
Indentation of spherical and conical punches into piezoelectric half-space with frictional sliding:
Applications to scanning probe microscopy

Arty Makagon* and Mark Kachanov
Department of Mechanical Engineering, Tufts University, Medford, Massachusetts 02155, USA

Sergei V. Kalinin
Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

Edgar Karapetian†

Department of Mathematics & Computer Science, Suffolk University, Boston, Massachusetts, 02114, USA
�Received 26 December 2006; revised manuscript received 20 April 2007; published 21 August 2007�

A proper quantitative interpretation of scanning probe microscopy �SPM� experiments requires solutions for
both normal and tangential indentations of punches into a piezoelectric material. Such indentation solutions,
their dependence on the indenter shape, and implications for SPM are considered here. More specifically,
indentation of the spherical and conically sharp indenters into a piezoelectric half-space accompanied by
frictional sliding is addressed. The tangential part of the problem, which involves friction, is solved to comple-
ment the solution of the normal indentation problem obtained earlier. Exact stiffness relations between vertical
load, tangential displacement, and material properties are obtained. The piezoelectric coupling is found to have
a relatively weak effect on lateral contact stiffness. In contrast, the contact area depends noticeably on the
tangential effects. The full electroelastic fields are derived in elementary functions and their implications are
discussed.
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I. INTRODUCTION

The ubiquitous feature of polar inorganic materials having
various orientation patterns, as well as phase-separating
polymers and biological systems, is the formation of ordered
nanoscale regions exhibiting dissimilar electromechanical
properties. Examples include ferroelectric and ferroelastic
domains in single crystals, grains in piezoelectric and ferro-
electric ceramics, phase-separated regions in electroactive
polymers, composite structures of connective and calcified
tissues, and biopolymers. Understanding and optimization of
properties of these materials presents three challenges: �a�
real-space imaging of material microstructure and identifica-
tion of constitutive elements down to the nanometer scale,
�b� measurement of local electromechanical properties
within a single phase, and �c� understanding the interface
properties between the constitutive elements.

Electron microscopy methods, including transmission and
scanning electron microscopy, probe local structure based on
the differences in local chemical composition and topogra-
phy. However, they provide no information on the mechani-
cal properties. In the last decade, several scanning probe mi-
croscopy �SPM� techniques including atomic force acoustic
microscopy1 �AFAM�, scanning local acceleration
microscopy2 �SLAM�, force modulation microscopy3

�FMM�, hybrid nanoindentation,4 and ultrasonic force
microscopy5 �UFM� were developed to study the elastic ma-
terial properties on the nanoscale. Conventional intermittent
mode atomic force microscopy provides a wealth of informa-
tion on the local mechanical properties in the phase image.6

In parallel, a number of SPM techniques, most notably pi-
ezoresponse force microscopy7 �PFM�, were developed to
analyze the local electromechanical properties.

PFM has found a broad applicability for the characteriza-
tion of electromechanically active materials, including imag-
ing domain structures in ferroelectric perovskites, mapping
the nanostructure of ferroelectric polymers and biopolymers,
and local spectroscopy and polarization switching. In the de-
cade since its invention, PFM has become the primary tool
for ferroelectric materials characterization. A recent applica-
tion of PFM to imaging of biological systems suggests the
enormous potential of this technique.8–10

These considerations necessitate a fundamental quantita-
tive analysis of contact mechanisms involved in signal gen-
eration in PFM, including the effects of lateral tip motion
during scanning. This constitutes the primary motivation for
the present work. In particular, we address the problem of
piezoelectric indentation accompanied by frictional sliding,
the motivation being that �i� the sliding motion of the tip on
the surface is the inherent feature of contact-mode SPM ex-
periments and �ii� in a number of observations of ferroelec-
tric domains by lateral force microscopy it has been reported
that local friction signal provided the contrast that character-
izes domain structures. In particular, Eng et al.11 demon-
strated that domains in triglycine sulphate �TGS� can be eas-
ily visualized in lateral force microscopy �LFM� images,
while no contrast is seen in topographic images. Similarly,
LFM study of TGS and guanidinium aluminum sulfate
hexahydrate �GASH� by Bluhm et al.12 found that friction
coefficients were scan-direction and polarization dependent.
For the GASH crystal, the LFM contrast was found to be
caused by the structural differences between surface domains
of different orientations, since the contrast did not invert
even if relatively strong bias of 10 V was applied between
the sample and the surface. Finally, the disappearance of
contrast with temperature across the phase transition was in-
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terpreted by Correia et al.13 as the indicator of its ferroelec-
tric origin.

These studies suggest that the observed contrast is derived
from either chemical differences between surfaces of do-
mains with opposite polarity or intrinsic differences in bias-
dependent contact mechanics. To resolve this issue, we con-
sider bias effects on the lateral contact mechanics in SPM,
and this leads to the problem of indentation of a piezoelectric
half-space by a rigid punch accompanied by frictional slid-
ing. Two punch geometries are analyzed: the spherical and
the conical ones.

II. FORMULATION OF THE INDENTATION PROBLEM
FOR THE PIEZOELECTRIC HALF-SPACE

Problems of piezoelectric indentation present a difficult
mathematical challenge. Several solutions for the normal in-
dentation, without friction, have been obtained for the
spherical, conical, and flat indenter geometries �Chen14 and
Chen and Ding15�. In these results, however, the combina-
tions of electroelastic constants in whose terms the fields are
expressed are not identified. In works of Giannakopoulos and
Suresh16 and Giannakopoulos,17 three punch geometries
were considered: spherical, conical, and flat circular. In these
works, electroelastic fields were given in the closed form on
the boundary of the half-space only. Inside the material the
fields are given in integral form, which makes it difficult to
differentiate between bias and stress effects. Utilizing a re-
cently established correspondence principle �Karapetian et
al.18� between the elastic and piezoelectric problems for
transversely isotropic materials, Kalinin et al.19 and Karape-
tian et al.20 gave the closed-form piezoelectric solution for
the spherical, conical, and flat punches.

Here, we consider indentation of the transversely isotropic
piezoelectric half-space by the spherical and conical punches
where both the normal load P and the shear load in the form
of Coulomb’s friction, T= fP, are applied �see Fig. 1�. We
use the approximation suggested by Hanson21,22 in the con-
text of the purely elastic problems, whereby the shear and
normal problems are considered to be decoupled. The solu-
tion to the purely normal frictionless indentation problems
has been given by Karapetian et al.20 The shear problems are
solved herein by assuming a shear traction, in the contact
region, equal to the normal traction, taken from the normal
frictionless indentation problem, multiplied by the friction

coefficient f . The full solution is obtained by superimposing
the two sets of fields: the purely normal frictionless indenta-
tion and the purely lateral frictional sliding. The quality of
this approximation is estimated in the text to follow and is
found to be good. Moreover, as far as the stiffness relations
�punch displacements versus applied forces� are concerned,
the obtained solution is exact.

In the present work we follow notations of Karapetian et
al.18 The material is transversely isotropic with respect to all
three groups of properties �elastic constants, piezoelectric
coupling, and dielectric permeabilities�, with the z axis being
the axis of symmetry. The linear constitutive equations have
the form

�xx = c11
�ux

�x
+ �c11 − 2c66�

�uy
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+ c13

�uz

�z
+ e31
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− �33

��
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. �1�

For displacements, ui, stresses, �ij, electric potential, �,
and electric displacement components Di, the following
complex notations are introduced:

u � ux + iuy, uz, �, D � Dx + iDy, Dz,

�1 � �xx + �yy, �2 � �xx − �yy + 2i�xy, �zz,

�z � �zx + i�yz. �2�

The elastic and piezoelectric constants entering Eq. �1�
are as follows: cij are elastic stiffnesses, eij are piezoelectric
stress constants, �ij are dielectric permeabilities. Also, the

FIG. 1. �Color online� Schematic representation of frictional
sliding for �a� spherical and �b� conical indenters.
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following piezoelectric clusters are widely used: � j
*=c44

�1+mj
*�+e15kj

*, � j
*=e15�1+mj

*�−�11kj
* �j=1,2 ,3�, where mj

*,
kj

* are defined by the following relations:

mj
* =

�c11	 j
*2 − c44���33 − 	 j

*2�11� + 	 j
*2�e15 + e31�2

�e33 − 	 j
*2e15��e15 + e31� + �c13 + c44���33 − 	 j

*2�11�
,

kj
* =

�c11	 j
*2 − c44��e33 − 	 j

*2e15� − 	 j
*2�c13 + c44��e15 + e31�

�e33 − 	 j
*2e15��e15 + e31� + �c13 + c44���33 − 	 j

*2�11�
,

�3�

where 	 j
*2=
 j are roots of the cubic equation:

A
 j
3 − B
 j

2 + C
 j − D = 0 �4�

with coefficients

A = c11�c44�11 + e15
2 � ,

B = c44�c11�33 + �e15 + e31�2� + �11�c11c33 + c44
2 − �c13 + c44�2�

+ 2e15�c11e33 − �c13 + c44��e15 + e31�� + c44e15
2 ,

C = c33�c44�11 + �e15 + e31�2� + �33�c11c33 + c44
2 − �c13 + c44�2�

+ 2e33�c44e15 − �c13 + c44��e15 + e31�� + c11e33
2 ,

D = c44�c33�33 + e33
2 � . �5�

The cubic equation �4� is a consequence of the algebraic
equations �Karapetian et al.23�

c44 + mj
*�c13 + c44� + kj

*�e15 + e31�
c11

=
mj

*c33 + kj
*e33

mj
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mj
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*�11

= 	 j
*2 � 
 j, 	4

* = �c44/c66. �6�

The following clusters of the piezoelectric constants are de-
fined:

G1
* = �* + �e15
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*�, 1 → 2 → 3 → 1, �7�

and the geometric parameters �j=1,2 ,3�

2l1j�z� = ��a + 
�2 + zj
2 − ��a − 
�2 + zj

2,

2l2j�z� = ��a + 
�2 + zj
2 + ��a − 
�2 + zj

2,

zj = z/	 j
* �8�

are used. Of the clusters �7�, the quantity G1
* plays a particu-

larly important role; as discussed in Sec. VI A, it is the only
cluster of piezoelectric constants that enters the stiffness re-
lations. We will also utilize the following relations:

	
j=1

3
� j

*aj
*

	 j
* = 	

j=1

3
� j

*aj
*

	 j
* = 0. �9�

III. SOLUTION FOR THE SPHERICAL INDENTER

The shear traction in the contact region is taken as a co-
efficient of friction, f = fx+ ify, multiplied by the normal con-
tact pressure P, so that T=Tx+Ty = fP. Thus, the boundary
conditions for the shear problem are given as

�zz = 0, 0 � 
 � � , �z = f��zz, 
 � a ,

�z = 0, 
 � a, Dz = 0, 0 � 
 � � , �10�

for 0���2�, where ��zz is taken from the problem of fric-
tionless normal indentation; thus,

�z = f��zz =
3P�fx + ify�

2�a3
�a2 − 
2. �11�

Note that the result used in stating Eq. �11�—the normal
traction under the punch for frictionless normal indentation
of a piezoelectric half-space—is identical to the correspond-
ing result for the purely elastic isotropic material, earlier ob-
tained by Harding and Sneddon.24

A. Full electroelastic fields

The solution is obtained via the correspondence principle
that allows constructing the full piezoelectric solution from
the purely elastic one. Utilizing the purely elastic solution of
Hanson22 and the correspondence Table 2 of Karapetian et
al.18 we obtain coupled electroelastic fields in cylindrical co-
ordinates 
 ,� ,z as follows:
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The radius a of the contact zone is obtained from the stiff-
ness relation �16� that relates the penetration depth and ap-
plied force.

The structure of selected obtained fields is illustrated in
Figs. 2 and 3, using material constants for barium titanate
�BaTiO3� and lithium niobate �LiNbO3�. The relevant clus-
ters of material parameters are given in Table I.

Both the tangential displacement ux and the shear stress
�zx are maximal directly under the center of the indenter and
decrease with increasing x and z. Lines of equal level for ux
attain maximum distance from the origin along the x axis
whereas similar lines for �zx in between the x and z axes.
Figure 2 shows that the indenter-induced field of the electric
displacement Dx is much weaker for LiNbO3 as compared to
BaTiO3, for the reason that the piezoelectric constants eij are
larger for the latter.

As illustrated in Fig. 3�a� �as an enlargement of the zone
labeled “�” in Fig. 2�e�, the maximal value of Dx for BaTiO3
is achieved at certain depth below the surface. This feature is
not observed for LiNbO3 �Fig. 3�b�, as an enlargement of the
zone labeled � in Fig. 2�f��. This difference in behavior of
the electric displacement field in the two materials is due to

the effect of the cluster of material constants
c44

e15
	 j=1

3 � j
*aj

*

	 j
*2 that

enters terms A and C in the expression for Dx along the z axis
under the center of the indenter �
=0�:

�13�
This is illustrated by Fig. 4, which shows terms A , B, and

C in Eq. �13� as well as the sum of terms A and B for both
materials as a function of material depth. The term C is con-
stant and thus is not a determining factor in the behavior of
the electric displacement field.

The difference between the behavior of the two materials
is caused by the fact that, for BaTiO3, the ratio �slope of
decrease of term A�/�slope of increase of term B� is larger
than 1 near the surface �z=0� and decreases to values smaller

TABLE I. Relevant clusters of material constants.

Material G1
* �1/GPa� G2

* �1/GPa�

BaTiO3 4.913 E-3 1.316 E-3

LiNbO3 4.047 E-3 6.358 E-3

FIG. 2. �Color online� Two-dimensional spatial distribution of the x component of tangential displacement, ux �a, b�, x component of
shear stress, �xz �c�, �d�, and tangential x component of electric displacement, Dx �e�, �f� for spherical indenter geometry for BaTiO3 �a�, �c�,
�e� and LiNbO3 �b�, �d�, �f�. Regions � in �c�, �f� are scaled up and presented in Fig. 3 below. Indentation parameters are: indentation force
P=1.54 �N; contact radius a=3 nm; coefficient of friction, f =0.3; and coordinate �=0.

FIG. 3. �Color online� 10� enlargement of region � in the spa-
tial distribution of the tangential x component of electric displace-
ment, Dx in Figs. 2�e� and 2�f� for BaTiO3 �a� and LiNbO3 �b�.
Numerical distribution of the contour plot has been more finely
discretized.
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than 1 with increasing depth. This results in their sum being
negative at some depth below the surface and positive at
increasing depths asymptotically approaching the value of
the term C, such that Eq. �13� goes to zero at infinite depth.
Conversely, for LiNbO3, the above-mentioned material prop-
erty cluster, being opposite in sign to the one for BaTiO3,
causes the term A to increase with depth such that the sum of
terms A and B is always positive, thereby maximizing Eq.
�13� at the surface �z=0�.

B. Electroelastic fields at the boundary of the half-space

At the boundary of the half-space �z=0�, the solution ob-
tained above reduces to the following formulas �Eq. �9� is
utilized�.

�A� At 
�a �l1j =
; l2j =a�,

u =
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2�a3 f�a2 − 
2�1/2,

Dz = 0,

D =
3P

4�a3
��G2
* − G1

*��
�* 	

j=1

3
� j

*aj
*

	 j
*2 −

e15

c44
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FIG. 4. �Color online� Behavior of terms A, B, and C entering Eq. �13� and the sum of terms A and B for BaTiO3 �a� and LiNbO3 �b�.
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�zz = 0,

�z = 0,

Dz = 0,

D =
Pf̄e2i�

2�
2 ���G1
* − G2

*�
�* 	

j=1

3
� j

*aj
*

	 j
*2 −

e15

c44
� . �15�

The stiffness relation between the lateral displacement at
the punch center u0 and the tangential force takes the form

T = Pf =
8a

3G1
*�

u0. �16�

This piezoelectric relation is identical to the one for the
purely elastic case, provided the cluster G1

* replaces the com-
bination of elastic constants G1 �see, for example,
Fabrikant25�.

IV. SOLUTION FOR THE CONICAL INDENTER

Boundary conditions for the spherical indenter apply to
the indentation of a cone as well. Based on the solution for
the normally loaded conical punch indenting a piezoelectric
half-space, the shear traction in the contact zone �related to
the normal traction by Coulomb’s friction law� is given by

�z = f��zz =
P�fx + ify�

�a2 cosh−1�a



� . �17�

Importantly, the normal traction distribution in the piezoelec-
tric case, which enters the formula above, is the same as in
the purely elastic problem for the isotropic half-space ob-
tained by Sneddon.26 This fact is discussed in Sec. V of the
present work.

A. Full electroelastic fields

Employing the elastic solution of Hanson21 and utilizing
the Correspondence Table 2 of Karapetian et al.18 yields
electroelastic fields in cylindrical coordinates 
 ,� ,z:

u =
P�G2

* − G1
*�

2a2�* 	
j=1

3
aj
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	 j
*
 f�− a arcsin� l1j
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FIG. 5. �Color online� Two-dimensional spatial distribution of the x component of tangential displacement, ux �a�, �b�; x component of
shear stress, �xz �c�, �d�; and tangential x component of electric displacement, Dx �e�, �f�, for conical indenter geometry for BaTiO3 �a�, �c�,
�e� and LiNbO3 �b�, �d�, �f�. Indentation parameters are indentation force P=1.54 �N; contact radius a=3 nm; coefficient of friction, f
=0.3; and coordinate �=0.
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The radius a of the contact zone is obtained from the
stiffness relation �22�, which relates the penetration depth
and applied force.

Selected electroelastic fields for the conical indenter for
BaTiO3 and LiNbO3 are shown in Fig. 5. Similar to the case
of the spherical indenter, the tangential displacement ux
reaches maximum directly under the center of the indenter
and decreases with increasing x and z coordinates. The shear
stress �zx is also maximal on the surface under the center of
the indenter and decreases with increasing distance along
both axes. In contrast to the displacement field, lines of equal
shear stress attain maximum distance from the origin at a
point neither on the x nor on the z axes, but rather some-
where in between. The electric displacement field Dx is gen-
erally similar to the one for the spherical indenter, with one
major difference: the field reaches a maximum on the surface
for both BaTiO3 and LiNbO3 �the maximum electric dis-
placement for BaTiO3 under a spherical indenter is reached
at some depth below the material surface�.

This is explained by the fact that, close to the center of the
punch, for the conical indenter, the fields are controlled
mostly by the geometric factors �rather than by the material
ones�, in contrast to the spherical indenter. This produces a
singularity at the center of the conical punch. This behavior
is depicted in Fig. 5.

These observations are again clarified by the structure of
the expression for the electric displacement along the z axis
at the center of the indenter �
=0�:

�19�

Figure 6 shows that, for both materials, the term B is the
dominant one, going to negative infinity with decreasing z
faster than the A term goes to positive infinity. Both A and B
terms contain the logarithmic singularity, but the A -term has

the lessening material property cluster
c44

e15
	 j=1

3 � j
*aj

*

	 j
*2 . Thus, the

dominance of the B term, due to the conical geometry of the
punch, requires the maximal value of the sum to be at the
surface �z=0�.

B. Electroelastic fields at the boundary of the half-space

At the boundary of the half-space �z=0�,the solution takes
the following form �Eq. �9� is utilized�.

�A� At 
�a �l1j =
 ; l2j =a�, we have

u =
P

a2�G1
*f�a�

2
− 
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*

	 j
* ,
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2c66P
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3
� ,

�zz = 0,

�z = −
Pf

�a2 cosh−1�a



� ,

Dz = 0,

FIG. 6. �Color online� Behavior of terms A and B entering Eq. �19� and their sum for BaTiO3 �a� and LiNbO3 �b�.
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�B� At 
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�, we have
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The stiffness relation for the conical indenter takes the fol-
lowing form:

T = Pf =
2a

G1
*�

u0. �22�

As in the case of the spherical indenter, the stiffness relation
is similar to the one for the purely elastic case, with G1

*

replacing the combination of elastic constants G1.

V. DISCUSSION OF THE SOLUTIONS

As noted in Sec. II, the piezoelectric fields derived above
are approximate for the following reasons.

�i� Stress distributions in the contact zone, for both spheri-
cal and conical indenters, are actually different from that for
the normal frictionless indentation problem alone. Indeed,
the normal load required to maintain constant penetration
depth during frictional lateral motion is larger than the load
required to maintain the same depth in the frictionless nor-
mal loading problem.

�ii� The frictional lateral motion actually produces a non-
axisymmetric stress field in the contact zone, while the nor-
mal indentation solution observed axial symmetry. The
asymmetry is a result of the leading edge of the punch hav-
ing greater contact area than the trailing edge, to maintain
equilibrium.

�iii� The normal displacement on the surface under the
punch, uz, in Eqs. �14� and �20�, is nonzero, even though
only lateral displacements should be present �as a result of
decoupling�. The solution becomes exact when the normal
displacement on the surface is zero. This occurs when the

piezoelectric cluster 	 j=1
3 mj

*aj
*

	 j
*2 entering uz is zero.

�iv� A zero charge distribution was prescribed in the con-
tact region, but a nonzero electric potential � appears in Eqs.
�14� and �20�. The solution becomes exact when the piezo-
electric cluster entering the expression for the electric poten-

tial, 	 j=1
3 kj

*aj
*

	 j
*2 , is zero.

FIG. 7. �Color online� Lateral displacement ux and normal displacement uz on the surface �z=0� in the contact region for spherical �a� and
conical �b� indenters.
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To evaluate the quality of the approximations involved in
the solution for the lateral problem, we compare the values
of the normal and lateral displacements, Fig. 7. It is seen that
the normal displacement is an order of magnitude smaller
than the lateral one. This indicates that the constructed solu-
tion has satisfactory accuracy—on the order of 10%.

An important observation is that the shear traction under
the punch on the surface obtained in Secs. III B and IV B is
identical to the shear traction for a purely elastic isotropic
material, as given by Harding and Sneddon24 and Sneddon26

and for the transversely isotropic material as well �Green and
Zerna27�. Therefore, as far as the contact problems discussed
here are concerned, the difference between the purely elastic
and the piezoelectric materials is observed only at nonzero
depth, provided that the punch is electrically grounded �elec-
trical boundary conditions are set to null�.

Another observation is that for a punch subjected to a
given load, the radius of the contact a is a function of the
radius of curvature, R, for a spherical punch or the semiangle
� of the cone for the conical punch �Fig. 1�. Larger R and �
would result in a larger radius of contact and smaller lateral
displacement. Note, also, that electric displacements on the
surface outside of the contact zone are independent of the
punch geometry, Fig. 8.

Note that the stiffness relations for both spherical and
conical geometries, as given by Eqs. �16� and �22�, appear to
be independent of charge. This is a consequence of the fact
that zero charge was specified as a boundary condition. How-
ever, the charge is actually delegated to the normal friction-
less problem and enters the full solution via superposition of
the two problems assumed in the present work. Here, we
superimpose the stiffness relations obtained above with the
ones from the previously solved normal frictionless indenta-
tion problem to obtain the full stiffness relations for the
spherical,

P =
8a

3G1
*�f

u0 +
4aC1

*

3�
w0 +

2aC3
*

�
�0,

Q = −
4aC3

*

3�
w0 +

2aC4
*

�
�0, �23�

and conical indenters,

P =
2a

G1
*�f

u0 +
2C1

* tan �

�2 �w0 + ��2 +
2aC3

*

�
�0,

Q = −
2C3

* tan �

�2 �w0 + ��2 +
2aC4

*

�
�0, �24�

under normal and lateral load with tip bias, given in Eqs.
�23� and �24�, respectively.

Equations �23� and �24� illustrate that, due to the manner
in which the problem was decoupled, the mechanical load P
is a function of the friction coefficient f , while the electric
charge is independent of friction. Note that the limiting case
of the purely elastic problems �considered by Hanson21,22� is
recovered from our results by setting the piezoelectric cou-
pling constants eij =0, with the following replacement of the
constants:

m3
*,k1

*,k2
* → 0, 	3

* → ��33/�11, 	4
* → 	3 = �c44/c66.

Remark. In the literature, the lateral stiffness relation has
not always been used correctly. For example, Cain et al.,28

Carpick et al.,29 and Lantz et al.30 took the lateral stiffness
relation from the decoupled solution of Johnson.31 This so-
lution, suggested in the absence of exact results, is based on
the assumptions that it is valid to decouple the normal and
shear modes and that the shear traction distribution under the
bonded punch coincides with the normal traction distribution
under the frictionless �“smooth”� punch. An exact coupled
solution became available later25 and showed that Johnson’s
assumptions led to substantial error. However, these consid-
erations do not necessarily invalidate the experimental stud-
ies. Indeed, in the studies of Cain et al.,28 Carpick et al.,29

and Lantz et al.,30 which were focused on friction force mi-
croscopy �FFM� calibration, the potential numerical error in
the contact stiffness equation may be offset by the “effec-
tive” contact area of the probe as defined during calibration.

VI. STRUCTURE OF STIFFNESS RELATIONS AND
EFFECT OF MATERIALS PROPERTIES

In this section, we analyze stiffness relations for the
spherical and conical indenters and the relation to the PFM
contact mechanics and imaging mechanism.

FIG. 8. �Color online� Distribution of the x component of electric displacement, Dx, on the surface �z=0� for BaTiO3 �a� and LiNbO3

�b�.
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A. Discussion of the stiffness relations

We now analyze the stiffness relations that relate the ap-
plied lateral force T and the lateral displacement at the punch
center u0 �as derived in Secs. III and IV� and have the form,
for the spherical and the conical indenters,

T =
8a

3G1
*�

u0 �spherical� ,

T =
2a

G1
*�

u0 �conical� . �25�

We consider the dependence of the piezoelectric constant
cluster G1

* entering these relations, as well as the associated
cluster G2

*, given by Eq. �7�, on their ten constituent indepen-
dent piezoelectric constants: five elastic stiffnesses cij, three
electroelastic coupling constants eij, and two dielectric per-
meabilities �ij. In order to identify the relative contribution
of each piezoelectric constant to a cluster Gk

*, a sensitivity
function of that cluster is defined as the logarithmic deriva-
tive of Gk

* with respect to a selected piezoelectric constant f ij
as follows: Sk�f ij�=��ln�Gk

*�� /��ln�f ij��. Numerically, the
sensitivity function is calculated as

Sk�f ij� =
�Gk

*� f ij=1.01f ij
0 − �Gk

*� f ij=0.99f ij
0

0.02�Gk
*� f ij=f ij

0
, �26�

where f ij is a selected piezoelectric constant and f ij
0 is a ref-

erence value for that constant. A positive value of Sk�f ij�
implies that a higher constant value favors a cluster increase,
while for negative values of Sk�f ij� the cluster decreases with
the constant. Sk�f ij��0 indicates that the cluster is indepen-
dent of that property. The sensitivity of clusters Gk

* for
BaTiO3 and LiNbO3 to the ten independent material con-
stants is shown in Figs. 9�a� and 9�b�, respectively.

The sensitivity analysis indicates that material property
clusters G1

*, G2
* are primarily determined by the elastic stiff-

ness coefficients and are only weakly dependent on the pi-
ezoelectric constants and dielectric permeabilities.

B. Nanoelectromechanics of lateral SPM

In PFM the measured quantity—the piezoresponse
amplitude—is the voltage derivative of the tip-surface dis-
placement, PR= ��w0 /��0�P=const.. From the stiffness rela-
tions, Eqs. �23� and �24�, the PFM signal in the presence of
the lateral displacement u0 and the piezoresponse amplitude
acquire the form

PR =
2w0C3

*

2w0C1
* + C3

*�0
�1 − K�,

K = �1 +
3G1

*f

4u0
�2w0C1

* + C3
*�0��−1

, �27a�

PR =
2a2C3

*

2a2C1
* + C3

*�0R
�1 − K�,

K = �1 +
2af

RT�
�2a2C1

* + C3
*�0R��−1

, �27b�

for the spherical indenter, and

PR =
�w0 + ��C3

*

C1
*�w0 + �� + C3

*�0
�1 − K�,

K = �1 +
G1

*f

u0
�C1

*�w0 + �� + C3
*�0��−1

, �28a�

PR =
a cot����C3

*

C1
*a cot���� + 2C3

*�0
�1 − K�,

K = �1 +
af

T�
�C1

*a cot���� + 2C3
*�0��−1

, �28b�

for the conical indenter. The coefficient in Eqs. �27� and �28�
corresponds to the piezoresponse signal in the absence of
lateral force. Lateral force acting on a tip during the scanning
will result in decrease of the measured electromechanical
response. For typical parameters in a PFM experiment using
BTO �a=3 nm,R=50 nm,�0=1 V,T=30 nN, f =0.3� the

FIG. 9. �Color online� Sensitivity function of the piezoelectric clusters G1
*, G2

* to the elastic stiffnesses, electroelastic coupling constants,
and dielectric permiabilities of which they are comprised for BaTiO3 �a� and LiNbO3 �b�.
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magnitude of K for a spherical indenter is 0.18. This indi-
cates the relative importance of the lateral displacement con-
tribution to the piezorespose amplitude.

A similar analysis for the quantity measured in atomic
force acoustic microscopy, k1= ��w0 /�P��0=const—the inverse
vertical spring constant of the tip-surface junction—yields

k1 =
��w0

�R�2w0C1
* + C3

*�0�
�1 − K�,

K = �1 +
3G1

*f

4u0
�2w0C1

* + C3
*�0��−1

, �29a�

k1 =
�a

2a2C1
* + RC3

*�0
�1 − K�,

K = �1 +
2af

RT�
�2a2C1

* + C3
*�0R��−1

, �29b�

for the spherical indenter, and

k1 =
�w0 + ���

2aC1
*�w0 + �� + 2aC3

*�0
�1 − K�,

K = �1 +
G1

*f

u0
�C1

*�w0 + �� + C3
*�0��−1

, �30a�

k1 =
cot����2

2C1
*a cot���� + 4C3

*�0
�1 − K�,

K = �1 +
af

T�
�C1

*a cot���� + 2C3
*�0��−1

, �30b�

for the conical indenter.
Finally, to complement PFM, AFAM can be used to mea-

sure the voltage-dependent lateral contact stiffness of tip sur-
face junction. From Eq. �25�, the lateral contact stiffness de-
pends only on the effective contact area and does not
explicitly depend on tip bias. However, the contact area is
bias dependent from Eq. �23� and �24�, as analyzed in detail
in Kalinin et al.19 Hence, the lateral contact stiffness can be
used as a measure of bias-dependent contact area in PFM,
suggesting a route for independent measurement of the latter.

VII. CONCLUSIONS

The piezoelectric indentation of punches of spherical and
conical shapes into a piezoelectric half-space accompanied
by frictional sliding is analyzed. The obtained solutions, de-
rived in elementary functions, give the full electroelastic
fields in explicit form, as well as exact stiffness relations.

These results form the basis for quantification of SPM tech-
niques for ferroelectric and piezoelectric materials. The prob-
lem is solved under the approximation whereby the normal
and the tangential parts of the problem are decoupled. Esti-
mates show that this assumption is satisfactory, with errors
on the order of 10%. The present work focuses on the tan-
gential part of the problem; the normal one has been solved
previously.

The main results relevant for SPM applications are as
follows.

�i� The lateral contact stiffness does not explicitly depend
on indenter bias and is determined only by the radius of
contact.

�ii� The effective piezoelectric shear modulus is primarily
determined by the elastic material constants, while piezo-
electric and dielectric constants provide only minor contribu-
tions.

�iii� The presence of lateral displacement results in a de-
crease of indentation depth, thus reducing piezoresponse at a
given indentation force.

The present work suggests important applications for in-
terpretation of various scanning probe microscopy tech-
niques of ferroelectric surfaces. First, measurements of the
lateral contact stiffness using lateral AFAM or FFM can pro-
vide an independent method to establish the voltage-
dependent contact area for subsequent use in PFM �i.e., to
calibrate the contact area between the probe and the surface�.
Second, the friction force is expected to be only weakly de-
pendent on piezoelectric and dielectric material properties at
zero tip bias. Hence, the observed friction contrast on ferro-
electric domains is likely attributed to variations in
polarization-dependent chemical properties, rather than in-
trinsic polarization response. At the same time, application of
finite voltage bias will result in strong changes in effective
contact area, and hence the friction force will be domain
polarity dependent. For positive domains, the contact area
decreases for positive tip biases, with associated decrease of
friction force, and increases for negative bias. The situation
is reversed for negative domains. Hence, friction force mea-
surements under dc tip bias can provide direct imaging of
domain polarity. Finally, we mention that the solution pre-
sented here assumes that during experimentation the indenter
tip velocities are constant or exhibit relatively low accelera-
tion.
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