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Coble creep in heterogeneous materials: The role of grain boundary engineering
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Grain boundary engineering methods improve materials properties by modifying the composition and con-
nectivity of grain boundary networks. A quantitative understanding of grain boundary network characteristics
and their impact on materials properties is therefore desirable for both scientific and practical purposes. In this
paper, we focus on the case of Coble creep, a viscous deformation mechanism prevailing at intermediate to
high temperatures. Using computer simulations, we characterize the creep viscosity as a function of the fraction
of slow-diffusing “special” grain boundaries in a two-dimensional honeycomb grain boundary network. This
basically defines a new class of percolation problem where mass diffusion and force equilibrium are coupled
in a complex way. The percolation threshold and scaling exponents are extracted from the simulation data and
analyzed in the context of correlations and energy balance on the network. We also explore stress concentra-
tions induced by the grain boundary character distribution, the effect of crystallographic constraints, and an
empirical effective-medium equation that may be used with classical creep constitutive laws in order to predict

the viscosity of a heterogeneous material.
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I. INTRODUCTION

There is generally a wide distribution of grain boundary
character in polycrystalline materials, including variations in
misorientation and plane inclination.! The species as well as
the spatial distribution of diverse grain boundary types con-
trol interface-related properties such as intergranular
degradation®? and creep.*”’ In some cases, the grain bound-
ary character distribution (GBCD) of metallic materials can
be modified by proper processing treatments.®~'” Such “grain
boundary engineering” routines could be useful in producing
desirable materials for high-temperature applications, pro-
vided the relationship between the grain boundary network
characteristics and creep properties is first established.

The structure-property relationships of the heterogeneous
grain boundary networks are often simplified by using a bi-
nary classification scheme for the grain boundary character.
For example, high coincidence boundaries often exhibit
“special” properties such as dramatically lower diffusivities'!
and sliding rates'>!3 as compared to other more “general”
boundaries. As these properties directly impact high-
temperature creep, a number of investigators*~’ have sought
to experimentally correlate creep properties with simplified
measures of the GBCD, e.g., the total fraction of special
grain boundaries, p. Lehockey and Palumbo* found that an
increase in p from 13% to 66% reduced the creep rate of Ni
by a factor of 16 at 723 K. Thaveeprungsriporn and Was®
increased p from 16% to 35% in Ni-16Cr-9Fe and found that
the creep rate at 633 K decreased by a factor of about 26 and
66 for grain sizes 330 and 35 um, respectively. In a study on
austenitic stainless steel, a grain boundary engineered alloy
with p=~63% exhibited creep rates (at 923 K) more than 2
orders of magnitude lower than the same alloy with p
<25%.7 These experiments are all carried out under differ-
ent conditions, but they consistently indicate that special
boundaries are more resistant to creep deformation than gen-
eral boundaries. However, the available experimental data
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are very sparse, and a systematic understanding of the effect
of special boundaries for specific creep deformation mecha-
nisms, and over the full range of p, is not yet available.

One existing model that describes the creep rate of a poly-
crystal as a function of the special boundary fraction focuses
on dislocation creep.’ This model is based on the assumption
that special boundaries inhibit dislocation motion and that
dislocation annihilation can only occur if at least two of the
boundaries meeting at a triple junction are general bound-
aries. One difficulty with applying this model is that the re-
quirement for dislocation annihilation in grain boundaries of
various types remains unclear presently. In contrast, the dif-
fusion properties of grain boundaries have been intensively
studied and are generally well understood.'''*15 A more
tractable problem therefore might be to first study the effect
of the GBCD on diffusional creep.

Creep deformation can occur by diffusional transport at
very low stress levels, and as first proposed by Coble,' the
required mass redistribution can be accomplished solely by
stress-induced grain boundary diffusion. Since the grain
boundary diffusivity is determined by the specific grain
boundary structure, Coble creep strongly depends on the
grain boundary character distribution. Tong et al.'” simulated
Coble creep of a general boundary honeycomb network char-
acterized by diffusivity D, containing a single special bound-
ary with diffusivity D;=0.8D,, and showed that a subtle
stress concentration develops at this special boundary. For
the same system, Moldovan et al.'® further demonstrated that
the stress localization is more pronounced as D, decreases;
the local stress is enhanced by a factor of 2.25 for D,
=0.01D,. Interestingly, the opposite case of a special bound-
ary network containing a single general boundary does not
yield a quantitatively symmetric state: the local stress is de-
creased only by 50%.'® This asymmetry suggests that special
boundaries play a more significant role in determining the
stress distribution than do the general boundaries. Asymme-
try between the role of special and general boundaries has
also been observed in terms of deformation homogeneity.'”
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While introducing a general boundary into a special bound-
ary network does not disturb the deformation pattern very
much, the presence of a special boundary in a general bound-
ary network substantially breaks the deformation regularity
in its vicinity. In short, all previous work on dilute binary
networks has revealed that variations in grain boundary char-
acter lead to nontrivial stress or deformation localization dur-
ing Coble creep. Even more pronounced effects can be ex-
pected for networks away from the dilute limit as grain
boundaries coordinate with each other in a more complicated
way.

In a recent paper,?” we studied Coble creep of a randomly
distributed binary (special/general) grain boundary network
over the full range of special boundary fraction. We observed
that the creep viscosity exhibits a percolation threshold about
0.11 lower than the geometric connectivity threshold for spe-
cial boundaries. In other words, the system begins to creep
like a network of special grain boundaries well before there
is a geometrically connected path of such boundaries across
the structure. This result speaks to strong correlations among
grain boundaries imposed by the physics of creep. In this
paper, we substantially expand upon our work in Ref. 20 and
present quantitative correlation and percolation analysis for
Coble creep of both randomly distributed and crystallo-
graphically consistent grain boundary networks in two di-
mensions. The correlations are revealed across both small
and large length scales using numerical simulations. We also
examine the evolution of the energy dissipation in the creep-
ing system across the percolation threshold and explore the
possibility of energy redistribution being the physical origin
of the percolation transition. Some other interesting percola-
tion phenomena observed in the creeping system are also
discussed.

II. SIMULATION METHOD

The simulation procedures used in this work are essen-
tially similar to those of Hazzledine and Schneibel?! and
Ford et al.,”> and were briefly described in our previous
letter.? In this section, we mainly provide additional details
regarding the setup of the problem and the important as-
sumptions.

The simulation cell is a two-dimensional honeycomb lat-
tice covering a nearly square domain of size 105X 104 (in
units of grain boundary length), which contains 4331 grains
and 12 730 grain boundaries. The grain boundaries are clas-
sified into two types: general boundaries of a high diffusivity
D, and special boundaries of a low diffusivity D,. D,/D; is
referred to throughout as the diffusivity contrast ratio. These
two types of boundaries are distributed on the honeycomb
network either randomly or in such a way as to form the
series of crystallographic textures described as a “fiber tex-
ture” family in Ref. 23. Comparison between the two catego-
ries of networks is made to distinguish between the correla-
tions intrinsic to the creep process and the correlations
imposed by the crystallographic constraints present in true
polycrystals. The incorporation of physically meaningful cor-
relations in the GBCD is also a necessary first step for un-
derstanding creep in realistic grain boundary engineered mi-
crostructures.
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We perform uniaxial creep simulations under a constant
strain rate condition and focus on the response at zero strain.
The top and bottom grains in the simulation cell are assigned
a prescribed and a zero vertical velocity, respectively, and the
side grains are constrained to move at the same horizontal
velocity so as to preserve the rectangular shape of the sys-
tem. Such velocity boundary conditions lead to more accu-
rate and reliable numerical results as compared to those ob-
tained under other (i.e., stress-type) boundary conditions.??
The applied external stress is calculated as the average of the
stress acting on an arbitrary cross section. The ratio of this
external stress to the imposed strain rate is the creep viscos-
ity 7, which is a measure of the resistance to creep. Thus, the
goal of the numerical procedure is basically to solve for the
stress distribution in the system.

We assume free grain boundary sliding so that shear stress
along the grain boundaries is relieved instantaneously. The
normal stress o varies along a boundary, inducing a diffu-
sional flux J:

J(S) - %Lﬁ_ﬂ'
KT Ly, ds’

(1)
where Dy, is the grain boundary self-diffusivity and is equal
to D, or D depending on the assigned grain boundary char-
acter, Ly, is the grain boundary length, s is a unitless path
coordinate ranging from O to 1 along a boundary, K is Bolt-
zmann’s constant, and 7 is the absolute temperature. The
normal stress o is positive if it is tensile, negative if com-
pressive. The atomic flux J is not uniform along the bound-
ary. As a result, some diffusant in the boundary has to absorb
onto the neighboring grains, or some matter in the lattice has
to enter the boundary, at a rate

8D, 1 Fo

V(S) = 2 _2’
KT L}, ds

()

where & is the grain boundary width and () is the atomic
volume. We assume that matter leaves or enters equally on
both sides of the boundary and that no overlap or void forms
as a result of the plating process. Thus, adjacent grains have
to separate or approach each other at the speed V, and also
rotate with respect to each other with a rate dV/ds. As the
grains are assumed to be rigid, dV/ds should be constant
along the boundary, which, according to Eq. (2), requires the
normal stress o to be a cubic function of s:

0(s) = a8’ + aps” + ays + . (3)

Here, the coefficients «;, i=1-4, are all in units of Pa and
are unique for every grain boundary in the system. These
stress coefficients, together with the translational and rota-
tional velocities for every grain, are simultaneously obtained
as the solution to a sparse linear system of equations. In
addition to the boundary conditions stated above, these equa-
tions are built upon requirements of stress continuity and flux
conservation at internal triple junctions, zero flux at the grain
boundary/surface intersections, mechanical equilibrium, and
deformation compatibility.?!??
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FIG. 1. (Color online) The dis-
tribution of stress o, normalized
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by the external stress oy, along
two chosen paths (a) and (b) in a
F random grain boundary network.

ﬂ The diffusivity ratio between gen-
| eral (in gray) and special (in

\ black) boundaries is D,/Ds=10%
and the special boundary fraction

f is p=0.5. The thickness distin-
guishes the two paths (upper and
L\ L lower) in each figure. The arrows
point out stress concentrations and
AN correlations as described in the

(@) X (b)

After the stress coefficients «; are determined, the stress
o, the diffusional flux J, and the plating rate V along each
grain boundary can then be directly obtained from Eqgs.
(1)=(3). The distributions and correlations of these quantities
will be analyzed in Sec. III. In addition, we calculate the
external stress oy by averaging the stress across the top sur-
face of the simulation cell and obtain a creep viscosity # for
each network configuration of special boundary fraction p.
The expression of 7 as a function of p reduces to a typical
percolation problem or a composite problem. Thus, we shall
use both percolation methods and empirical effective-
medium composite schemes to study the dependence of
Coble creep on the GBCD in the subsequent sections.

III. CORRELATION ANALYSIS
A. Stress concentration due to the GBCD

During Coble creep, the internal stress distribution in the
system is nonuniform due to variations in the grain boundary
diffusivities, as well as topological heterogeneities such as a
distribution of grain sizes or grain shapes.?* It has been
shown that the local stress enhancement at grain boundaries
arising from a diffusivity variation is significantly higher
than that caused by geometric irregularities.'® While the
presence of a single large grain yields a peak stress about
2.70y, introducing a single special boundary into a honey-
comb network with a diffusivity contrast ratio of 10>—10*
results in a concentrated stress as high as 4.60.' We have
observed even greater stress concentrations in the more gen-
eral case where the two types of grain boundaries are ran-
domly distributed in the network.

Figures 1(a) and 1(b) show the distribution of stress, nor-
malized by the external stress oy, along some selected paths
in a random grain boundary network, which contains ~50%
special boundaries (p=0.5) with a diffusivity contrast ratio
D,/Ds= 10*. Both paths are perpendicular to the applied
stress (strain) axis and lie in the middle of the sample. Spe-
cial boundaries are in black and general ones are in gray,
while the thickness of the boundaries distinguishes the upper
and lower paths in each of the two figures. The first impor-
tant point observed in Fig. 1 is that the local normal stress

text.

along grain boundaries can be enhanced relative to o, by a
factor of about 20 or higher, for both tensile stress as in
Grain 4 and compressive stress as in Grain 7. In the present
simulations, no relaxation mechanisms beyond diffusion are
allowed, but such pronounced stress concentrations could
certainly facilitate crack or cavity nucleation. Interestingly,
though, the worst stress concentrations mostly occur at spe-
cial boundaries which are usually resistant to crack propaga-
tion. A second observation in Fig. 1 is that, compared to a
single species network where all horizontal boundaries
(boundaries perpendicular to the stress axis) share the same
distribution of tensile stress and all lateral boundaries also
have the same distribution of mostly compressive
stress,?1?22 the presence of a second species not only modi-
fies the magnitude of the stresses but can also sometimes
change the sign of the stresses. For example, stresses along
the horizontal special boundary (in black) in Grains 1, 6, and
7 become compressive, and stresses along the top lateral spe-
cial boundary in Grain 7 become tensile. A third message
Fig. 1 delivers is that there is a strong correlation between
the stress distributions of either two opposing grain bound-
aries in the same grain, such as the boundaries marked by the
arrows in Grains 2-5, or two or three second-nearest-
neighbor boundaries, such as the marked boundaries in
Grains 1 and 6-8.

All these stress distribution irregularities and correlations
can be explained by the imposed mechanical equilibrium.
Force balance across the grain is most easily realized by
balancing the stresses on opposing grain boundaries, as is the
case for Grains 2-5. This is especially true when both of the
opposing boundaries are special boundaries, which are more
effective at carrying stress and are, in fact, the stress concen-
trators in the network. Another well balanced boundary dis-
tribution is where three special boundaries form a tripodal
arrangement in a grain, such as in Grains 1 and 7. In this
case, these three special boundaries often adopt similar stress
distributions in order to achieve force equilibrium; this is
also why the stresses along the horizontal special boundaries
in Grains 1 and 7 are compressive instead of being tensile, as
would be typical for horizontal boundaries. A less common
but also effective way of balancing the force across a grain is
exhibited in Grains 6 and 8, where two second-nearest-
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neighbor boundaries share similar stress distributions. It is
worth mentioning that although stress concentration mostly
occurs at special boundaries, occasionally general bound-
aries, such as that marked by a gray arrow in Grain 8, can
have a high stress as well.

While Figs. 1(a) and 1(b) provide strong evidence for
correlations among grain boundary stresses, they are only
specific examples of two small regions from a much bigger
system. Inspection over the whole system is made possible
using a spatial correlation function in what follows.

B. Correlations among boundary stresses

Integration of the normal stress o(s) in Eq. (3) over the
range O<s=< 1 yields the average stress exerted on a grain
boundary. Because all boundaries in the network have the
same length, this is essentially a force F. We choose the
center of a boundary to define its position 7 in the network,
and define the spatial autocorrelation function among bound-
ary forces as

> (F;—F)(F.,~F)

r0r0+r
> (F-F?\| X (F;.,-F
r0r0+r

7'0 r0+r

R(r) = (4)

where F denotes the average F for all boundaries in the
system, and ry+r denotes each boundary a distance r away
from the boundary centered at 7. It is important to note that
R(r) is calculated from all appropriate pairs of two bound-
aries r distance apart from each other, regardless of their
positions in the system and their orientations with respect to
the external stress axis. R(r) equals +1 if the forces on two
boundaries r distance away from each other always covary
positively and perfectly, —1 if they covary negatively and
perfectly, and zero if they vary independently.

We first calculate the correlation coefficient R(r) for the
forces acting on two boundaries in the same grain. The sign
and magnitude of R calculated this way characterize the fre-
quencies of the force balance types shown in Fig. 1 and
indicate how the force equilibrium is, on average, achieved
in the system. The diffusivity contrast ratio D,/ D, is fixed at
10%, while the special boundary fraction p covers the full
range O—1. The obtained R values are plotted in Fig. 2 for all
the three possible distances between two boundaries in the
same grain, r= V3, 1.5, and \3/2 (in units of grain boundary
length).

In Fig. 2, the data for r=\ 3 correspond to force transmis-
sion across two opposing boundaries in a grain (such as the
cases of Grains 2-5 in Fig. 1). Three points can be made
from this set of data. First, R for r=+3 is higher than 0.5 over
the full range of special fraction p (except for a few outlying
data points). This is consistent with the observation in Fig. 1
that force balance on opposing boundaries is the major mode
of force equilibrium of a grain. The limiting cases at p=0
and 1 present the extremes of this trend: the force balance in
homogeneous networks is completely accomplished across
opposite sides of the grain, leading to R=1. Second, R for
r=\3 shows an opposite trend with p to that for r=1.5; as
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FIG. 2. Correlation coefficient R [Eq. (4)] of the grain boundary
forces as a function of the special boundary fraction p for the dis-
tances r=13/2, 1.5, and \3 (in units of grain boundary length). All
three of these distances correspond to those connecting boundaries
on the same grain in the configurations shown by the inset
diagrams.

the network becomes more heterogeneous, the lines of force
transmission are more often deflected by the force balance
between second-nearest-neighbor boundaries. Third, R for r
=\3is asymmetric with respect to p=0.5, for example, being
higher at p=0.8 than at p=0.2. We believe that this asymme-
try reflects special boundaries being more effective at trans-
mitting forces.

In Fig. 2, R values for r=1.5 are negative when the frac-
tion of special boundaries p<(0.2 or p>0.65 and become
positive in between; from this, we may state that tripodal
force balance among second-nearest-neighbor boundaries
across a grain becomes effective for p~0.2-0.65. This is
understandable based on the types of force balance seen in
Grains 1 and 6-8 in Fig. 1. As p approaches 0.5, the prob-
ability of having a force balance (similarity) among three
special boundaries forming a tripodal configuration or among
only two second-nearest-neighbor boundaries increases, and
the correlation coefficients correspondingly increase above
zero. R values for r=13/2 are always negative, which means
that the nearest-neighbor boundaries tend to have dissimilar
stresses or forces.

We have also calculated the correlation coefficient R(r)
including all possible pairs of grain boundaries r distance
apart from each other, without restricting both boundaries to
be from the same grain. For r=1.5 and y3/2, this procedure
is the same as the previous calculation in Fig. 2 because all
possible pairs of boundaries at these two distances always
belong to the same grain. For r= V3, however, this procedure
includes numerous other configurations with the same char-
acteristic separation, in addition to the case of two bound-
aries on opposite sides of a grain; for example, the distance
\3 marked by the dashed arrows in Fig. 3(c) does not corre-
spond to a straightforward force transmission path across a
grain, but it is also included in the calculation. In fact, all
distances of r=13 correspond to boundary pairs with more
than one configuration [some are shown in Fig. 3(c)]. By
averaging over all the possible configurations, the correlation
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FIG. 3. (Color online) Correlation coefficient R [Eq. (4)] of the
grain boundary forces as a function of the distance r (in units of
grain boundary length). R is computed for five special boundary
fractions p=0, p=~0.1, 0.2, 0.3, and 0.5 under a diffusivity ratio
D,/D3=10% in (a) and for diffusivity ratios D,/D =1, 10, 10%, 103,
and 10* at a special fraction p~0.5 in (b). Examples of the various
paths are illustrated in (c).

coefficients R for these large distances at a certain p simply
represent the degree of disorder in the force distribution, i.e.,
how much the regular force distribution on a homogeneous
network has been disturbed by the random distribution of the
boundary character. The rem&ining discussion in this section
will focus on distances r= 3.

Figure 3(a) plots R(r) for r from 0 to 6, which includes
the 19 nearest neighbors, for a diffusivity contrast ratio
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Dg/DS=1O4. The five curves correspond to networks with
different special boundary fractions, p=0, 0.1, 0.2, 0.3, and
0.5. The condition p=0 corresponds to a homogeneous net-
work exclusively composed of one type of grain boundary, in
which the force distribution exhibits P_erfect positive correla-
tion (R=1) for r=13, 3, 243, V21, 3V3, and 6. These specific
separations all correspond to distances between two parallel
boundaries, as illustrated in Fig. 3(c). At p=0, the forces on
all horizontal boundaries are the same, and all lateral bound-
aries also have the same force. Thus, two parallel boundaries,
both horizontal or both tilted, always share the same stress
distribution and force. Meanwhile, two nonparallel bound-
aries must comprise a pair of either horizontal and tilted or
right-tilted and left-tilted boundaries; the probability of the
former combination is higher than that of the latter, and
therefore the forces on two nonparallel boundaries are more
often dissimilar, resulting in a negative correlation coeffi-
cient for many distances.

For binary networks, the values of R at all distances r
=3 simply indicate how reasonable it is to represent the
force distribution for a binary network with the homoge-
neous network solution, i.e., a distribution with only two
distinct values, one for all horizontal boundaries and the
other for all tilted boundaries. The closer R is to zero, the
worse such a simplified representation is for heterogeneous
networks. As the special fraction p increases to 0.5 [Fig.
3(a)], both the positive correlations between parallel bound-
aries and the negative correlations between nonparallel
boundaries gradually diminish; the correlation directionality
gradually recovers as p keeps increasing above 0.5 (not
shown in the figure). R for all distances r= 3 approaches
zero as p approaches 0.5 from either below or above because
the distinct difference between forces on horizontal and tilted
boundaries is gradually blurred by the random distribution of
the boundary character. The similar peak heights or depths
for different separation distances at a certain p in Fig. 3(a)
can also be explained by the nature of R. A correlation coef-
ficient that is essentially determined by geometric orientation
(the boundaries being horizontal or tilted) should be similar
on different length scales.

In addition to the distribution of grain boundary character
described by the special boundary fraction p, the diffusivity
contrast ratio between general and special boundaries,
D,/D;, is another parameter that controls the degree of net-
work randomization. The effect of D,/D; on the force corre-
lations is illustrated in Fig. 3(b). At p=0.5, the force distri-
butions in networks with higher D,/D; ratios are more
random (i.e., less directional). As D,/D; decreases toward
unity, the correlation coefficient R exhibits sharp peaks and
valleys again; the network with D,/D =1 at any p is equiva-
lent to a network of predominantly one boundary species.

In brief, because the requirement of force equilibrium for
every grain is mandatory, strong correlations among bound-
ary forces are manifested during Coble creep. Although spe-
cial boundaries are usually the stress concentrators in the
system, even for networks with randomly distributed grain
boundary character, the distribution of the average stresses
(or forces) on boundaries is generally highly correlated.
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FIG. 4. (Color online) The distribution of the absolute value of
the plating rate V [Eq. (2)], excluding the prefactor constants, for a
boundary in different surroundings. The data for special boundaries
with different nearest neighbors are plotted in (a) and general
boundaries in (b). “S” denotes special boundary and “G” general
boundary. In this example, the network has a special boundary frac-
tion p=~0.5 and a diffusivity ratio D,/D,=10'".

C. Plating rates of boundaries with different nearest neighbors

In the honeycomb network, the first nearest neighbors of a
boundary are those meeting it at the adjoining triple junc-
tions. Each boundary has four nearest neighbors, which serve
as sources or sinks for matter flow in the boundary of inter-
est, and therefore the characters of the four neighbors may
influence the rate of matter removal or deposition at a spe-
cific boundary. The distribution of the plating rate of a
boundary in different surroundings is plotted in Fig. 4, where
“S” denotes a special boundary and “G” a general boundary;
for example, “GS-S-SS” denotes a special boundary meeting
one general and one special boundary at one triple junction,
and meeting two special boundaries at the other triple junc-
tion. Figure 4 is computed for a network composed of half
general and half special boundaries (p=0.5), where the dif-
fusivity contrast has been increased to 10'” in order to make
the correlation effect evident. The x axis is the absolute value
of the plating rate V [Eq. (2)] (in units of m/s) excluding the
prefactor constants &)/ KTL;,) [in units of 1/mPa], and
therefore the x-axis labels are in units of N/s; the y axis is the
cumulative fraction of boundaries exhibiting that rate. Each
curve corresponds to a different neighborhood. The data for
special boundaries with different neighbors are plotted in
Fig. 4(a), and those for general boundaries in Fig. 4(b).

In Fig. 4(a), special boundaries surrounded by different
neighbors have quite similar average plating rates, which are
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generally distributed on the range 107'2-1077. Special
boundaries have a much lower diffusivity than general
boundaries and are the plating rate-limiting species in the
system. It therefore seems reasonable that the plating rates of
special boundaries do not depend very much on the character
of neighboring boundaries. In contrast, the average plating
rate of a general boundary is substantially impacted by its
surroundings [Fig. 4(b)]. The general boundaries with four
general boundary neighbors (“GG-G-GG”) have very high
plating rates above 1073, while those surrounded by four spe-
cial boundaries (“SS-G-SS”) all have very low plating rates
below 1077, of similar magnitude to the plating rates of spe-
cial boundaries [see Fig. 4(a)]. Special boundaries are poor
conduits [Eq. (1)] and are less active in exchanging matter
with the grains [Eq. (2)]. They generally cannot provide suf-
ficient matter to accommodate fast plating at their neighbor-
ing general boundaries. In other words, general boundaries
surrounded by four special boundaries have low plating rates
because they lack available sources or sinks for diffusion;
their neighborhood coerces them to exhibit apparently spe-
cial behavior.

The plating rates of other general boundaries almost all
show a bimodal distribution. Take, for example, the case of a
general boundary surrounded by one general and three spe-
cial boundaries, labeled as “SS-G-GS.” In this family of gen-
eral boundaries, the plating rates of some boundaries are be-
low 1077 and others are above 10~ with almost none in
between. Those with plating rates above 1073 are likely con-
nected to a fairly large cluster of general boundaries by their
single general neighbor; those with plating rates below 10~/
are probably part of a very small cluster of general bound-
aries, bounded by special boundaries at the second- or
further-nearest-neighbor level.

To this point, we have explored the strong correlations in
the creeping system in terms of both the stress (force) and
plating rate distributions. Because the network configuration
is not fixed and varies with the special boundary fraction,
these correlation effects can only be directly revealed for a
few example network configurations or over limited length
scales. However, correlations have a pronounced effect on
percolation phenomena; in the following, we turn our atten-
tion to an analysis of the percolation transition, which per-
mits examination over large length scales for all values of p.

IV. PERCOLATION

A basic percolation problem studies the geometric phase
connectivity of a binary system as a function of the fraction
of one element type, p. When p is low, there are only small
clusters of these elements in the system; when p increases to
a critical value p., a sample-spanning cluster emerges. The
geometric percolation threshold p.=~0.653 for a honeycomb
bond lattice and p,~0.357 for a triangular bond lattice.?® In
terms of material properties, additional percolation thresh-
olds may be defined as the critical phase fractions at which
the property-controlling species switches from one to the
other. Simple transport properties such as diffusion usually
have the same percolation threshold as the geometric perco-
lation transition for the same lattice.?” More complex me-
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Poc = 0.524

FIG. 5. The normalized creep viscosity 7 as a function of the
special boundary fraction p for a diffusivity ratio D,/D;=10'°. The
curve clearly shows a sharp increase at the percolation threshold
D= 0.524. The square points are the simulation data, and the solid
line is the prediction of the GEM equation [Eq. (9)] discussed in
Sec. V.

chanical properties, however, usually exhibit different thresh-
old values; for example, the elastic rigidity percolation on
the triangular bond lattice has a percolation threshold of
~0.58.28 For Coble creep, we identified in our earlier letter®”
a percolation threshold different from all those mentioned
above and a unique set of scaling exponents. Here, we pro-
vide some deeper analysis of the scaling properties and fur-
ther discuss the possible underlying physics behind the
unique percolation behavior of Coble creep.

A. Percolation threshold and scaling properties

The percolation threshold for Coble creep on a two-
dimensional honeycomb network is p..=~0.524 for the
present network size (L=104) and extrapolates to ~0.542
for an infinite lattice.?® In Fig. 5, the creep viscosity 7, which
has been normalized with respect to the viscosity of a net-
work of special boundaries, is computed as a function of the
special boundary fraction p for a diffusivity ratio D,/D;
=10'°. Such a high ratio is used to clearly reveal the perco-
lation transition—the sharp increase in 7 at p,.., above which
the binary grain boundary network has a similar viscosity to
that of a network of special boundaries. The difference be-
tween p,.. and the geometric percolation threshold on the
same lattice, p.=~0.653,%% can be qualitatively understood
from the correlation analysis presented in Sec. III C. Because
a general boundary behaves like a special boundary with a
certain probability that depends on its neighborhood, the
fraction of boundaries that physically serve as special ones is
higher than p, the true fraction of special boundaries. This is
not meant to imply that the magnitude of p,. should be quan-
titatively attainable by comparing the fraction of specially
behaving boundaries to the geometric threshold p.. As dis-
cussed in Ref. 20, Coble creep may stand alone as a new
class of percolation problem.

The scaling of the creep viscosity 7 with respect to the
special fraction p below and above the percolation threshold
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FIG. 6. The power-law scaling [Eq. (5)] of the creep viscosity 7
(a) below and (b) above the percolation threshold p,, for a diffusiv-
ity ratio D,/D;=10'". A series of local slopes is denoted on the
curves.

7](17) o (pcc_p)_s for p <pcc (53)

7(p) = (p—pe) for p>p.. (5b)

In the vicinity of the threshold, i.e., in the range |p—p..|
=<0.1, our simulation data can be fitted with approximate
asymptotic exponents of s =~ 1.88 and = 1.69, as we reported
in Ref. 20. The scaling relationships over the full range of p
are shown in Figs. 6(a) and 6(b), where a series of local slope
measurements is presented. Below the percolation threshold
Do the curve in Fig. 6(a) generally has a well defined slope
close to the asymptotic value around s=1.9. As p ap-
proaches p.. from below, s slightly decreases because the
creep viscosity 7 below and above p,.. have to reconcile with
each other at the threshold.

In contrast, as p increases from the percolation threshold
Pee to 1 [Fig. 6(b)], the scaling exponent ¢ decreases substan-
tially from ~1.7 to ~0.7. This large variation of ¢ is well
beyond what might be expected from the normal difference
between near-threshold and far-from-threshold behaviors.
For example, the drift is only about 0.1-0.2 for s in Fig. 6(a),
and even less than that in the simpler problem of
concentration-gradient-driven diffusion; in that case, the
problem is governed by the geometric connectivity, and ¢ is
nearly a constant over the full range of p above the percola-
tion threshold.?” Here, the decrease in ¢ indicates that the
effect of introducing a special boundary into the network is
more significant at higher p. The reason might be that the
strong physical creep correlations among the grain bound-
aries are affected by the geometric connectivity, which varies
as p increases.

B. Distribution of the energy dissipation

As an atom diffuses down the chemical potential gradient,
the work done on the atom is finally dissipated as heat. Be-
cause we have assumed free grain boundary sliding, i.e.,
shear stress is relieved instantaneously and performs no
work, the supplied external work is all dissipated via diffu-
sion along the grain boundaries. The rate of energy dissipa-
tion in one boundary E is
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O General GBs
A Special GBs
All GBs :

FIG. 7. Summations of the dissipated energy E [Egs. (6)—(8)]
over all general boundaries, all special boundaries, and all the grain
boundaries in the network, for a contrast ratio D,/D= 10'0. SE
values have all been normalized with respect to (2E) ;.

SL,, [ KT
= —z f ——02Pds, (6)
Q Jy D,

with the diffusional flux J defined in Eq. (1). Thus, E can be

rewritten as
5D, (1 ao\?
E:—gff (—) ds. (7)
KTLy, Jo \ 3s

The stress o is given by the cubic function in Eq. (3), and
therefore Eq. (7) becomes

D, (9 4
E= ﬁ(—%z + 3030+ 2030 + §a22 +2ay0q + a12>.
gb

5
(8)

The rate of energy dissipation E in Eq. (8) has the unit of
J/(ms) in two dimensions. The multiplicative prefactors
O/ KTL,, (in units of 1/Pa) have been neglected in the
present calculation, and thus the E values reported here are
all in units of Pa* m*/s.

In Fig. 7, we show the summations of E over all general
boundaries, all special boundaries, and all the grain bound-
aries in the network, for a contrast ratio Dg/Ds=10'0. The
2E values have all been normalized with respect to (2E),;.
The summation of E over all the grain boundaries is equal to
the external work, which is proportional to the creep viscos-
ity # under constant strain rate conditions. Therefore, the
dotted curve in Fig. 7 is of the same shape as the # curve in
Fig. 5 and also reveals the same percolation transition point
p..- However, in Fig. 7, we now see the basic physical shift
that underlies the percolation transition. Below p,., energy is
dissipated predominantly in general boundaries, and the en-
ergy dissipation in special boundaries is trivial, while above
Do €nergy dissipation mainly takes place in special bound-
aries. An interesting secondary observation pertains to the
two trivial contributions, which each exhibit additional dis-
continuities. The trivial dissipation in special boundaries has
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a discontinuous jump around p=0.15-0.3, while in the gen-
eral boundaries, a similar discontinuity occurs at p
~(.75-0.85. The origin of these unusual secondary discon-
tinuities is not clear but might be related to a change of the
role of the dilute species in the network: the possibility of
stress or deformation concentration decreases as p ap-
proaches the dilute limits of O or 1.

As E in Eq. (8) represents each boundary’s contribution to
the overall energy dissipation, the distribution of E reflects
the behavioral heterogeneity in the network. Histograms of E
for general boundaries and for special boundaries are, re-
spectively, plotted in Figs. 8(a) and 8(b) at several special
fractions below and above the percolation threshold (p,.
~(.524). For general boundaries [Fig. 8(a)], as p approaches
Pec from below (dashed curves), the distribution shifts to the
right, and the primary peak reduces in height. The distribu-
tion even becomes bimodal for the case of p~0.522 plotted
with the red dashed line; above p,., the distribution peak
shifts back to the left as p increases, suggesting a decrease in
the energy dissipated in general boundaries. For special
boundaries [Fig. 8(b)], we see the opposite situation. The
distribution is broadened and shifted to the right as p in-
creases below p.. (dashed curves), and becomes bimodal
right above p,. (solid curves); as p further increases, the peak
corresponding to low energies gradually diminishes while
the other peak at higher energies grows in magnitude and
shifts to the right. This is consistent with Fig. 7 which shows
that as p increases above p.., more energy is dissipated in
special boundaries.

To better compare between general and special bound-
aries, we have normalized the E value of every boundary
with respect to the average energy dissipation rate of a

boundary, E, at the specific p value and plot the normalized

histogram of E/E for general boundaries in Fig. 8(c) and for
special boundaries in Fig. 8(d). There are striking similarities

between the distribution of E/E for general boundaries be-
low p,. [dashed lines in Fig. 8(c)] and that for special bound-
aries above p,. [solid lines in Fig. 8(d)]. Firstly, the main

histogram peak is always centered around E/E=1, which
confirms that the main energy dissipation species is general
boundaries below p.. and special boundaries above p,.. Sec-
ondly, as p approaches p.. from below for general bound-
aries and from above for special boundaries, the height of the
main peak decreases, and meanwhile, a second peak emerges

and grows at much lower E/E values. This near-threshold
bimodal distribution for both species will be further explored
in Sec. IV C. The single peak for general boundaries above
Pec [solid lines in Fig. 8(c)] and that for special boundaries
below p,. [dashed lines in Fig. 8(d)] exhibit similar trends as
well.

C. Connectivity of the “energy backbone”

The distribution of the dissipated energy E on networks
with p=0.522(<p..) and p=0.537(>p,.) is, respectively,
plotted in Figs. 9(a) and 9(c). The E values marked on the
scale bar do not include the prefactor constants in Eq. (8) and
have the unit of Pa?m?/s. In Fig. 9(a), the energy level
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throughout the network is generally very low, in accordance
with the low creep viscosity of the system below the perco-
lation threshold p,.. In Fig. 9(c), the overall E level is much
higher, indicating an increase in the creep viscosity above
Do~ In both Figs. 9(a) and 9(c), some of the boundaries dis-
sipate energy at a rate many orders of magnitude higher than
others. Although these fast dissipating boundaries appear, at
a coarse level, to connect the opposite sides of the system,
they are actually not connected into a sample-spanning clus-
ter. In fact, neither any sample-spanning cluster of general
boundaries nor one of special boundaries could form for both
special fractions considered in Fig. 9, as both fractions are
significantly lower than the geometric connectivity threshold.
Thus, the percolation transition and the dramatic change in
the energy dissipation distribution are not induced by geo-
metric connectivity on the honeycomb lattice.

There is a strong correlation between the magnitude of E
for a boundary and its species. Below p,.., the boundaries
with relatively fast energy dissipation are mainly general
boundaries and exhibit winding morphologies [dark bound-
aries in Fig. 9(a)]. These general boundaries dissipate energy
faster mainly because of their higher diffusivity [Egs.
(6)—(8)]. Thus, the energy distribution should be correlated
with the connectivity and clustering of general boundaries.
This is clearly seen in Fig. 9(b) which plots the dissipated
energy in all the general boundaries at p =~ 0.522 on the hon-

eycomb lattice. In general, the energy dissipation rates of the
general boundaries belonging to the same small cluster are
either all very high or all very low.

Above p,., the boundaries with relatively fast energy dis-
sipation are mainly special boundaries and form long chains
of small rings [dark boundaries in Fig. 9(c)]. Special bound-
aries become the main dissipating species because of the
higher stress gradients they sustain [see Eq. (7) and Fig. 1],
and such higher stress gradients usually correlate with higher
absolute magnitudes of the average stress or force on these
boundaries. As described in Sec. III A, mechanical equilib-
rium of each grain is achieved by the balance of the forces
among the boundaries around a grain, mainly connecting
second- and third-nearest-neighbor bonds on the honeycomb
lattice. Therefore, above the percolation threshold, the true
connections among boundaries are not those where the
boundaries meet at triple junctions but rather those defining
the force network across the grains. This definition of artifi-
cial connectivity across grains corresponds to true connectiv-
ity on the dual lattice—for the honeycomb network, the dual
is the triangular lattice. We can map each boundary in the
honeycomb lattice onto the triangular dual lattice by assign-
ing a dual bond connecting the center of its two adjacent
grains, while keeping its species identity. The distribution of
E for special boundaries at p~0.537 on the triangular lattice
is plotted in Fig. 9(d). The special boundaries with high E
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FIG. 9. (Color online) The
spatial distribution of the dissi-
pated energy E [Egs. (6)—(8)] on

E (Pa2m2/s)

values in Fig. 9(d) now form a sample-spanning connected
cluster. What is more, the shape of this cluster closely re-
sembles the morphology of the rigid backbone in elastic
networks, 23! which is in line with our assertion that force
balance and transmission play an important role in the per-
colation transition of Coble creep.

Finally, we recall that in Fig. 8 at p~0.522, the energy
dissipated in general boundaries exhibited a bimodal distri-
bution, and at p~=0.537, the energy dissipation in special
boundaries was bimodal. Such bimodal distributions are ob-
vious in Figs. 9(b) and 9(d). Further discussion on the energy
dissipation distribution is provided in the Appendix, where
we illustrate an additional energy inflection at p,., in the
fraction of boundaries that expend vs absorb energy during
creep.

V. EMPIRICAL EFFECTIVE-MEDIUM APPROACH

Although there are many complexities associated with the
percolation transition, the calculation of the creep viscosity »
of the binary grain boundary network is basically a compos-
ite problem that may also be addressed by conventional
effective-medium averaging schemes. These provide a prac-
tical tool for predicting the creep behavior for a material with
known GBCD and can be extended easily to more complex
GBCDs that are nonbinary or nonrandom.”’ We use
McLachlan’s  generalized  effective-medium  (GEM)
equation®>33 because it includes the percolation threshold
and the scaling exponents. For the present creep problem, the
GEM equation writes as

<10 :
the network. (a) All grain bound-
0 aries on the honeycomb lattice at
10 the special fraction p~0.522 (be-
10° low percolation threshold). (b)
Only general boundaries on the
100 honeycomb lattice at p=0.522.
(c) All boundaries on the honey-
1015 comb lattice at p~0.537 (above
percolation threshold). (d) Only
special boundaries on the triangu-
lar (dual) lattice at p~0.537.
1/s 1/s Ut 1t
(1-p)— s —177 s YP 1 o -177 =
A +Dee _1)77 * s +(pcc _1)77

)

where 7, and 7, are the creep viscosities of the purely gen-
eral boundary network and purely special boundary network,
respectively. We have fitted Eq. (9) to the simulation data
using p.., s, and ¢ as adjustable parameters, and the best fits
yield p..~0.524+0.003, s=2.08+0.16, and t=~1.26+0.16.
The fitted percolation threshold and the exponent s are quite
close to those obtained earlier by direct percolation analysis,
while 7 is between the minimum and maximum values ob-
tained from fitting to the scaling law in Fig. 6(b). As there is
a large variation in ¢ as p increases, t=1.26+0.16 from the
GEM fitting may be regarded as an appropriate average that
generally reflects the creep properties for the whole range of
p above the percolation threshold.

The GEM fitting result is added to Fig. 5 as the solid line.
Equation (9) generally fits well to the simulation data over
the full range of p. However, as shown in the inset, there is
some deviation above the percolation threshold. This is be-
cause a single value of exponent ¢ cannot accurately capture
the behavior above the percolation threshold. This slight dis-
agreement notwithstanding, Eq. (9) may be used in conjunc-
tion with the conventional Coble equation'® to predict the
creep behavior of a heterogeneous grain boundary network.
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VI. CREEP OF CRYSTALLOGRAPHICALLY CONSISTENT
GRAIN BOUNDARY NETWORKS

Discussions thus far have focused on Coble creep of net-
works with randomly distributed grain boundaries. Study of
such random networks, on the one hand, benefits from the
more direct comparison they present with the well-
understood connectivity or conductivity percolation prob-
lems, but on the other hand, neglects important fundamental
correlations in GBCD (Ref. 34) that influence connectivity
and percolation in realistic microstructures. Here, we per-
form creep simulations on a simple fiber-textured family of
microstructures,”>3 where grain boundary characters are as-
signed in a crystallographically consistent manner.

The starting microstructure comprises grains of the same
common orientation. Each grain is rotated about a shared
axis by an angle randomly chosen between 0 and /3. The
misorientation between grains is then compared to a pre-
scribed threshold angle ¢. Grain boundaries with misorien-
tation angles lower than ¢ are treated as special boundaries,
and others are considered general boundaries; this technique
only specifically recognizes low-angle boundaries as special,
although other special misorientations can be included with-
out changing the basic nature of the correlations that are
introduced. By varying ¢, we generate crystallographic net-
works of desired special boundary fractions. Although in this
case classification of grain boundaries only involves the mis-
orientation angle and thereby does not necessarily reflect the
true structure-property relationship for every specific bound-
ary, comparison of the creep properties between correlated
and random networks can effectively reveal the effects of
crystallographic constraints which must appear in any micro-
structure.

As shown in Fig. 10(a), the creep viscosity 7 exhibits a
percolation transition at p¢”* =~ 0.555 for the crystallographic
network and at p/“**~0.524 for the random network, both
for the finite size network specified in Sec. II. The percola-
tion threshold for Coble creep has shifted by an amount
~0.031 toward a higher fraction of special boundaries, due
to correlations introduced by the crystallographic constraints.
The direction of this shift is reasonable in that prior studies
of both geometric connectivity?} and diffusion?’ have shown
that the above construction of the crystallographic network
promotes connectivity among general boundaries. Therefore,
more special boundaries are required to achieve the same
creep resistance as the random network. The amount of the
threshold shift, ~0.031, however, is slightly smaller than the
shift in the geometric connectivity or diffusion problem,
~0.05.2%?7 The crystallographic networks may be configured
in such a way that more general boundaries behave like spe-
cial boundaries, as a result of the intrinsic correlations of the
creep process. In other words, the effects of crystallographic
correlations are apparently modified by the physical correla-
tions of creep.

In Fig. 10(b), the creep viscosity 7 is fitted to the scaling
laws of Eq. (5) below and above the percolation transition
point p&** within the range |p—pS”°|<0.1. The scaling ex-
ponents are s=1.94+0.11 and r=1.71+0.13, which are con-
sistent with the critical exponents for random networks,
1.88+0.12 below and 1.69+0.09 above the percolation
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FIG. 10. (a) The creep viscosity 7 as a function of the special
boundary fraction p. 7 exhibits a percolation transition at p&**
~(.555 for the crystallographic network and at p"®"/~0.524 for the
random network. (b) 7 is fitted to the power-law scaling of Eq. (5)

above and below p(”.

threshold (see Fig. 6 and Ref. 20). These scaling exponents
are specific to a certain class of percolation problems, and it
has been observed for geometric and diffusion percolation
that crystallographic constraints do not alter the percolation
universality class.?’3¢ The results in Fig. 10(b) conform to
this notion but extend it to the percolation of Coble creep.

VII. CONCLUSION

We have simulated grain boundary diffusional creep on a
two-dimensional honeycomb grain boundary network, which
is composed of low-diffusivity special boundaries and high-
diffusivity general boundaries. The dependence of the creep
viscosity on the fraction of special boundaries is quantified
for both randomly distributed and crystallographically con-
sistent networks. While the percolation thresholds for creep
on both types of networks are much lower than the corre-
sponding geometric connectivity thresholds, the percolation
threshold for crystallographic networks is somewhat higher
than that for random networks. This may provide some guid-
ance for grain boundary engineering procedures that aim to
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FIG. 11. The fraction f of boundaries with W—E>0 [see Eq.
(A5) in the Appendix]. The three curves correspond to f for all
boundaries as well as for only special boundaries and only general
boundaries. The first two cases show a singularity point around the
percolation threshold p..=~0.524.

control diffusional flow processes at warm to high tempera-
tures.

The percolation scaling properties of Coble creep have
been found to conform to the existing notion that crystallo-
graphic constraints do not alter the scaling exponents or the
percolation universality class. What is unique about Coble
creep is that while the exponent below the percolation
threshold remains nearly constant over a wide range of spe-
cial boundary fraction, the exponent above the threshold
keeps decreasing with distance from the threshold. The near-
threshold scaling exponents are different from the exponents
established previously for other percolation problems.

The percolation transition is associated with a shift of the
main energy-dissipating species from general to special
boundaries. Although the statistical distribution of energy
dissipation in general boundaries below the percolation
threshold is similar to that in special boundaries above the
threshold, the spatial distributions of the energy dissipation
on the network in these two cases are distinctly different. The
general boundaries that dissipate energy relatively quickly
exhibit local morphologies seemingly controlled by diffusion
or geometric connectivity; in contrast, the high dissipation
rates of the special boundaries originate from the develop-
ment of a force network that has similar topological charac-
teristics to the rigidity backbone in the elasticity percolation
problem. Force balance and transmission by virtue of special
boundaries is a critical aspect of the creep problem. The
strong correlations among boundary forces revealed by a
spatial autocorrelation function also underscore this point.

Special boundaries are special in Coble creep in that they
are the force carrying elements on the one hand, and on the
other hand, they are the limiting species for both diffusion
and plating (matter exchange with grains). It is the coupling
between diffusional transport and force balance, or, in other
words, the coupling among properties tangential to and nor-
mal to the boundary, or, in still other words, the coupling
between the lattice and its dual, that seems to be the origin of
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the complexities and uniqueness of the percolation of Coble
creep.
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APPENDIX: “INTERNAL WORK” VERSUS ENERGY
DISSIPATION

The statistical and spatial distributions of the energy dis-
sipation via diffusion along grain boundaries, E, were dis-
cussed in Secs. IV B and IV C. Here, the relationship be-
tween energy and percolation is examined from a
complementary perspective. The total energy dissipation is
the summation of E [Eqgs. (6)—(8)] over all grain boundaries,

SE-S m(ﬁ)ds_z a‘Qa(JU)
gb A) S

gb YO

(A1)

1
aJ
—E 5Q<U—>ds.
gb

0 Js

Applying the divergence theorem?” to the first term, we find
that

E 59(.]10'14‘.]20'24’]30’3).

junction

1
D dJo) s e
gb Jo ds

(A2)

The integral over grain boundaries reduces to the summation
over the junctions in the network; J;, J,, and J5 are the fluxes
going from the boundaries into the junction; and o, o,, and
o3 are the stresses acting on the three adjoining boundaries at
the junction. At internal triple junctions, o= 0, =073 since the
stress has to be continuous, and J;+J,+J3;=0 because mass
must be conserved. At surface junctions, we have imposed a
zero flux boundary condition J,=J,=J;=0. Thus, Eq. (A2) is
equal to zero and Eq. (A1) reduces to

1 1
aJ
2 E=-2 &I(Ug>ds=ELng oVds=> W.
gb gb

0
(A3)

Here, W is defined as the integration of the product of the
normal stress o [Eq. (3)] and the plating rate V [Eq. (2)] over
one boundary and is analogous to the concept of internal
work in continuum mechanics. Upon the application of the
external stress, internal stress is developed in the system and
enables the matter plating to occur. As the global summa-
tions W and XE are both equal to the applied external
work, the local value W conceptually represents how much
energy one boundary gains and the local value E represents
how much energy one boundary dissipates via diffusion per
unit time. Thus, W—E is a measure of the local energy bal-
ance at one boundary. Introducing Egs. (2) and (3) into Eq.
(A3), we have
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D, (6
- = b(_agz+2a3az+2a3a1+3“3“0+_a22
KTLy\5 3

+ g + 2a2a0> (A4)

and by subtracting Eq. (8), we obtain

QD
W-E=- —%(36132 +Sa3, + ez + 3a300+ 2a,”
KTLy, ’
+3ma; + 20 — alz). (A5)

In Fig. 11, the fraction of boundaries that “gain” energy
(with W=E>0) is denoted as f, which is plotted for all
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boundaries as well as for only general boundaries and only
special boundaries. Interestingly, the total fraction of energy-
gaining boundaries reaches a maximum of ~0.5 at the per-
colation threshold p,.. This singular point apparently arises
from the divergence of the fraction of special boundaries
with W>E at p,. (see triangular points in Fig. 11). Clearly,
there is a sudden energy redistribution among the special
boundaries at p... This is associated with both the increase in
W due to the increase of the creep viscosity of the system
and the increase and bifurcation in E, as shown in Fig. 8. We
suspect that there might be some desired arrangement of the
local energy balance in the network that governs the physi-
cally percolating event, but more work is needed to clarify
the nature of the percolation transition.
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