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We present a full-potential multiple scattering �FPMS� scheme for the interpretation of several x-ray spec-
troscopies that is a straightforward generalization of the more conventional muffin-tin version. Like this latter,
it preserves the intuitive description of the physical process under consideration and overcomes some of the
limitations of the existing FPMS codes. It hinges on a fast and efficient method for solving the single-cell
scattering problem that avoids the convergence drawbacks of the angular momentum expansion of the cell
shape function; it relies on an alternative derivation of the multiple scattering equations that allows us to work
reliably with only one truncation parameter, i.e., the number of local basis functions in the expansion of the
global scattering function determined by the classical relation lmax�kR.
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Multiple scattering theory �MST� has been widely used to
solve the Schrödinger equation �SE� �or the associated
Lippmann-Schwinger equation� for both scattering and
bound states. It was proposed originally by Korringa and by
Kohn and Rostoker �KKR� as a convenient way to calculate
the electronic structure of solids1,2 with potentials of the
muffin-tin �MT� form �i.e., potentials that are bounded by
nonoverlapping spheres and spherically symmetric�, and was
later extended to polyatomic molecules by Slater and
Johnson.3 However, the MT approximation cannot properly
describe a great number of physical systems, ranging from
open lattices to molecular systems with substantial aniso-
tropy �e.g., systems of biological interest�, to surfaces and
interfaces.

The attempts to extend MST to space-filling potential
cells, in order to eliminate the interstitial region and take full
account of the asphericity of the potential, have generated
a lot of controversies that have gone on for more than
20 years.4 Many �but not all� of the questions are now settled
and we refer the reader to the book of Gonis and Butler5 for
a comprehensive review of the state of the art in this field.
Usually, the applications of the space-filling method have
regarded mainly calculations of the electronic structure of
solids, i.e., states below the Fermi level. Applications to
states well above the Fermi energy, as required in the simu-
lations of x-ray spectroscopies, like absorption, photoemis-
sion, anomalous scattering, etc., have been scarce, probably
due to the difficulties encountered in the numerical imple-
mentation of the method. We mention here the work by
Huhne and Ebert6 on the calculation of x-ray absorption
spectra using the full-potential spin-polarized relativistic
MST, that of Ankudinov and Rehr7 and that of Foulis8 based
on a version of the MST that uses spherical cells and treats
the interstitial potential in the Born approximation.9,10

All these methods, however, have their limitations and
drawbacks. The method used by Foulis treats in an approxi-
mate way the potential in the interstitial region and moreover
loses one of the major advantages of the MST, namely, the
separation between dynamics and geometry in the solution of
the scattering problem. Huhne and Ebert and Ankudinov and
Rehr use the potential shape function to generate the local
basis functions which are at the heart of MST. The expansion

of the shape function and the cell potential in spherical har-
monics leads to a high number of spherical components in
the coupled radial equations, which become progressively
cumbersome to handle and time consuming with increasing
energy and in absence of symmetry. This feature might also
be at the origin of another problem related to the saturation
of “internal” sums in the MS equation �MSE�,5 as discussed
below. Moreover, no critical discussion is devoted in their
work to the convergence problems of MST.

The purpose of this Rapid Communication is to give an
alternative derivation and interpretation of the full potential
�FP� MS equations that will allow us to work with square
matrices for the phase functions SLL� and ELL� and for the
cell TLL� matrix �see below� with only one truncation param-
eter, contrary to the present accepted view.5 As a result this
scheme can be viewed as a natural extension of its MT coun-
terpart, with all the consequent advantages for the interpre-
tation of x-ray spectroscopies. In connection with this we
shall present a scheme to generate local basis functions for
the truncated potential cells that is simple, fast, efficient,
valid for any shape of the cell, and reduces to the minimum
the number of spherical harmonics in the expansion of the
scattering wave function.

In order to solve for scattering states we seek a solution of
the SE continuous in the whole space with its first deriva-
tives, satisfying the asymptotic boundary condition ��r ;k�
��k /16�3�1/2�eik·r+ f�r̂ ;k�eikr /r�, where k is the photoelec-
tron wave vector. We partition the space in terms of nonover-
lapping space-filling cells � j with surfaces Sj and centers at
R j. This is equivalent to partitioning the overall space poten-
tial V�r� into cell potentials, such that V�r�=� jv j�r j�, where
v j�r j� takes the value of V�r� for r inside cell j and vanishes
elsewhere. Here and in the following r j =r−R j. The partition
is assumed to satisfy the requirement that the shortest inter-
cell vector Rij =Ri−R j joining the origins of the nearest-
neighbor cells i and j is larger than any intracell vector ri or
r j, when r is inside either cell i or cell j. We also assume that
there exists a finite neighborhood around the origin of each
cell lying in the domain of the cell.4 We then start from the
following identity involving surface integrals in dr̂�d�:
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�
j=1

N 	
Sj

�G0
+�r� − r� � ��r� − ��r� � G0

+�r� − r�� · n jd� j

= 	
So

�G0
+�r� − r� � ��r� − ��r� � G0

+�r� − r�� · nod�o.

Here G0
+�r�−r� is the free Green’s function and �o=� j� j,

with surface So. This identity is valid for all r� lying in the
neighborhood of the origin of each cell, since in this case the
integrands are continuous with their first derivatives.

The heart of MST is the introduction of the functions
�L�r j� which inside cell j are local solutions of the SE with
potential v j�r j� behaving as JL�r j� for rj→0. They form a
complete set of basis functions such that the global scattering
wave function can be locally expanded as ��r j�
=�LAL

j �k��L�r j�.4 Using this expansion in the above surface
integrals, taking r� in the neighborhood of the origin of cell

i, so that G0
+�r�−r��G0

+�ri�−ri�=�LJL�ri��H̃L
+�ri� �since r is

confined to lie on the cell surfaces�, and putting to zero the
coefficients of JL�ri�� due to their linear independence, we
readily arrive at the MST compatibility equations for the
amplitudes AL

j �k� �see Ref. 5, p. 129 for an analogous deri-
vation in the case of bound states�

�
jL�

HLL�
ij AL�

j �k� = YL�k̂�eik·Ri�k/��1/2 = IL
i �k� , �1�

where

HLL�
ij = 	

Sj

�H̃L
+�ri� � �L��r j� − �L��r j� � H̃L

+�ri�� · n jd� j

and the term on the right-hand side comes from the outer
sphere �o �see Appendix A of Ref. 11 for details�. As usual,

JL�r�= jl�kr�YL�r̂� and H̃L
+�r�=−ikhl

+�kr�YL�r̂�. The usual

derivation of the MSE now proceeds by reexpanding H̃L
+�ri�

around center j by use of the equation H̃L
+�ri�

=�L�GLL�
ij JL��r j�, where GLL�

ij is the free electron propagator
in the site and angular momentum basis �KKR real space
structure factors�. Unfortunately, this relation introduces a
further expansion parameter into the theory �with related
convergence problems� which is actually unnecessary, as
shown below.

We in fact observe that the integrals over the surfaces of
the various cells j can be calculated over the surfaces of the
corresponding bounding spheres �with radius Rb

j � by applica-

tion of Green’s theorem, since both H̃L
+�r� and �L�r� satisfy

the Helmholtz equation outside the domain of the cell �where
the potential is zero�. We then use the following relation:

	
Sj

YL��r̂ j� � H̃L
+�ri� · n jd� j = GLL�

ij d

dRb
j jl��kRb

j � �2�

�and the similar one without derivatives� which is exact for
all L, provided 
ri−r j 
 =Rij �rj for r lying on the surface Sj.
This is a consequence of the fact that under this condition the

series H̃L
+�ri�=�L�GLL�

ij JL��r j� converges absolutely, since

GLL�
ij JL��r j�� �rj /Rij�l�1/ �kRij�l+1�2�l�+ l�+1�l for fixed l, as

can be seen by using the usual expression for GLL�
ij and the

asymptotic expansion of the Bessel functions for high values
of the index l� �l��krj�.12 By use of the Weierstrass crite-
rion, the series is also uniformly convergent in the entire
solid angle domain and can therefore be integrated term by
term,13 leading to the desired result �this property is also true
for the series derived with respect to r�.

By inserting in Eq. �1� the expression for the basis
functions expanded in spherical harmonics �L�r�
=�L�RL�L�r�YL��r̂� and using Eq. �2�, we finally obtain

�
L�

ELL�
i AL�

i �k� − �
j,L�,L�

j�i

GLL�
ij SL�L�

j AL�
j �k� = IL

i �k� , �3�

defining

ELL� = Rb
2W�− ikhl

+,RLL��, SLL� = Rb
2W�jl,RLL�� ,

where the Wronskians W�f ,g�= fg�−gf� are calculated at Rb

and reduce to diagonal matrices for MT potentials. We ob-
serve that, even if the potential has a step, the wave function
and its first derivatives are continuous, so that the angular
momentum �AM� expansion converges uniformly in r̂,14 and
can thus be integrated term by term. Equation �3� looks for-
mally similar to the usual MSE. However, we notice that the
sum over L� runs over the angular momentum components of
the basis functions �L�r� and is not affected by convergence

constraints related to the reexpansion of H̃L
+�ri� around center

j.
To find the local solutions of the SE we do not expand the

truncated cell potential to avoid AM expansion problems.
Dropping the cell index j, we write the SE in polar coordi-
nates for the function PL�r�=r�L�r�

� d2

dr2 + E − v�r, r̂��PL�r, r̂� =
1

r2 L̃2PL�r, r̂� , �4�

where L̃2 is the angular momentum operator, whose action
on PL�r , r̂� can be calculated as

L̃2PL�r, r̂� = �
L�

l��l� + 1�rRL�L�r�YL��r̂� . �5�

Equation �4� in the variable r looks like a second-order
equation with an inhomogeneous term. Accordingly we use
Numerov’s method to solve it. As is well known, putting
f i,j

L = PL�ri , r̂ j� and dropping for simplicity the index L, the
associated three-point recursion relation is

Ai+1,j f i+1,j − Bi,j f i,j + Ai−1,j f i−1,j = gi,j −
h6

240
f i,j

vi ,

where

Ai,j = 1 −
h2

12
vi,j ,

Bi,j = 2 +
5h2

6
vi,j = 12 − 10Ai,j ,

vi,j = v�ri, r̂ j� − E ,
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gi,j =
h2

12
�qi+1,j + 10qi,j + qi−1,j� ,

qi,j =
1

ri
2�

L�

l��l� + 1�RL�L�ri�YL��r̂ j� .

Here i is an index of radial mesh and j an index of angular
points on a Lebedev surface grid.15 Obviously RL�L�ri�
=� jwjPL�ri , r̂ j�YL��r̂ j�, where wj is the weight function for
angular integration associated with the chosen grid.

Only the inhomogeneous term qi+1,j in the recurrence re-
lation, containing the still unknown term f i+1,j, prevents us to
solve the equation by iteration, from the knowledge of f i,j
and f i−1,j at all the angular points. This difficulty is easily
overcome by introducing the backward second-derivative
formula, whereby

gi,j �
h2

12
�13qi,j − 2qi−1,j + qi−2,j� +

h5

12
qi,j� −

h6

24
qi,j

iv , �6�

so that at the cost of a small error O�h5� only the backward
points f i,j, f i−1,j and f i−2,j are now involved. The appearance
of qi�, strictly infinite at the step point, does not cause prac-
tical problems.

In this way the three-dimensional discretized equation can
be solved along the radial direction for all angles in an
onion-like way,12 provided the expansion �5� is performed at
each new radial mesh point. We use a log-linear mesh 	
=
r+� ln r, to reduce numerical errors around the origin
and the bounding sphere.16 We tested this modified Numerov
method against analytically solvable separable model poten-
tials, with and without shape truncation, obtaining very good
results.12

The next delicate point to tackle is how to handle and
truncate the various L sums in Eq. �3�. Here only two trun-
cation parameters appear, the number of basis functions and
the number of their AM components, corresponding to the
indexes L� and L in RLL�. �The external index L in Eq. �1�,
coming from the expansion of G0

+, must coincide with the
index L of RLL� when calculating HLL�

ii �ELL�
i , due to the

orthogonality of the spherical harmonics.� These two indices
are in principle unrelated, although one can speculate that for
l�kRb and positive energies the wave function hardly sees
the anisotropy of the potential. This is in practice what hap-
pens in our method of generating the local basis functions, so
that the two indices can be cut safely at the same value
lmax�kRb and the matrices S and E can be treated like square
matrices. This is also in keeping with the physical fact that
the elements of the atomic T-matrix Tll= �SE−1�ll tend rapidly
to zero for l� lmax. The need to converge first the internal
sum over L� in Eq. �3�, pointed out by various authors, was
probably related to the slow rate of convergence in the AM
expansion of the basis functions, due to their method of gen-
eration.

We are aware that even in the case of “small” overlap of
the cell bounding spheres the L truncation procedure is likely
to be divergent.17 A simple calculation12 shows that
G�Rij�llTll varies as �2Rb /Rij�2l / l3 for l� lmax, explaining

why for small overlap the spectrum seems to converge at
first, but actually diverges for high values of lmax, which in
practice depends on various parameters, with the typical be-
havior of the asymptotic series. In keeping with this view,
one can attribute a meaning to the finite result obtained by
truncating the MSE: at a given lmax the difference between
the exact and the approximate results can be made very
small, provided the independent parameters of the theory
�like the photoelectron energy and the amount of overlap
between the bounding spheres� lie in a definite domain of
their definition space. For energies in the near-edge region
this can be obtained by taking a moderate overlap between
bounding spheres, of the order of 30–40%, so as to reduce
the space between them and their MT spheres. Empty
spheres can be added to satisfy this condition.

We have tested the present FPMS scheme against the ana-
lytical solution of the absorption cross section for hydrogen-
like atoms given by18

��k� = 4�2

27

3

1

Z2� 1

1 + �k/Z�2�4e−4�Z/k�tan−1�k/Z�

1 − e−2�Z/k

in the case of the Li2+ atom �Z=3�. Even though the potential
is spherically symmetric in the whole space with respect to
the atomic center, so that it is easy to reproduce the cross
section numerically, this is not obvious in the MS scheme.
With this purpose we have partitioned the space inside a
sphere of radius R=8.6 a.u. into an atomic sphere of
4.15 a.u. and 14 other empty spheres, all truncated so that the
resulting polyhedra do not overlap and such that their bound-
ing spheres do not overlap more than 40%. To calculate the
contribution of the outer sphere, we integrated the Coulomb
potential inwardly. Figure 1 shows the almost exact agree-
ment between the analytical and the numerical result, indi-
cating that the partitioning procedure for solving the SE is
able to reconstruct the global solution. Moreover, the oscil-
lations due to the truncation of the potential inside each cell
�shown by the solution for a truncated central sphere with
radius 4.15 a.u.� cancel each other, showing that at a com-

FIG. 1. �Color online� Cross section for Li2+ with 15 cells com-
pared to the analytical result. The solution for a MT central sphere
is also shown.
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mon boundary the overall solutions inside two adjacent cells
are continuously smooth. For this test a value of lmax
=4.15
3�8 was taken at the end of the energy interval
Emax=3 Ry.

Figure 2�a� shows an application of the method to the
calculation of the Ge K-edge absorption spectrum of the tet-
rahedral molecule GeCl4.19 The MT approximation could
never reproduce the first bump after the main transition. Its
appearance is due to the introduction of the anisotropy of the
potential inside the atoms and the presence of four empty
Voronoi cells completing the bcc unit cell. An lmax=4 was
sufficient to reach convergence of the spectrum, as verified
by using higher l values up to lmax=10 �Fig. 2�b��.

In conclusion, we have developed a FPMS scheme which
is a straightforward generalization of the usual theory with
MT potentials and implemented the code to calculate the
cross section for several spectroscopies like absorption, pho-

toelectron diffraction, and anomalous scattering. The key
point in this approach is the generation of the cell solutions
�L�r� for a general truncated potential free of the well-
known convergence problems of AM expansion together
with an alternative derivation of the MSE which allows us to
treat the matrices S and E as square, with only one truncation
parameter given by the classical relation lmax�kR. Even
though this truncation procedure does not converge, taking a
moderate overlap between bounding spheres assures a satis-
factory result in the approximation of the exact solution. At
the same time we have provided an efficient and fast method
for solving numerically a partial differential equation of the
elliptic type in polar coordinates which can also be used to
solve the Poisson equation.

K. H. and C.R.N. wish to thank P. Krüger for many useful
discussions.
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FIG. 2. �Color online� �a�
Cross section for GeCl4 molecule
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pared with the MT result and ex-
periment. �b� Study of its conver-
gence rate as a function of lmax up
to lmax=10.
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