Their spatial
overlap can be strongly reduced with respect to the Bloch
modes; however, the exponential tails of their spatial profiles
are expected to provide nonvanishing values for g. Localized
states can also be introduced intentionally, e.g., by using de-
fects in a planar photonic crystal slab waveguide* or in
coupled cavity systems (see, e.g., Ref. 6 and references
therein). In this case, the spatial overlap and the resonance
frequencies can be tailored at will. Thus, in the general case,
extended and localized states can be involved in the mode-
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locking transitions here considered. However, simple scaling
arguments lead to the conclusion that the two kinds of modes
display a macroscopic difference in their “thermodynamics.”
Extended modes. We start with considering the extended
modes. From the normalization, the modules of the eigen-
vectors E, are such that [dV|E |*=const. As a consequence,
denoting with V,, the volume over which a given mode is
different from zero, one has E(r)~ V;” 2. For extended
modes, V,*V and most of the modes are spatially over-
lapped, hence the coupling in Eq. (5) is different from zero
for all quadruples of modes and the sum in Eq. (6) involves
all the modes (within the spectral region Aw). In the absence
of strong disorder, the coupling is almost independent of the
quadruple of modes involved, g,,,=g. Given that |E(r)|*
~ V72, as stated above, and that y(r) ~const (i.e., in the ab-
sence of strong disorder, the local susceptibility will have
small fluctuations around its average), we get from Eq. (5)

g~ f X(O)|E,(r)[*dV o« V7' o« N71, (7)
\%4

as the number of modes is proportional to the volume. Con-
sidering the fact that the sum in Eq. (6) is over N* terms, one
obtains that H, N*: the Hamiltonian is hence more than ex-
tensive (for an extensive one, H>N). However, a thermody-
namics approach is still possible if one accepts that the ef-
fective temperature will depend on the volume: the effective
temperature will be taken as proportional to N2« V=2, as
detailed below, so that the resulting effective Hamiltonian
will be proportional to V. Physically, this corresponds to the
fact that the energy (and hence the pumping rate) needed to
induce the ML transition will grow with the number of
modes, if only extended modes are involved. In conclusion,
considering the invariant measure (denoting A;=A, g,

=g, and G,,,, = G=gA*"), one has
HI gA4
eXp(— ) =exp| - 2 cos(ps+ 0= 9= @)
kT pain { kBT path spqr R
gA'N? 1 (
=exp| - — 2, cos(o,+¢@,— ¢
kBTbath N : spqr ! !
- ()Dr):|
= exp[- BH'“"], (8)

where B=|g|A*N?/kyT,,=1/T><N? is an inverse adimen-
sional temperature, and the mode-phase-dependent (exten-
sive) Hamiltonian is given by (within an irrelevant additive
term)

H(eXt)=L3E [l _COS(()DS-'-(pp_qu_(Pr)]' (9)
N spqr

In Eq. (9), we have used the fact that g <0 in all the physi-
cally relevant regimes. No transition is expected for g>0
(corresponding to “antiferromagnetic” interactions), as de-
tailed below. Note that as we assumed that the condition
o+ w,=0,+w, is not exactly satisfied, and possibly due to
the presence of disorder, the integrand in Eq. (5) might have
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oscillations or fluctuations in sign that can affect the scaling
of g with volume (the case of completely random fluctua-
tions leads to a scaling g V32 and to an extensive Hamil-
tonian as in Refs. 18 and 19). Intermediate regimes might be
present depending on the strength of the disorder.

Localized modes. Next, we consider localized modes, that
exponentially decay in space. Defining V, as above, it turns
out that it does not scale with the volume V of the sample,
but can be written as V0=L3, where L, is an average local-
ization length. The overlap coefficients g, will be nonzero
only if the quadruples of modes spgr have large spatial over-
lap, i.e., they are “neighbors in space.” The integral in Eq.
(5) is over the region where all the four modes are nonvan-
ishing, which is a finite region that does not depend on V:
therefore, the couplings g, are independent of the volume
in this case. Hence, the sum in the Hamiltonian will only
involve first neighbors and H;*V, as is usual for a short-
range interaction. For the invariant measure, we will have
(the angular bracket in (spgr) denoting sum over first neigh-
bors)

H A
exp(— d ) =exp| — & > cos(¢,+ @, — @,
kgTpam kgTpam/

spqr)
- ()Dr) :|

= exp[- BH"], (10)

where B=|g|A*/kgT ;= 1/T will not depend on the system
size (we stress that the system size must be such that a large
number of localized modes are present), and the Hamiltonian
(within irrelevant additive constants) is

H(IOC): 2 [1 _COS((PX+(P[)_(PL]_(PV)]‘ (11)
(spqr)

Summarizing, if the transition involves extended modes, the
effective temperature for the critical transition is expected to
depend on the size of the system; conversely, for localized
modes the critical temperature will be independent of the
system size.

Unfortunately, at variance with fully connected (or “mean
field”) models as Eq. (9), analytical treatment of short-range
Hamiltonians as Eq. (11) is almost always impossible and the
analysis can only be numerically performed. However, it is
well established within the statistical physics community that
mean-field models obtained from first-neighbor systems con-
serve most of the thermodynamics properties, and more spe-
cifically, the existence of a thermodynamic transition, at least
above the so called “lower critical dimension” d; (for ex-
ample, for the Ising model d;=1, for the XY model d;=2).
Our model falls into the class of XY models, so we expect
that the transition exists as long as d>2, also in the case of
localized modes, and the following analysis applies at least
qualitatively. Since Eq. (9) can be analytically treated for
thermodynamic, topological, and dynamic properties, we
will limit to this model in the following. The existence of a
thermodynamic and/or topological transition is expected in
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the general case, while the different scaling properties of the
effective temperature enable one to discern localized and de-
localized interactions.

IV. THERMODYNAMICS

In this section, we study the thermodynamics of the laser
Hamiltonian in the mean-field approximation [Eq. (9)],
within the quenched amplitude approximation. The partition
function is

7= J d(pe_'BH(‘P), (12)

where H is

1
:_32 [I_COS((PX-'_(P[)_(P(I_(PV)]‘ (13)
spqr

The Hamiltonian (13) is very similar to that defining the k
trigonometric model for k=4, introduced in Ref. 30 with the
aim of studying the relation between phase transitions and
topological property of the potential energy surface.??#>43

Defining the “magnetization”

1 ) .
=—> e =ge' 14
e=ye &', (14)
where € and ¢ depend on {¢,}, we have

1
H=Re|:ﬁ2 [1 —exp i(<PS+ Cp =Py~ @r)]‘|

spqr
=Re{]%1v4(1—z2z*2)]=1v(1—§4). (15)

By definition, a vanishing z denotes uncorrelated phase, as in
the free-run regime; conversely, if z# 0 the phases of the
modes are correlated and locked. The thermodynamics of the
mean-field model is exactly solved by neglecting the corre-
lations between different degrees of freedom and obtaining
an effective Hamiltonian that contains a parameter to be de-
termined self-consistently. Introducing the mean (complex)
magnetization {=(e’?) and substituting in Eq. (13) the ex-
pression

eI Bt =00 oI @5l ¥p) (e I%a) e I%r)
+ (/) el ¥p(e %) (eI #r)
+ <ej¢s><ej¢,,> e—j:p,,< e—j:p,)
+ (&%) e/ #r) (eI ¢a)e I Or
— 3{e/s) el ) (eI Pa) (eI ?r)
=200 (/0 + 7)) =387
=47 cos - 37", (16)

where the last equality stands because we have chosen { to
be real without loss of generality (corresponding to choosing
a particular magnetization of the low-temperature state), the
effective Hamiltonian & per degree of freedom reads as
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FIG. 1. (Color online) Free energy f({)—f(£{=0) as a function of
magnetization ¢ at different temperatures. From high to low: T
=0.910, 7,=0.717, T=0.616, T,=0.548, and T=0.504. T, marks the
appearance of the unstable minimum, and 7. is the transition tem-
perature at which the solution with {>0 becomes thermodynami-
cally stable.

h(e)=1+3-47 cos ¢. (17)
The self-consistent equation for  turns out to be
L,(4BL)
{={cos @y = =, (18)
1o(4BL)

where Io(a):(Zw)"f(z)"dgo exp(a cos ¢) and I,(a)=I(a) are
the modified Bessel function of order 0 and 1, and (---); is
the average over the probability distribution

e~ Phe)

Z s

P(e) = (19)

with

2
Z= f dee P9 = 2mePISD 4B, (20)
0

The solutions of Eq. (18) are the extrema of the free energy
f as a function of ¢,

Bf=-1InZ=B(1+37") - In27l(4B5),  (21)

whose absolute minimum is the thermodynamical stable so-
lution.

The value (=0, corresponding to the paramagnetic solu-
tion, always solves Eq. (18), but it gives the stable (lower
free energy) solution only for low 8 (high 7). On lowering 7,
at T7,=0.717 other solutions appear such that {# 0. However,
the stable solution is still the paramagnetic one {=0. At 7,
=0.548, the solution {# 0 becomes the stable one, and a
first-order phase transition takes place. In Fig. 1, the { de-
pendence of the free energy f is reported for different tem-
peratures. The stable solution {(7) is shown in Fig. 2(a) (full
line), while dashed lines denote unstable solutions (local
minimum and maximum). In Fig. 2(b), the T dependence of
the energy,
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FIG. 2. (Color online) (a) Magnetization { and (b) energy e as a
function of temperature. Full lines correspond to the thermodynami-
cally stable solution of Eq. (18), whereas dashed lines are the un-
stable solutions. At 7,.=0.548, a first-order thermodynamic phase
transition takes place, while at 7,,=0.717 unstable solutions appear.

J
e= aﬂan—l 2, (22)
is shown for the stable (full line) and unstable (dashed lines)
solutions.

A remark on the sign of the coupling g is as follows. For
g>0, the sign of the cosine term in the Hamiltonian (13) is
positive and the self-consistent equation reads (=
~1,(BA4L) 11,(BA4L%), which has the only solution ¢=0.
Then, in this case the phase transition does not take place.

V. TOPOLOGY

After having ascertained the existence of a first-order
phase transition, we consider the property of the stationary
points (saddles) of the potential energy landscape of the
system.3° As said in the Introduction, in recent works,2223 it
has been conjectured that phase transitions are signaled by
discontinuities in the configuration space topology. More
precisely, for a system defined by a continuous potential en-
ergy function V(g) (¢ denotes the N-dimensional vector of
the generalized coordinates), a thermodynamic phase transi-
tion occurring at 7. (corresponding to energy V) is the mani-
festation of a topological discontinuity taking place at V.
(topological hypothesis). Such a connection has been proven
to hold for smooth, confining, bounded below, and finite-
range potentials.?>>3 For this class of systems, a topology
change is a necessary condition for the appearance of a phase
transition. The most striking consequence of this hypothesis
is that the signature of a phase transition is present in the
topology of the configuration space independent of the sta-
tistical measure defined on it. Through the Morse theory,
topological changes are related to the presence of stationary
points of V and, more specifically, to the discontinuous be-
havior of invariant quantity defined on them, as the Euler
characteristic y. Subsequent works***> have shown that, at
least for some model system, a weak topological hypothesis
applies in place of the strong one: the V4 at which a topo-
logical transition takes place does not coincide with the ther-
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modynamic one, V,.# V,, but is related to it by a saddle map
M, from equilibrium energy level to stationary point energy
[M(V,.)=V,]. Then, the role of saddles has been demon-
strated to be of high relevance for the topological interpreta-
tion of thermodynamic transitions. Here, we report on the
saddle properties of the considered nanolaser model.

The stationary points ¢ are defined by the condition
dH(p)=0 and their order is defined as the number of nega-
tive eigenvalues of the Hessian matrix H;;= (*H/ d¢,0¢;)|5.
To determine the location of stationary point, we have to
solve the system

oH
—=4&sin(g - ) =0, V&, (23)
Jpy

where we have used Egs. (14) and (15).

A first group of solutions arises for £=0; from Eq. (15),
we have H=N(1-¢£*), and then the stationary points with
&@)=0 are located at the energy e=H(p)/N=1. Now, we
restrict ourselves to the region e # 1 because, as we will see
at the end, the quantities in which we are interested are sin-
gular when e=1. For ¢ # 1, Eq. (23) becomes

sin(g,— ) =0, Vk, (24)
and its solutions are
Pr= [¢+ mk'”-]mod 21> (25)

where m;={0, 1}. The unknown constant ¢ is found by sub-
stituting Eq. (25) in the self-consistency equation

7= geiz//:N—lz eiqoi:N—IE ! (rmm) :N‘lei'/’z (= 1)™.
(26)
Introducing the quantity n(¢) defined by

n=N"'>m, 1-2n=N">(-1)", (27)

we have, from Eq. (26),
£=1-2n. (28)

As € is positive defined, the only solutions are for n<<1/2:
there are no stationary points with n>1/2. For n<1/2,
can assume all the values in [0,27) for any choice of the set
{m;} and all the stationary points of energy e+ 1 have the
form

me=(0,1) (29)

G =+ mmlneg 2 M ={my},

under the condition

n=N"'> m <1/2.
k

The Hessian matrix is given by
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4 1
Hy= 452{— X,gz sin(; = ¥)sin(e; = ¢) = cos(¢i = )

+ ;€ cos(¢; = lﬁ)}- (30)

In the thermodynamic limit, it becomes diagonal,
A3
H;;=4& 5 cos(¢;— ). (31)

Neglecting the off-diagonal contributions (their contribution
changes the sign of at most one of the N eigenvalues®’), the
eigenvalues N, of the Hessian calculated at the stationary
point @ are obtained substituting Eq. (29) into Eq. (31),

A= (= 1), (32)

Therefore, the stationary point order »({), defined as the
number of negative eigenvalues of the Hessian matrix, is
simply the number of m;=1 in the set m associated with @;
we can identify the quantity n(¢) given by Eq. (27) with the
fractional order ¥(p)/N<1/2 of @. Then, from Egs. (15) and
(28), we get a relation between the fractional order n(@) and
the potential energy e(@)=H(&)/N at each stationary point
@. It reads

n=sl- (-0 (33)

where we have used the condition n<1/2. Equation (33)
brings the condition

1-e>0, (34)

so there are no stationary points for ¢ > 1, while for e <1 the
fractional order n=v/N of the stationary points is a well
defined monotonic function of their potential energy e, given
by Eq. (33).

The number of stationary points of a given order (apart
from a degeneracy factor) is proportional to the number of
ways in which one can choose v times 1 among the {m,}, i.e.,
(IZ) Following Ref. 30, its logarithm,

Y
ole) = Nlir; N 1 Nn(e)
=—n(e)lnn(e)—[1-n(e)]In[1 -n(e)], (35)

represents the configurational entropy of the saddles. Substi-
tuting in this expression Eq. (33), we have

ole)=— %[1 —(1- e)“ﬂln{%[l —(1- e)““]}

- %[1 +(1- e)“‘*]ln{%[l +(1- e)1/4]}. (36)

For ¢>1 indeed we have, obviously, o(e)=0. This quantity
is related to the Euler characteristic y of the manifolds M,
={¢|H(p) <Ne} (Ref. 30) and its singular behavior around
the point e=1 is related to both the presence and the order of
the phase transition that occurs.

In Fig. 3, the quantity o is reported as a function of en-
ergy e: one can see that the presence of a phase transition is
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FIG. 3. (Color online) The entropy of saddles o as a function of
potential energy e.

signaled by a singularity of o(e) at the transition point e=1.
It is worth noting that the curvature of the quantity o(e)
around the transition point e=1 is positive, according to what
was found in Ref. 30 for first-order transitions.

Summarizing, the study of stationary points shows that
the presence of the phase transition is signaled by the sta-
tionary point properties. More specifically, the singular be-
havior of the configurational entropy o(e) at transition point
e=1 is the topological counterpart of the thermodynamic
transition: the topological hypothesis is verified for our
model. We note, however, that these findings do not allow
one to discriminate between the strong and weak topological
hypotheses, as in this case the map M from equilibrium en-
ergy levels to stationary point energies is trivially the identity
at the transition point e=1: M(1)=1.46

VI. COHERENCE PROPERTIES AND DYNAMICS

The dynamics of interacting lasing modes close to the
mode-locking transition can also be investigated; it leads to
explicit results for measurable correlation functions.

A. Single-mode first-order coherence
We start considering the single-mode (“self”) first-order
coherence:*
(E(t0)E, (1o +1))
(E,(10)E, (1))
where E, (1) = \e";nan exp(—iw,t) is the electric field emitted at
the angular frequency w, (omitting an inessential factor de-
pending on the point in space where the field is measured).

For quenched amplitudes, w,,AﬁEwOAZ, one has (omitting
the mode index n)

g = (37)

1
Ft )(t) it
F(0)

where F(U(¢) is the unnormalized single-mode first-order co-
herence given by

RROE (38)

F(l)(t) - <ei<p(t)e—i¢>(0)>’ (39)

and we used the fact that at equilibrium, the time average
over t, can be replaced by a statistical average.*’ Below the
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F(t) / F(0)

FIG. 4. (Color online) Time dependence of the self-correlation
function F(r) at different temperatures. From left to right: T
=0.1,0.5,0.6,1.0 (7.=0.548). Time is in normalized units.

threshold (T>T,), the phases are uniformly distributed in
[0,27), so that FV(t—)=0. In contrast, at mode locking,
the phase is blocked around a fixed value, thus F)(r— o)
#0.

We are interested in the time-delay profile of coherence
function given by

F(t) = FO(f) = FD(0). (40)

F() can be explicitly calculated in the mean-field theory (see
Ref. 46 for all the details of the computation). In fact, it can
be shown that the single-mode dynamics can be mapped into
the effective equation

y¢(t) =48 sin @(1) + (1), (41)

where { is the thermodynamic value of the magnetization we
determined in Sec. (4), 7 a 5-correlated Gaussian noise with
variance 2yT, and vy a constant fixing the time scale (in the
following, we use units such that y=1).

From Eq. (41), it is evident that in the paramagnetic phase
(£=0), the phases will freely diffuse, while in the ordered
(mode-locked) phase, they fluctuate around a given value
that, without loss of generality, can be taken as ¢=0. Equa-
tion (41) can be solved and the self-correlation function of a
single mode,

F(t)= <eiw(t>e—i<p(0)> _ <ei<p(t)><e—i<p(0)>’ (42)

can be computed.*® Using symmetry properties, the above
function can be written as

F(t)=F.(t) + Fy(1), (43)
where

F(1) = (cos ¢(t)cos ¢(0)) = (cos ¢(1))(cos ¢(0)),

Fy(1) = (sin @(t)sin ¢(0)). (44)

Following Ref. 46, the self-correlations in Eq. (44) can be
numerically determined and they turn out to be nearly expo-
nential at all temperatures, F,(f)<e™% and F(t)>e . In
Fig. 4, the function F(r)/F(0) is shown for different tempera-
tures. Upon increasing T, the decorrelation time increases for
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FIG. 5. (Color online) (a) Relaxation time 7, of the self-
correlation function F,.(r) as a function of 7. Full line corresponds
to stable state (paramagnetic above 7. and ferromagnetic below it).
Dashed lines refer to unstable solutions. (b) Relaxation time TCG of
the collective correlation function G,(t) as a function of 7. Full and
dashed lines are the same as in (a).

T<T,, while it decreases for T>T, (after a sudden jump at
T.). This behavior is evident when analyzing the T depen-
dence of the relaxation time. In the upper panel of Fig. 5, the
quantity 7. is shown as a function of temperature. Full lines
refer to stable states, while dashed lines to unstable ones. We
note that in paramagnetic high-T phase, 7. (and 7,) have a
1/T dependence, as expected for free Brownian motion. In
the low-T phase, the behavior of 7, (not shown in the figure)
is very similar to that of 7.

Summarizing, in the absence of mode locking, the single-
mode first-order coherence function has an exponential trend
(corresponding to a Lorentzian linewidth), whose relaxation
time decreases as the average energy per mode is reduced
(i.e., the temperature is increased). At the mode-locking tran-
sition, the coherence function is expressed as the sum of two
exponentials (corresponding to the two quadratures of the
phase-modulated laser signal), whose time constants have a
jump with respect to the free-run regime, and decreases
while increasing the average energy per mode (and hence
reducing the temperature).

B. Multimode first-order coherence

Here, we consider the multimode (“collective”) first-order
coherence:

(E"(10)E(1+1))

W) =
&= T )

(45)

with E(1)=3,w,a, exp(—iw,?). In the quenched amplitude
approximation, proceeding as above, it is possible to write

G(l)(t) —iwgt

D)= — 2

(46)

where we have taken w, = w, (since all the modes are taken
as densely packed around w,, small differences between w,
and w, can be embedded in the phase ¢,), and
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GV = #2 (elenDemien @) = (z()"(0)) (47

is the correlation function of the magnetization z(r)
=N"'S, exp[ig,(t)]. We can write

GY(1) = GV (o) + ]%,G(t) =2+ ]%]G(t), (48)

where G (0)=¢? is the asymptotic value (we recall that ¢
=(z) is assumed real), which is acquired at the mode-locking

transition, and the collective connected correlation function
G(1) is defined as

G(n)=NGM (1) - GV()]

— ]%E [<ei¢n(t)e—iwm(0>> _ <ei<pn<t)><e—i<pm(0)>]. (49)

nm

This function has a finite limit for N— oo (see the Appendix),
which can be computed following Ref 46. As for F(r), G(z)
can be written as a sum of two terms,

G(1)=G(1) + G,(1), (50)

with

G =13 [{cos 9,(11c0s 0, (0)) = {e0s &, (1)c0s 6,(O)],

nm

G0 =3 [{sin 9,(0sin ¢,0)) (51)

Again, one finds an exponential decay, G.(t)yxe™ % and

Gy(t)xe™ 4 In the lower panel of Fig. 5, the relaxation
time Tf is shown as a function of temperature. We hence
expect a trend for G(7) which resembles F(¢); however, it is
worth noting that the quantity Tf diverges when T— T, that
is, when, starting from low-7 phase, the point where the
unstable solution (dashed line) disappears is approached. The
occurrence of the thermodynamic transition at 7.<T, pre-
vents the divergence of 7. The 7 (not shown) does not
diverge at T,,.

C. Multimode second-order coherence

We also consider the multimode (collective) second-order
coherence:

a (E"(to)E"(tg + ) E(to)E(ty + 1)) _ U(t)I(tg + 1))

@2)(4) = :
& (E (19)E10))? T
(52)
again with
E(1) = 2 Vw,a,en o 2(t)e . (53)
We get
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G2
GP()’
where G(1)=(z()z"(1)z(0)z"(0)). We can decompose this

function in its connected components [see Eq. (4.23) Ref.
48]. Recalling that {=(z) is assumed real, we get

G2(1) = (2" ()2(0)27(0)) + {G5(1) + (2(0)"(0))?

+ (2(02(0))o* + K20z (0))|* + &, (55)
where the function Gs(¢) is a sum of connected three-point
functions: G(¢)=2 Re[(z(1)z"(1)z(0)).+(z(¢)z(0)z"(0)),]. Us-
ing the results of the Appendix, we have
(z(0z"(1)z(0)z°(0)), < N3 and G;*N2; from Eqs.(49) and
(51), we have

g2 = (54)

(2(0)z°(0)), =N"'G(0),
(z(02(0). =N"'[G.(1) - G,(1)],

(z(027(0)), =N""[G.(1) + G,(0)]. (56)
Then, we obtain

G(0)?+2G.(1)* +2G,(1)?
N2

GP(n =0+ +{G5(1) + O(N73).

(57)
In the paramagnetic phase, {=0, and by symmetry G(r)
=G.(1)=G(t)/2; moreover, these functions tend to 0 for 7
— . Then, we get
G(0)>+2G.(1)* +2G,(1)?
G(0)?
LG
G0

P =

1+|gW()? (58)

where we also make use of Eq. (48). This result is indeed
what we expect for light modes evolving independently and
rapidly.

In the mode-locked phase, Eq. (58) will not hold but a
relation between g and g\ can still, in principle, be de-
duced from the knowledge of function Gs(z), using Egs. (57)
and (48). Future works will address this point.

VII. CONCLUSIONS

By using a simple model that is expected to describe mul-
timode dynamics of tightly packed extended and/or localized
modes in a nano-optical resonator, we predict the existence
of a first-order phase-locking transition when the averaged
energy per mode is above a critical value (correspondingly,
the adimensional effective temperature is below T,). This
value depends on the average value of the mode-overlap co-
efficient g. If the transition involves extended modes, one has
(omitting indexes) g = w? [ |E|*dV= x,wjV", with x, a ref-
erence susceptibility value. Conversely, if localized modes
are involved, it is g= XOV%w%, where V) is the average local-
ized mode volume (VL with L, the localization length).

PHYSICAL REVIEW B 76, 064202 (2007)

In the former case, for a fixed spontaneous emission noise
Tyam 1t is found that the critical mean energy per mode is V
dependent,

kgTpanV

TCX 0

£ = woA” = : (59)

while for localized modes

3
£ = A2 = 4/ % (60)
X0

Hence, the critical energy for the phase-locking transition
has very different scaling behavior with respect to the system
size, depending on the degree of localization of the involved
modes. In the general case, one can expect intermediate re-
gimes between those considered, so that the trend of the
critical energy (determined by the amount of energy pumped
in the system per unit time, i.e., the pumping rate) versus
system volume is an interesting quantity which can be ex-
perimentally investigated. A topology-thermodynamics rela-
tionship has been evidenced for our model, corroborating
previous findings on this topic: the thermodynamic transition
is signaled by a singularity in the topological quantity o.

The exact solution of the dynamics of the model predicts
the divergence of the relaxation time of the first-order coher-
ence function g'" at the transition. This behavior might be
observed in experiments; the different scaling with respect to
the system size also affects the position of the transition, as
determined by the predicted jump in the relaxation time or,
equivalently, in an abrupt change of the single-mode laser
linewidth while varying the pumping rate.

This analysis points out the rich phase-space structure dis-
played by these systems, while varying the amount of disor-
der or the profile of the density of states. Hence, nanolasers
not only may furnish the basis for highly integrated short-
pulse generators, but are a valuable framework for funda-
mental physical studies. These deserve future theoretical and
experimental investigations and can be extended to other
nonlinear multimode interactions.

APPENDIX

We discuss here the scaling of the correlations of z when
N — 0, The basic fact is that the variable z is intensive and,
for a mean-field system, has a probability distribution of the
form*

Py(z) =M@, (A1)

where F is related to the thermodynamic free energy of the
system. Consider the generating functional

NP = (N7 = f dzeMFEH] (A2)

then for large N, F(j)=max[F(z)+,z] and it is a quantity of
order 1. The connected correlation functions®® are deriva-
tives of NF(j) with respect to Nj:
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8NF(j)

@ |~ W

ky _
(&)= o &) (A3)

j=0

This simple argument shows that (z¥). o N'=*. In particular,

(e=(P) = ()? =N,

(2. =(2) = 3N, — (2 =« N2,

PHYSICAL REVIEW B 76, 064202 (2007)

(2= () - HN D) = 3= = NP (Ad)

We assumed that z is real but the same derivation can be
repeated for a complex variable; the only difference is in the
definition of the connected correlation functions.

For the dynamics, one can write a similar expression for
the probability of a trajectory z(z) (see Ref. 46 and references
therein):

Polz()] = 0

Repeating the derivation above using functional integrals,
one obtains exactly the same results for the scaling with N.
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