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We have developed an algorithm that combines the concept of optimization with the conventional hybrid
input-output �HIO� algorithm for phase retrieval of oversampled diffraction intensities. In particular, the opti-
mization algorithm of guiding searching direction to locate the global minimum has been implemented. Com-
pared with HIO, this guided HIO algorithm retrieves the lost phase information from diffraction intensities
with much better accuracy.
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With the advance in nanoscience and nanotechnology,
x-ray diffraction microscopy, a newly developed imaging
technique, is becoming more and more important in struc-
tural determination of nonperiodic micro- or
nano-objects.1–12 The idea of possibly extending the method-
ology of x-ray crystallography to noncrystalline objects �i.e.,
x-ray diffraction microscopy� was first suggested by Sayre in
1980.13 It was not until in 1999 that the first demonstration
experiment was carried out by Miao et al.,1 which was based
on the oversampling phasing method. When the diffraction
intensities of a finite object are sampled sufficiently finer
than the Nyquist frequency so that the number of correlated
intensities is more than the number of unknown variables in
real space, phases are usually uniquely encoded in the dif-
fraction intensities.14,15 It is, however, a daunting task to find
the unique phases since the number of correlated intensities
�i.e., nonlinear equations� is enormously large. An efficient
approach is to use iteration methods such as error
reduction,16 hybrid input output �HIO�,16 difference map,17

or the Hamiltonian approach18 to solve the nonlinear equa-
tions. Currently, the most widely used algorithm in x-ray
diffraction microscopy is Fienup’s HIO approach, which was
developed partially based on the Gerchberg-Saxton
algorithm.19

Although the HIO method has contributed to the signifi-
cant progress in x-ray diffraction microscopy, the method has
several difficulties. One of the central difficulties is that,
quite often, its results are trapped in local minima. Different
trials of reconstruction could produce different solutions and
none of them is accurate enough to be selected as the “right”
solution. It then becomes very difficult to decide which so-
lution provides the “correct” reconstructed image �RI�. This
poses a serious problem for three-dimensional �3D� tomog-
raphic reconstruction. If the two-dimensional �2D� projected
image at each angle is not accurate enough, then the 3D
tomographic image becomes even less reliable.

The usual way of determining whether a solution obtained
is accurate or not is by examining the difference between the
calculated intensities and the experimental ones. Actually,
this may be the only way if we do not have other information
about the object we are trying to reconstruct. In the usual

HIO method, if the accuracy obtained is not good enough,
we randomly adjust the electron densities with the hope of
geting a smaller difference or error. This procedure is actu-
ally quite similar to the optimization problem for systems
with very large numbers of variables. The minimization of
the cost function, which is the difference between the calcu-
lated intensities and the experimental ones, is what one aims
at.

Realization of the similarity between the image recon-
struction from measured x-ray diffraction intensities and
solving an optimization problem opens up new possibilities
for improving the algorithms. In particular, Lee and co-
workers have recently developed a guiding algorithm20–22 to
search for the optimal solution of complex systems. It differs
from most of the optimization algorithms23,24 by using the
cost function as the only criterion in directing the searching
pathways, and variables are permitted to sample all its al-
lowed values. In the guiding algorithm, instead of just con-
centrating on designing techniques to avoid trapping in local
minima and increasing the sampling efficiency, it focuses
more on the guiding of the searching directions. For most
optimization problems, the optimal solution has physical
properties quite different from most other solutions and these
properties could help guide the searching path. This idea is
well known in statistical physics and it is used to find the
different ground states of many models. In this paper, we
employ this idea of guiding with the traditional HIO method.
The algorithm, the guided HIO method, is shown to be very
effective in locating the optimal solution of two model sys-
tems by reconstructing the 2D image of a noncrystalline ob-
ject from x-ray diffraction intensities only. The missing data
due to a beam stop are naturally resolved in this algorithm.

As what is usually done by the oversampling technique,14

the sample is embedded in a loose support region surrounded
by a no-density region. The whole region is discretized to be
an array. The size of the array is determined by sampling
frequency of the diffraction intensities, which is finer than
the Nyquist frequency �i.e., the inverse of the size of the
specimen�.

The HIO method we used is essentially similar to what
has been described elsewhere.25–27 In particular, we follow
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Ref. 28 for most of the iteration procedures except that we
also include the missing data caused by the beam stop as the
extra unknown variables to be solved. In our simulations,
each iteration of the algorithm consists of the following
steps. The Fourier modulus, �F�k��, is combined with phases
generated from the previous iteration to produce the new
guessed Fourier transform Gn��k� for the next iteration:

Gn��k� = � Gn�k� if k � D

�F�k�/Gn�k��Gn�k� if k � D ,
� �1�

where n is the iteration number, k is the scattering vector, and
k�D represents the central region blocked by the beam stop.
Gn�k� is the Fourier transform of the electron density �n�r�
obtained from the previous iteration by the following equa-
tions:

�n�r� = � �n−1� �r� if r � S, real ��n−1� �r�� � 0

�n−1�r� − ��n−1� �r� otherwise,
�
�2�

where S denotes the loose support region and the parameter
� is chosen to be 0.9. �n−1� �r� is the inverse Fourier transform
of Gn−1� �k�. Equation �2� is designed so that, at the end of the
iteration, the real part of the electron density inside the loose
support should be non-negative and that outside should be
zero. In this paper, we neglect absorption and consider only
real electron density. Thus, the imaginary part is adjusted
toward zero at the end of the iteration. The algorithm starts
by assigning arbitrary phases to the measured �F�k�� to obtain
G0��k�. We then apply inverse Fourier transform to G0��k� to
obtain the electron density �0��r�. After �1�r� is obtained from
Eq. �2�, by taking �0�r�=�0��r�, we calculate its Fourier trans-
forms G1�k� and G1��k� using Eq. �1�. We repeat the cycle
many times until there is no more improvement of the solu-
tion.

Here, we introduce a function, erf F, to determine the
quality of the electron density obtained after a certain num-
ber of iterations. For example, after n iterations, we calculate
�n�r� as defined by the following equations:

�n�r� = ���n�r�� if r � S

0 otherwise.
� �3�

The Fourier transform of �n�r� is Hn�k� and the erf F is
defined as

erf F =

�
k�D

	�F�k�� − �Hn�k��	

�
k�D

�F�k��
. �4�

Minimization of this function is what we hope to achieve by
using the HIO method. However, most of the times, ��r� of
RIs are not convergent using this HIO method. The lost in-
formation in the central region due to the beam stop provides
some difficulty. However, the most serious difficulty is its
inability to find the global minimum when there is noise or
the support is not tight enough. This is not surprising as the
HIO method does not include optimization explicitly. Thus,

to improve the HIO method, we need to combine it with the
optimization principle. The guided algorithm20–22 used quite
successfully in some of the optimization problems is em-
ployed here.

In many trials through the HIO method with different ini-
tial phases during our study of a theoretical model, we found
that although RIs are not quite identical to the exact solution,
they all seem to have some common features. If we can keep
these correct features for the future iterations, then we shall
be able to approach the exact solution much more easily. A
simple way to implement this idea is to select the solution
with the smallest erf F to be a template to guide future itera-
tions. Here, we use an example to show how this is executed.

Let us consider a sample model shown in Fig. 1�a�. This
irregularly shaped 2D sample has electron density varying
between 0 and 0.25 at each pixel. We have chosen the loose
support region to be 141�149 pixels and the total region
including the no-density region is 1249�1249 pixels, which
corresponds to a linear oversampling ratio of 8.9 and 8.4 in
the x and y axes, respectively. The color bar on the right
shows the magnitude of the electron density. The Fourier
modulus, �F�k��, is shown in Fig. 1�b� with an array of
1249�1249 pixels. The color bar on the right shows the
distribution of the modulus in a logarithmic scale. The cen-
tral region in the diffraction pattern with 23�27 pixels is
blocked by a beam stop. These �F�k�� are considered as the
experimental data for our model. Using a traditional HIO
method and the difference map �DM� method17 with 10 000
iterations for 16 independent runs, we obtained the best re-
sults shown in Figs. 1�c� and 1�d�. The parameters in the DM
method were chosen such that erf F is smallest in the scan-
ning region of �=1, �F=−2 to 2, and �S=−2 to 2. In addi-
tion to erf F, the quality of the RI can also be examined by
the electron density difference, defined as erf R
=�r�S	��reconstructed�r��− ��sample�r��	 /�r�S��sample�r��. Based
on our result, the best erf R for the RI shown in Figs. 1�c�
and 1�d� is around 10−4. Although the erf R of the RI through
DM17 is higher than that of HIO, the convergence factor in
DM, �
10−5 is smaller.

FIG. 1. �Color online� �a� The electron density of a sample
model and �b� the Fourier modulus of �a� in a logarithmic scale. The
central region of the diffraction pattern �23�27 pixels� is assumed
to be blocked by a beam stop. The best RI by using �c� the HIO
method and �d� the DM method with �=1, �F=1.4, and �S=−0.8.
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Now, we apply the guided algorithm with the HIO method
�or GHIO method� in the following steps. �i� By assuming
that the electron density is real, we modify the choice of
initial phases. Instead of having a complete random selection
of phases, we assign k and −k with the conjugate phases.
Then, we start the HIO algorithm described above with 1000
iterations for each of the 16 runs with different initial phases.
�ii� After the first 500 iterations, we save the RI with the
smallest erf F. �iii� For the next 500 iterations, we adopt a
slightly different procedure. We use the following equations:

�n�r� = � �n−1� �r� if r � S, real ��n−1� �r�� � 0

��n−1� �r� otherwise,
� �5�

where � is linearly changed from 1 to 0 in 500 iterations.
This way, we impose a stronger condition to comply with the
requirement that the density should be non-negative in the
loose support region and zero outside. �iv� After we have
completed all 16 runs, we select the image with the smallest
erf F to be the template, �0,template�r�. �v� We align the other
15 RIs to the template by comparing the density correlation
function.29 These 16 RIs are defined to be the zeroth genera-
tion. �vi� To start the next generation, we use the density of
the template to modify the other 15 images by taking the
square root of the product of �0,template�r� and the mth image
�0,m�r�,

�g+1,m�r� = ��g,template�r� � �g,m�r� , �6�

where m goes from 1 to 16 and g stands for the gth genera-
tion �g=0 in this case�. �vii� After we have the initial 16
images or �1,m�r� for the first generation, we start the HIO
algorithm again. �viii� We repeat the above procedures to
generate RIs for the higher generations.

Table I shows erf R and erf F of the best RIs obtained
from the HIO, DM, and GHIO methods, indicating that the
RIs of GHIO have small errors. To further quantify the error,
we calculate the moment of density �i.e., R
=	iri��ri� /	 j��rj��. As shown in Table I, both HIO and DM
get somewhat different values even after 10 000 iterations.
For the GHIO method, after the third generation �only 4500
iterations�, the moment of density is exactly the same as that

of the model. The most serious consequence of the error in
the HIO and DM methods is the inability to form a reliable
three-dimensional tomographic reconstruction by using the
projected RIs measured at different angles, since these RIs
have their moment of density �which is similar to the center
of mass� at the incorrect positions. Table I also demonstrates
the speed of convergence in the GHIO method. Both erf F
and erf R approach zero exponentially. It should be noted
that the correct result is obtained in spite of missing a sub-
stantial amount of data due to the beam stop.

To further understand the difference between the RIs ob-
tained by GHIO, HIO, and DM, we examine the density
difference, 	��reconstructed�r��− ��sample�r��	, more carefully.
Most noticeable errors in the results obtained from HIO and
DM lie between the boundary of the object and the loose
support. Although these errors contribute little in erf R, they
are not negligible in determining the moment of density. It is
not surprising that HIO and DM have these errors as both
methods do not have a particular way of enforcing the zero-
density region inside the loose support to be zero. Further-
more, in Fourier space, the information of the edge corre-
sponds to the higher spatial frequency. However, both HIO
and DM aim to match the higher intensities first, which cor-
responds to the lower spatial frequency. Hence, these meth-
ods usually show fuzzy edges.

The idea of guiding algorithm is to merge the best image
with each of the 16 images, so that the “favorable gene” �i.e.,
smaller erf F� will be passed on to the succeeding genera-
tions. There are many possible ways to do this. Our choice of
using geometric average to generate the next generation ac-
tually has a special advantage. It provides a fairly efficient
way of making the zero-density region inside the support
approach zero. Since the density generated in the zero-
density region in each iteration is always quite small, taking
the square root of the product with the template will usually
make it even smaller. The arithmetic average will not be as
efficient.

The previous model studied has a graduate spatial varia-
tion and without any symmetry. Here, we consider another
model with opposite characteristics to test the accuracy of
the GHIO algorithm. Figures 2�a� and 2�b� show the electron
density distribution and the Fourier modulus of a three-
dimensional model with x ray incident at a specific angle
where a ball has a diameter of 41 pixels and an inner cube
has side length of 11 pixels. In this ball-and-cube model �BC
model�, the density of the cube is twice larger than that of the
ball. The loose support we have chosen in this case is 41
�41 pixels and the total region including the no-density re-
gion is 799�799 pixels, corresponding to the linear over-
sampling ratio of 19.5. The color bar on the right is the same
as that of the sample model shown in Fig. 1 and the central
region in the Fourier amplitude �29�29 pixels� is blocked
by a beam stop. The reconstruction is much more difficult in
the BC model because of the larger missing data area and
higher symmetry. The RIs of HIO after 10 000 iterations and
of GHIO after the ninth generation are shown in Figs. 2�c�
and 2�d�, respectively. There are several apparent differences
in the RIs. The HIO result in the cube region has larger
density fluctuation. The boundary of the RI obtained by
GHIO is clearly sharper. In addition, at the opposite side of

TABLE I. erf R, erf F, and the moment of density corresponding
to the HIO, DM, and GHIO methods. GHIO1 means the best results
after the first generation of GHIO.

Method erf R erf F Moment of density

Template 0 0 �−3.0771,−3.8422�
HIO 1.37�10−4 1.41�10−3 �−3.0763,−3.8430�
DM 2.71�10−3 2.61�10−2 �−3.0712,−3.7801�
GHIO0 3.08�10−2 1.55�10−2 �−3.0681,−3.7635�
GHIO1 1.36�10−3 3.95�10−4 �−3.0759,−3.8401�
GHIO2 4.18�10−6 1.82�10−6 �−3.0770,−3.8422�
GHIO3 1.99�10−9 9.19�10−10 �−3.0771,−3.8422�
GHIO4 1.87�10−12 7.38�10−13 �−3.0771,−3.8422�
GHIO5 6.08�10−15 2.16�10−14 �−3.0771,−3.8422�
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the cube in Fig. 2�c�, there is a faint shadow of the cube. This
is usually encountered in HIO as the Fourier modulus cannot
distinguish the object and its inverted image.

The erf R distribution from zeroth to ninth generation is
shown in Fig. 3. Each point represents a RI and there are 16
points in each generation �i.e., one column�. After nine gen-
erations, we get the erf R and erf F around 4.7�10−8 and
3.3�10−9, which are much smaller than the 2.4�10−2 and
8.5�10−3 from the best RI of the HIO method. It is worthy
to point out that some RIs have converged to the best solu-
tion but some still have larger erf R. This demonstrates that
the landscape of the solution space is not smooth and some
RIs are trapped in local minima. This is why, in most cases,
HIO cannot find the optimal solution. The advantage of the
guided algorithm helps us avoid trapping.

In summary, we have developed an algorithm, i.e., the
GHIO method, to improve the image reconstruction from
x-ray diffraction intensities. This method combines the tradi-
tional HIO method with the idea of optimization. We dem-
onstrated the effectiveness of the method by reconstructing
almost exactly the image of two model systems. The effect of
a beam stop is naturally resolved by this method. With such
an accurate algorithm, we will have more confidence in ana-
lyzing real experimental data. The possible error in the RI
will be most likely due to the experimental errors instead of
the algorithm. With a much more accurate RI, it is then pos-
sible to construct a more reliable three-dimensional tomo-
gram by aligning many of these RIs measured at successive
rotation angles.30
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