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We show here how first-principles quasiharmonic approximation �QHA� calculations in its simplest stati-
cally constrained form can be used to predict crystal structures at high temperatures. This approximation has
been extensively used to investigate thermodynamic properties of Earth forming minerals and has offered
excellent results for the major mantle phases at relevant conditions. We carefully compare QHA predictions of
crystal structures using the local density approximation with crystallographic data in MgSiO3 perovskite at
high pressures and temperatures. Small but systematic deviations in the lattice parameters �at most 0.3%�
appear at high temperatures �T�2000 K� and are associated with the development of deviatoric thermal
stresses. An iterative scheme is proposed to eliminate these spurious thermal stresses and further improve the
quality of the predictions of this popular and successful thermodynamics method.
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I. INTRODUCTION

The quasiharmonic approximation1 �QHA� is a simple
and powerful method for evaluating free energies using den-
sity functional theory.2 As opposed to molecular dynamics,
its only available alternative so far, the QHA remains inex-
pensive computationally and valid below the Debye tempera-
ture. Here, we describe its simplest and most used form, the
statically constrained QHA, indicate its conditions of valid-
ity, test its predictions for crystal structures against experi-
mental data, and show that the quality of these predictions
can be further improved by the relaxation of deviatoric ther-
mal stresses. An ideal QHA calculation should, therefore,
involve a self-consistent cycle that minimizes deviatoric
thermal stresses to a predefined level, and we propose a sys-
tematic scheme to achieve this. Systematic approaches are
important especially when investigating materials with a
large number of structural parameters. Crystallographic mea-
surements at combined high pressures and temperatures are
also very challenging, and there are few studies to date3 that
combine both high pressures and temperatures. In addition,
most of these measurements register only lattice parameters,
not internal ones.

As an example, we chose MgSiO3 perovskite �pv�, the
most abundant mineral in the Earth’s mantle. It has a non-
trivial crystal structure with 20 atoms per unit cell and ten
structural degrees of freedom, and is one of the most studied
materials at high pressures and temperatures.4–9 Current
crystallographic data on MgSiO3 pv vary up to 60 GPa and
2600 K, a condition pertaining to the Earth’s lower mantle.
We analyze and explain why predictions of the QHA com-
pare well with experiments and, most importantly, why they
should be reliable at Earth’s lower mantle conditions.

II. STATICALLY CONSTRAINED QUASIHARMONIC
APPROXIMATION

The free energy according to the statically constrained
QHA is given by

F�V,T� = �U�V� + �
qj

��qj�V�
2 � + kBT�

qj

ln�1 − e��qj�V�/kBT� ,

�1�

where U�V� is the static energy versus volume obtained after
a full structural relaxation under isotropic pressure. ��V� is
the phonon spectrum at these fully relaxed structures. The
second term is the zero-point motion energy FZP, and the
sum of the two terms in brackets is the energy at T=0 K. The
last term in Eq. �1� is the thermal excitation energy Fth. Bolt-
zmann’s and Planck’s constants are, respectively, kB and �.
The entropy S and pressure P are then obtained from F using
standard thermodynamic relations,1

S = −� �F

�T
�

V
and P = −� �F

�V
�

T
. �2�

The known quantities U, T, V, S, and P directly give the
Gibbs free energy

G = U − TS + PV . �3�

The isothermal elastic moduli can then be evaluated from the
second derivative of G with respect to the strains �i and � j �in
Voigt’s notation�,

cij
T�P,T� =� �2G

��i�� j
�

P,T
. �4�

At this point, it is fundamental to note that the crystal
structure and phonon frequencies depend on volume alone.
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This is because all structural parameters under pressure have
been determined by static calculations and are given at
Pstat�V� only. Note that at a certain V, Pstat indeed depends on
the exchange correlation functional used, but since the
structure/volume relation depends only mildly on this func-
tional, structural predictions at high P-T’s through volumet-
ric effects carry only a very mild dependence on the func-
tional. Then, at T=T�, the pressure P��V ,T��, evaluated
using expressions �1� and �2�, contains contributions from
zero-point and thermal energies, i.e., P�= Pstat+ PZP+ Pth,
where

PZP =�− �FZP�V,T�
�V

�
T�

and Pth =�− �Fth�V,T�
�V

�
T�

.

�5�

No further structural relaxation is performed at T�. The func-
tion V�P� ,T�� is then obtained after inverting P��V ,T��.
Therefore, in this statically constrained QHA calculation, if
V�P� ,T��=V�Pstat�, then structural parameters and phonon
frequencies at �P� ,T�� and at Pstat�V� are the same.

This fundamental consequence of the statically con-
strained QHA can be tested against high P-T experimental
data of MgSiO3 pv. This is a direct test of the accuracy of
this approximation. If the test is favorable, this procedure can
be used to predict structures at high P-T’s. MgSiO3 pv has an
orthorhombic structure with the symmetry group Pbnm. The
unit cell contains 20 atoms. Simultaneously ten structural
parameters must be relaxed: the three lattice parameters a, b,
and c plus the seven internal parameters. Optimization of
MgSiO3 pv is performed using the variable cell shape mo-
lecular dynamics method,10 using the quantum ESPRESSO

package.11 Phonon dispersions were computed using linear
response theory.12 They have been reported13 and used for
elasticity calculations14 in earlier publication.

Before making comparisons with experiments, one must
be careful to limit this comparison to the P-T domain where
quasiharmonic predictions are expected to be reliable. This
P-T domain can be defined by a posteriori inspection of the
thermal expansivity,14

� = −� 1

V

�V

�T
�

P�
, �6�

resulting from statically constrained calculations. Experi-
ments show that at high temperatures, � should increase lin-
early with T.15 However, quasiharmonic calculations display
a superlinear behavior. Figure 1 shows the calculated thermal
expansivity as a function of temperature for various pres-
sures applied to MgSiO3 pv. The inflection points of �, as
defined by ��2� /�T2�P=0, correspond to the locus where �
starts to vary superlinearly with increasing temperature.
Therefore, the inflection curve of � constitutes a realistic
criterion for separating the domain of validity of the QHA
from the invalid regions. This boundary is labeled “QHA
boundary” in Fig. 1. In all figures, solid and dashed lines are
used for predictions made within and outside the regime of
validity of the QHA, respectively. We remark that the higher
the pressure, the larger the temperature domain of validity of

the QHA, indicating that anharmonicities decrease with pres-
sure in the absence of phonon softening. The location of the
experimental melting curve of Zerr and Boehler16 is also
shown. At melting, anharmonic interactions are no longer
negligible.17,18 As can be seen, the valid QHA domain is
clearly well below the melting curve. The QHA also remains
valid along the whole mantle geotherm,19 except maybe at
conditions at the top of the lower mantle, i.e., 23.5 GPa
where MgSiO3 pv becomes the stable structure. We finally
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FIG. 1. �Color online� Thermal expansivity as a function of
temperature for various pressures. The black line, labeled “QHA
boundary,” is defined by the position of the inflection points of
��P ,T�, as described in the text. The melting curve �Ref. 16�, the
location of the mantle adiabat �Ref. 19�, and the postperovskite
phase boundary �Ref. 14� are also shown.
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FIG. 2. �Color online� Comparison between lattice parameters
predicted by the QHA and experimental data as a function of vol-
ume. The LDA and LDA plus zero-point motion equilibrium vol-
umes are also compared to the experimental equilibrium volume at
0 GPa. Experimental data are from Refs. 4–9. Temperatures vary
from 295 to 1024 K for Wang et al. �Ref. 9�, from 293 to 2668 K
for Fiquet et al. �Ref. 4�, from 298 to 1173 K for Utsumi et al.
�Ref. 8�, from 293 to 2000 K for Funamori et al. �Ref. 5�, and from
77 to 400 K for Ross and Hazen �Ref. 6 and 7�. Solid lines are from
theory.
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notice that the postperovskite �ppv� transition phase
boundary20 falls within the domain of validity of the QHA
for pv and ppv phases.

Figure 2 shows the variation of lattice parameters a, b,
and c as functions of volume obtained by several high P-T
experiments �data points� as compared with the static local
density approximation �LDA� prediction �full line�. Figure 3
shows the same variation now for the internal parameters, as
compared to available experimental data points. Experiments
were performed under various P-T’s, for temperatures vary-
ing from 70 �Refs. 6 and 7� to above �2600 K 	e.g., in
Funamori et al., T’s vary from 293 to 2000 K �Ref. 5�; in
Fiquet et al., T’s vary from 293 to 2668 K �Ref. 4�
 and
pressures varying between 0 and 60 GPa. Clearly, from Fig.
2, all experimental lattice parameters obtained at various
P-T’s lie on or very close to the theoretical lines. Additional
experimental data should test �likely confirm� the trend for
the internal parameters shown in Fig. 3. These results indi-
cate that, indeed as predicted, the statically constrained QHA
is a good approximation in the P-T range of these experi-
ments. We also indicate in Fig. 2 the LDA equilibrium vol-
ume at 0 GPa, including �not including� zero-point �ZP� mo-
tion energy, LDA+ZP, and compare both with the
experimental value.6,13 The inclusion of ZP motion increases
the equilibrium volume at zero pressure. It becomes larger
than, but in better agreement with, the experimental zero
pressure volume. A similar trend has been found for all other
mantle silicates and oxides investigated by this method so
far.

A closer examination of Fig. 2 at small volumes �i.e.,
higher pressures� shows that although all experimental data
lie close to the predicted theoretical straight lines, there exist
still some small but systematic deviations. Some of these
data points include very high temperature data. For instance,
both data of Fiquet et al. and of Funamori et al. for the lattice
parameter a are slightly larger than the QHA prediction. The
discrepancy is of the order of 0.3% or 0.01 Å. The opposite
is observed for the lattice parameter b. The discrepancy in
this case is of the order of −0.1% or −0.005 Å. No clear

discrepancies are noticeable in the lattice parameter c. Al-
though minor, these discrepancies remain systematic and
could originate either in the LDA or in the QHA. In the
following, we address this problem.

III. DEVIATORIC THERMAL STRESS RELAXATION

In the statically constrained QHA, energies are computed
according to Eq. �1� and pressures according to Eq. �2�. This
procedure implicitly assumes that pressure remains isotropic
at all temperatures, but this is only true for static calcula-
tions. The zero-point motion and the thermal pressure con-
tributions to P� are not necessarily isotropic. This effect is
explicitly quantified by the deviatoric stresses defined as the
difference between the nominal pressure and the diagonal
stress components,

��i = P� − �−� 1

V

�G�P,T�
��i

�
P�,T�

� . �7�

Figure 4 shows these deviatoric stresses versus P along
the crystalline directions 	100
, 	010
, and 	001
 at various
T’s. With increasing T, ��1 becomes more negative. This
means that the statically constrained system becomes over-
compressed along 	100
 at high T’s. The opposite appears
along 	010
, and minor changes affect the 	001
 direction.
This result is consistent with Fig. 2, where the experimental
data lie above the static QHA for a, below for b, and essen-
tially on top for c.

These deviatoric stresses can be relaxed to first order if
one knows the compliance tensor 	ij�P� ,T��=cij

−1�P� ,T��,
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where cij�P� ,T�� is the elastic constant tensor given in Eq.
�4�. cij�P� ,T�� for MgSiO3 pv has already been determined
�Ref. 14�. The correction is then carried out by evaluating the
strains �i involved in the relaxation of these deviatoric ther-
mal stresses,

�i�P�,T�� = �
j

	ij�P�,T���� j . �8�

Figure 5 shows the resulting corrections on the lattice
parameters as a function of volume at various T’s, combined
with the experimental temperature dependent data of Fiquet
et al.4 and Funamori et al.5 These high temperature data were
collected nonsystematically therefore, the trends of devia-
tions with temperature are not systematic either. Besides, un-
certainties in pressure scales at high temperatures are also
large, which further obscures these trends. It appears clearly
that the magnitude of the errors in the lattice parameters
increase with T. This error could be caused by anharmonic
effects, but it could also be caused by thermally induced
deviatoric stresses. Because the agreement with experiments
improves considerably after the relaxation of deviatoric ther-

mal stresses, especially in the range of temperatures of the
data of Fiquet et al., up to 2668 K,4 and of Funamori et al.,
up to 2000 K,5 we conclude that these deviations are caused
by these stresses. After the relaxation of deviatoric thermal
stresses according to Eq. �8�, the agreement with experi-
ments improves considerably, especially in the high tempera-
ture ranges of the data of Fiquet et al.’s, between 1501 and
2668 K,4 and of Funamori et al., between 400 and 1500 K.5

Corrections of elastic constants to first order are also possible
and should be done, but these will be discussed somewhere
else.

IV. SELF CONSISTENT QUASIHARMONIC
APPROXIMATION

These results indicate that QHA predictions of thermody-
namics and structural properties, which are already in excel-
lent agreement with experiments within the domain of valid-
ity of this approximation, can be further improved,
particularly the crystal structure, if computations include the
relaxation of deviatoric thermal stresses. This can be accom-
plished by an iterative scheme. After thermal stresses are
completely relaxed, static energies, phonons, and the free
energy,

F�V,P�,T�� = �U	V�P�,T��
 + �
qj

��qj	V�P�,T��

2 �

+ kBT��
qj

ln�1 − e��qj	V�P�,T��
/kBT�� , �9�

should be recomputed, and so should Eqs. �2�–�4�, along
with Eqs. �7� and �8�, until ��i’s in Eq. �7� are negligible.
The small magnitude of ��i’s �Fig. 4� suggests that one extra
cycle in this iterative procedure may suffice.

This iterative scheme apparently involves an excessive
number of calculations. However, this systematic procedure
minimizes the number of calculations for structures with a
larger number of degrees of freedom, as in the present case.
Finally, we have focused here on the relaxation of lattice
degrees of freedom only, but internal parameters should be
relaxed also. The self-consistent scheme should relax forces
that develop at high temperatures. In this proposed iterative
scheme, forces are only relaxed along with the lattice degrees
of freedom, and this may suffice as well, at least for the
purpose of computing structural and thermodynamic proper-
ties.
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