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We studied the response of the Josephson vortex lattice in layered superconductors to the high-frequency
c-axis electric field. We found a simple relation connecting the dynamic dielectric constant with the perturba-
tion of the superconducting phase, induced by oscillating electric field. Numerically solving equations for the
oscillating phases, we computed the frequency dependences of the loss function at different magnetic fields,
including regions of both dilute and dense Josephson vortex lattices. The overall behavior is mainly determined
by the c-axis and in-plane dissipation parameters, which are inversely proportional to the anisotropy. The cases
of weak and strong dissipations are realized in Bi2Sr2CaCu2Ox and underdoped YBa2Cu3Ox, respectively. The
main feature of the response is the Josephson-plasma-resonance peak. In the weak-dissipation case, additional
satellites appear in the dilute regime in the higher-frequency region due to the excitation of the plasma modes
with the wave vectors set by the lattice structure. In the dense-lattice limit, the plasma peak moves to a higher
frequency, and its intensity rapidly decreases, in agreement with experiment and analytical theory. The behav-
ior of the loss function at low frequencies is well described by the phenomenological theory of vortex oscil-
lations. In the case of very strong in-plane dissipation, an additional peak in the loss function appears below the
plasma frequency. Such peak has been observed experimentally in underdoped YBa2Cu3Ox. It is caused by the
frequency dependence of the in-plane contribution to losses rather than a definite mode of phase oscillations.
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I. INTRODUCTION

The Josephson plasma resonance �JPR�1–3 is one of the
most prominent manifestations of the intrinsic Josephson ef-
fect in layered superconductors.4,5 It has been established as
a valuable tool to study the intrinsic properties of
superconductors,6,7 and it was extensively used to probe dif-
ferent states of vortex matter.8–14 The value of the JPR fre-
quency depends on the anisotropy factor, and it ranges
widely for different compounds, from several hundred giga-
hertz in Bi2Sr2CaCu2Ox �BSCCO� to several terahertz in un-
derdoped YBa2Cu3Ox �YBCO�.

An interesting issue is the influence of the magnetic field
applied along the layer direction on the high-frequency re-
sponse and, in particular, on the JPR. Such field forms the
lattice of Josephson vortices �JVL�. The anisotropy factor �
and the interlayer periodicity s set the important field scale,
Bcr=�0 / �2��s2�. At B�Bcr the Josephson vortices are well
separated and form a dilute lattice. When the magnetic field
exceeds Bcr, the Josephson vortices homogeneously fill all
layers �dense-lattice regime�.15–17 The crossover field ranges
from �0.5 T for BSCCO to �10 T for underdoped YBCO.
The JVL state is characterized by a very rich spectrum of
dynamic properties. In particular, the transport properties of
the JVL in BSCCO have been extensively studied by several
experimental groups.18–20

The high-frequency response in the magnetic fields along
the layers has been studied experimentally in BSCCO using
the microwave absorption in cavity resonators,21 in
La2−xSrxCuO4,7 and in underdoped YBCO22,23 by the infra-
red reflection spectroscopy. A detailed comparison between
the behaviors of the high-frequency response in the in-plane
magnetic field for these compounds has been made recently
by LaForge et al.22 In BSCCO, two resonance absorption
peaks have been observed.21 The upper-resonance frequency

increases with the field and approaches the JPR frequency at
small fields, while the lower-resonance frequency decreases
with the field and approaches approximately half of the JPR
frequency at small fields. In the underdoped YBCO,22,23 the
JPR peak in the loss function rapidly loses its intensity with
the increasing field, while the resonance frequency either
does not move or slowly increases with the field. In addition,
another wide peak emerges at a smaller frequency and its
intensity increases with increasing field.

Several theoretical approaches have been used to describe
the response of the JVL state to the oscillating electric field.
A phenomenological vortex-oscillation theory has been pro-
posed by Tachiki et al.2 This theory describes the response of
the JVL at small frequencies and fields in terms of phenom-
enological vortex parameters, mass, viscosity coefficient, and
pinning spring constant. This approach is expected to work at
frequencies much smaller then the JPR frequency; i.e., it
cannot be used to describe the JPR peak itself.

On the other hand, the plasmon spectrum at high magnetic
fields, in the dense-lattice limit, has been calculated by Bu-
laevskii et al.24 It was found that the plasma mode at a zero
wave vector increases proportionally with the magnetic field,
�p�B�=�p�0�B / �2Bcr�. This prediction describes very well
the behavior of the high-frequency mode in BSCCO.21 A
more quantitative numerical study of the JVL plasma modes
in the dense-lattice regime has been done by Koyama.25 He
reproduced the mode linearly growing with field and also
found additional modes at smaller frequencies.

In this paper, we develop a quantitative description of the
high-frequency response for a homogenous layered super-
conductor valid for whole range of frequencies and fields.
We relate the dynamic dielectric constant via simple aver-
ages of the oscillating phases. The high-frequency response
is mainly determined by the c-axis and in-plane dissipation
parameters, which are inversely proportional to the aniso-
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tropy. Analytical results for the dynamic dielectric constant
and loss function can be derived in limiting cases, at small
fields and frequencies �vortex-oscillation regime� and at high
fields, in the dense-lattice regime. Numerically solving dy-
namic equations for the oscillating phases, we studied appli-
cability limits of the approximate analytical results and in-
vestigated the influence of the dissipation parameters on the
shape of the loss function. Computing the oscillating phases
for different vortex lattices, we traced the field evolution of
the loss function with increasing magnetic field for the cases
of weak and strong dissipations, typical for BSCCO and un-
derdoped YBCO, respectively.

II. DYNAMIC PHASE EQUATIONS, DIELECTRIC
CONSTANT, AND LOSS FUNCTION

The equations describing phase dynamics in layered su-
perconductors can be derived from Maxwell’s equations ex-
pressing fields and currents in terms of the gauge invariant
phase difference between the layers �n=�n+1−�n
− �2�s /�0�Az. These equations have been presented in sev-
eral different forms.26 We will use them in the form of
coupled equations for the phase differences and magnetic
field when charging effects can be neglected �see, e.g., Refs.
27 and 28�,
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where the magnetic field is along the y axis, 	ab and 	c are
the components of the quasiparticle conductivity, 
ab and 
c
are the components of the London penetration depth, jJ
=c�0 / �8�2s
c

2� is the Josephson current density, �p

=c /��c
c is the plasma frequency, Dz is the external electric
field, and �n

2Bn�Bn+1+Bn−1−2Bn. Neglecting charging
effects,29 the local electric field is connected with the phase
difference by the Josephson relation
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The average magnetic induction inside the superconductor,
By, fixes the average phase gradient 	��n

�0� /�x
=2�sBy /�0.
To facilitate analysis, we use a standard transformation to

the reduced variables,

x/
J → x, t�p → t, hn = 2��s2Bn/�0,
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l =

ab

s
, �c =

4�	c

�c�p
, �ab =

4�	ab
ab
2 �p

c2 .

It is important to note that both damping parameters �c and
�ab roughly scale inversely proportional to the anisotropy
factor �, meaning that the effective damping is stronger in

less anisotropic materials. In particular, the cases of weak
and strong dissipations, are realized in BSCCO and under-
doped YBCO, respectively. Due to the d-wave pairing in the
high-temperature superconductors, both dissipation param-
eters do not vanish at T→0. Another important feature of the
high-temperature superconductors is that the in-plane dissi-
pation is typically much stronger than the c-axis dissipation,
�ab�c.

31 This is a consequence of a rapid decrease of the
in-plane scattering rate with decreasing temperature, which
manifests itself as a large peak in the temperature depen-
dence of the in-plane quasiparticle conductivity.32,33

Assuming an oscillating external field and using a com-
plex presentation, Dz�t�=Dz exp�−i�t�, we obtain for small
oscillations
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where �̃=� /�p, Cn�x��cos��n
�0��x��, and the static phases,

�n
�0��x�, are determined by the following reduced equations:
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with the addition condition 	��n
�0� /�x
=h=2��s2By /�0. We

introduce the reduced oscillating phase �n,

�n = �n

�pDz

4�jJ
,

for which we can derive from Eqs. �3a� and �3b� the follow-
ing reduced equation:
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From the Josephson relation �2�, we find Ez= �−i�̃ /�c��̄Dz,
meaning that the dynamic dielectric constant is connected

with the average reduced oscillating phase �̄ by a simple
relation

�c��̃� = − �c/�i�̃�̄� . �6�

Consider the case of a zero magnetic field first. In this
case, �n

�0��x�=0 and the oscillating phase is given by

�n = �̄ =
− i�̃

1 − �̃2 − i�c�̃
. �7�

In this case, Eq. �6� gives well-known results for the dy-
namic dielectric constant, �c0����Dz /Ez, and the loss func-
tion, L0���=Im�−1/�c0���� at the zero magnetic field, which
we present in real units,

�c0��� = �c −
�c�p

2

�2 +
4�i	c

�
, �8�
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2
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The zero-field loss function has a peak at the Josephson
plasma frequency with width determined only by the c-axis
quasiparticle conductivity.

Consider now the case of a finite magnetic field applied in
the layer direction. Such magnetic field generates the lattice
of the Josephson vortices, which is described by the static
phase distribution, �n

�0��x�, obeying Eq. �4�. The oscillating
phase, in turn, is fully determined by this phase via the spa-
tial distribution of the average cosine, Cn�x�. Averaging Eq.
�4�, we obtain an obvious identity 	sin �n

�0�
=0, indicating
that there is no average current in the ground state. In the
field range By �0 /2�
ab
c, the term 1/ l2 can be neglected.
In this limit, it is more convenient to operate with the in-
plane phases �n

�0��x�, defined by the relation �n
�0�=�n+1

�0�

−�n
�0�+hx, which obey the following equation:
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�0�

�x2 + sin��n+1
�0� − �n

�0� + hx� − sin��n
�0� − �n−1

�0� + hx� = 0.
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Due to the translational invariance, every solution �n
�0��x�

generates a continuous family of solutions �n
�0��x−u� corre-

sponding to the lattice shifts u. In particular, the phase
change for a small displacement is given by ��n=
−u��n

�0� /�x. Taking the x derivative of Eq. �10�, we find that
��n

�0� /�x obeys the following equation:
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with Cn=cos��n+1
�0� −�n

�0�+hx� and �nCn=Cn−Cn−1. The con-
dition 	� sin �n

�0� /�x
=0 gives another useful identity for
��n

�0� /�x,
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�0�

�x
−

��n
�0�
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We now proceed with the analysis of the dynamic phase
equation �Eq. �5��. Averaging this equation, we obtain the
following relation:

�i�c� + �2��̄ − Cn�x��n = i� .

Splitting �n�x� into the average and oscillating-in-space

parts, �n�x�= �̄�1+wn�x��, with wn�x�=0, we obtain

�̄ =
i�̃

�2 − C − Cn�x�wn + i�c�̃
.

Using relation �6�, we obtain the following result for the
dielectric constant:

�c

�c��̃�
=

�̃2

�̃2 − C − Cn�x�wn + i�c�̃
. �13�

Therefore, the dynamic dielectric constant is fully deter-
mined by the two simple averaged quantities, the static av-
erage cosine, C, and the average including the spatial distri-
bution of the oscillating phase, Cn�x�wn.

Introducing again the in-plane oscillating phases, wn
=�n+1−�n, and neglecting terms of the order of 1 / l2, we
derive the following equation:

�2�n

�x2 +
1

1 − i�ab�̃
�n�Cn�x� − �̃2 − i�c�̃��n�n = −

�nCn�x�
1 − i�ab�̃
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�14�

The oscillating phase has the same symmetry properties as
the vortex lattice. Comparing this equation with Eq. �11�, we
see that in the limit �→0, the solution is given by

�n →
1

h

��n
�0�

�x
. �15�

This solution corresponds to the homogeneous lattice shift.
As follows from Eq. �12�, the combination C+Cn�x�wn=C
+Cn�x���n+1−�n�, which determines the dielectric constant
�Eq. �13��, vanishes in this limit. This property is a conse-
quence of the translational invariance, and it is only true in
the absence of pinning of the vortex lattice.

In summary, to find the dynamic dielectric constant at a
given field, one has to find first the static phase from Eq.
�10�, assuming a definite vortex-lattice structure, and com-
pute the average cosine, C= 	cos��n+1

�0� −�n
�0�+hx�
. After that,

one has to solve the dynamic equation �Eq. �14�� and com-
pute the average Cn�x�wn=Cn�x���n+1−�n�. These two aver-
ages completely determine �c��� via Eq. �13�. In the follow-
ing sections, we will consider regimes in which analytical
solutions are possible, the high-field limit and the vortex-
oscillation regime at small frequencies. Then, we will present
the results of the numerical analysis in the full field and
frequency range in the cases of weak dissipation �BSCCO�
and large dissipation �underdoped YBCO�.

III. HIGH-FIELD REGIME

In this section, we consider the high-field regime, h1,
corresponding to the dense-lattice limit in which all inter-
layer junctions are homogeneously filled with vortices. This
regime allows for the full analytical description using an
expansion with respect to the Josephson currents. In particu-
lar, the spectrum of the plasma modes and their damping in
this limit have been found by Bulaevskii et al.24 We use the
same approach to derive the dynamic dielectric constant.

The static phase solution at high fields, describing the
triangular lattice, is given by

�n
�0� �

�n�n − 1�
2

+
2

h2 sin�hx + �n� . �16�

Using this distribution, we compute the average cosine
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C � coshx + �n −
4
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At high fields we can neglect rapidly oscillating Cn�x� in the
right hand side of Eq. �14�. This allows us to obtain the
solution

�n = −
Cn�x�/2

�̃2 − �1 − i�ab�̃�h2/4 + i�c�̃
, �18�

compute the average
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,

and, finally, obtain the high-field limit of �c��� from Eq.
�13�,
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�̃2 + i�c�̃ − �1 − i�ab�̃�h2/4
.

�19�

In the low-damping regime �c ,�ab�1, the loss function has
a peak at �̃=h /2 �in real units of �=�p��s2By /�0� corre-
sponding to the homogeneous plasma mode.24 Such linear
growth of the plasma frequency with field has been indeed
observed experimentally in underdoped BSCCO by Kakeya
et al.21

To verify the accuracy of the high-field approximation
�Eq. �19��, we compare in Fig. 1 the loss function obtained
from this formula with an accurate numerical solution for
two field values, h=2 and 4 in the case of weak dissipation,
�c=0.01 and �ab=0.1. One can see that the high-field for-
mula accurately describes the low-frequency region already
at h=2, but it overestimates the peak frequency. At h=4, the
high-frequency approximation is already undistinguishable
from the exact result.

IV. VORTEX-OSCILLATION REGIME AT SMALL FIELDS
AND FREQUENCIES

In this section, we consider the phenomenological theory
of vortex oscillations, which describes the response of the
vortex lattice at small frequencies, ���p. For the Abrikosov
vortex lattice, such a theory was developed by Coffey and
Clem.30 The dynamic dielectric constant for the Josephson
vortex lattice has been derived using a similar approach by
Tachiki et al.2

Consider a superconductor in the vortex state carrying ac
supercurrent js�exp�−i�t� along the c axis. The ac electric
field consists of the London term and the contribution from
the vortex oscillations,

Ez = −
4�
c

2

c2 i�js −
By

c
i�u . �20�

The vortex-oscillation amplitude u can be found from the
equation

�− �J�
2 − i�J� + K�u =

�0

c
js, �21�

where �J is the linear mass of the Josephson vortex,34 �J is
its viscosity coefficient,35,36 and K is the spring constant due
to pinning �it is neglected in the rest of the paper�. In Appen-
dix A, we present formulas for �J and �J in terms of super-
conductor parameters. Finding the oscillating amplitude, we
obtain

Ez = − �4�
c
2 +

By�0

− �J�
2 − i�J� + K

� i�js

c2 . �22�

A finite electric field also generates the quasiparticle current
jn=	c,n���Ez. Therefore, the total conductivity 	c�By ,��
= �js+ jn� /Ez is given by

	c�By,�� = 	c,n��� −
�c�p

2

4�i�
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The interesting feature of the real part of conductivity,

	c,1�By,�� = Re�	c,n����

+
�J�c�p

2By�0/�4�
c�2

�K + By�0/�4�
c
2� − �J�

2�2 + ��J��2 ,

�24�

is a resonance peak at the frequency �r

=��K+By�0 / �4�
c
2�� /�J. As one can see from Eq. �22�, this

resonance is a result of compensation of the London and
vortex contributions to the oscillating electric field at �
��r. Using the result for the vortex linear mass �J from
Appendix A and neglecting pinning, the formula for
�r can be rewritten more transparently as �r

�0.84�p
�2��s2By /�0. At �→0, Eq. �24� gives a known

result for the dc flux-flow conductivity.36

Using the well-known relation between the dynamic di-
electric constant and conductivity, �c���=�c−4�	c��� / i�,
we obtain2
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FIG. 1. �Color online� Comparison between the approximate
high-field limit of the loss function based on Eq. �19� and exact
numerical solution for two field values, h=2 and 4, in the case of
weak dissipation, �c=0.01 and �ab=0.1. For clarity, the vertical
scale for the h=4 plots is magnified five times.
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�c�By,�� = �c −
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2
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Using again formulas for �J and �J from Appendix A and
neglecting pinning, we rewrite this result in reduced vari-
ables in the form convenient for comparison with numerical
calculations,

�c�h,�̃�
�c

= 1 +
i�c

�̃
−

1/�̃2

1 − 2�h/�Cc��̃2 + i�c�̃� + Cabi�ab�̃�
,

�26�

with Cc�9.0 and Cab�2.4. Remember that this formula is
valid only at small fields h�1 and frequencies �̃�1.

V. FIELD EVOLUTION OF THE LOSS FUNCTION

In the full range of frequencies and fields, the dynamic
dielectric function can only be computed numerically. At the
first step, one has to find the static phase distribution from
Eq. �10�, assuming a definite vortex lattice structure. To
probe general trends, we limit ourselves here only by simple
aligned lattices. At a fixed magnetic field, such a lattice is
fully defined by the number of layers separating the layers
filled with vortices, Nz �see sketch of the aligned lattice with
Nz=2 in the inset of Fig. 3�. At small fields, such lattices are
realized in ground states in the vicinity of two sets of com-
mensurate fields, B1�Nz�=�3�0 / �2Nz

2�s2� and B2�Nz�
=�0 / �2�3Nz

2�s2� �h1�Nz�=��3/Nz
2 and h2�Nz�=� / ��3Nz

2� in
reduced units�. At the intermediate field values, the ground
state is given by misaligned lattices.16,17

At the first stage, we solved the static phase equations
�Eq. �10�� for fixed h and Nz. This solution has been used as
an input for the dynamic phase equations �Eq. �14��. Finally,
the oscillating phase determines the dynamic dielectric con-
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FIG. 2. �Color online� Influ-
ence of the dissipation parameters
on the loss-function shape in the
dilute-lattice regime at h=0.5 and
Nz=2. In-plane dissipation �left
plot� does not influence much the
JPR peak, but strongly influences
the shape below the peak.
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FIG. 3. �Color online� Comparison between the vortex-
oscillation model and exact numerical calculation for the loss func-
tion at several representative values of the dissipation parameters,
field, and Nz �shown in the plots�. One can see that this model
typically describes the high-frequency response roughly up to half
of the plasma frequency. The inset in the upper plot illustrates the
aligned lattice with Nz=2.
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stant �Eq. �13�� and the reduced loss function L��̃�
=−Im��c /�c��̃��.

We start with the discussion of several general properties
of the high-frequency response. To illustrate the roles of two
different dissipation channels, we show in Fig. 2 series of the
frequency dependencies of the loss function when only one
damping constant is changed for fixed field h=0.5 and Nz
=2 corresponding to a dilute lattice. We can see that the
width of the JPR peak is mainly determined by the c-axis
dissipation, while the in-plane dissipation has no visible in-
fluence on the loss function near the JPR peak. On the other
hand, the in-plane dissipation strongly influences the shape
of the loss function below the peak. In particular, at a very
strong in-plane dissipation, a peaklike feature appears below
the JPR frequency which looks like an oscillation mode.

In Fig. 3, we compare the behavior of the numerically
computed loss function at low frequencies with predictions
of the vortex-oscillation model described in Sec. IV. We can
see that this model typically accurately describes the behav-
ior at frequencies smaller then half the plasma frequency. At
low dissipation, the loss function has an additional peak at
small frequencies. This peak disappears with increasing dis-
sipation. We have to emphasize that these plots are made for
an ideal homogeneous system. In a real layered supercon-
ductor, pinning of the Josephson vortices by inhomogeneities
will lead to the resonance peak at the pinning frequency.

A. Small dissipation „Bi2Sr2CaCu2Ox…

To illustrate a theoretically expected behavior of the high-
frequency response in BSCCO, we made calculations with

small dissipation parameters, typical for this compound, �c
=0.01 and �ab=0.1. Figure 4 shows the evolution of the loss
function with increasing magnetic field in the frequency
range near the plasma resonance. For such small dissipation,
the loss function at zero field has a very sharp peak at the
plasma frequency. In the dilute-lattice regime at small fields,
this peak decreases in amplitude and is displaced to slightly
lower frequencies.

The most interesting feature of the dilute regime is the
appearance of the satellite peaks in the high-frequency part.
The strongest satellite is observed at Nz=2 near h�0.45. A
physical origin of these satellites is clear. In the vortex lattice
state, the homogeneous oscillations are coupled to the
plasma modes with the wave vectors set by the lattice.
Therefore, the location of the satellites is determined by the
plasma spectrum. For reference, we present the plasma fre-
quencies at the reciprocal-lattice vectors in Appendix B. At
small dissipations, the shape of the loss function is not rig-
idly fixed by the value of the magnetic field; it is also sensi-
tive to the lattice structure. This is illustrated in Fig. 5, where
the loss function is plotted at fixed h for two values of Nz, for
which the lattice energies are close. One can see that the loss
function is almost Nz independent at frequencies below the
JPR peak, indicating that in this frequency range the vortices
contribute independently to the response. However, above
the peak, the shape of the loss function is very sensitive to
Nz. This means that the high-frequency response can poten-
tially be used to probe the lattice structure.

In the dense-lattice limit, the plasma peak moves to a
higher frequency and its intensity rapidly decreases, as pre-
dicted by the analytical theory in Sec. III. This behavior is
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FIG. 4. �Color online� Series of the frequency-dependent loss functions near JPR frequency at different fields for �c=0.01 and �ab

=0.1. The inset shows the low-frequency region for the same set of parameters.
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also consistent with experiment.21 The transition to the dense
lattice is very distinct. While for Nz=2 and h=1 the peak is
still located very close to the zero-field JPR frequency and its
amplitude is comparable with the zero-field peak, at very
close field h=1.4 in the dense-lattice regime, Nz=1, the peak
is noticeably shifted to a higher frequency, its amplitude con-
siderably dropped, and the width increased.

An additional broad peak exists at low frequencies. Its
intensity is much smaller than the JPR peak. The evolution
of this peak with increasing magnetic field is shown in the
inset of Fig. 4. One can see that the intensity of this peak
monotonically increases with the magnetic field. This peak is
well described by the vortex-oscillation model.

We did not find any intrinsic resonances in the loss func-
tions at frequencies smaller than the JPR frequency, meaning
that there are no modes coupled to homogeneous oscillations
in this frequency range for a homogeneous superconductor.37

This suggests that the resonance feature observed in under-
doped BSCCO at �0.5�p in Ref. 21 probably has an extrin-
sic origin; e.g., it may be caused by the pinning of the Jo-
sephson vortices.

B. Large dissipation (underdoped YBa2Cu3Ox)

In this subsection we discuss the high-frequency response
of the Josephson vortex lattice in the case of large effective
dissipation, which is realized, e.g., for the underdoped
YBCO.22,23 Figure 6 shows the frequency dependences of the
loss functions for the dissipation parameters �c=0.32 and
�ab=6.0. For comparison, we also present the loss functions
at different in-plane fields for an underdoped YBCO sample
from Ref. 22. One can see that two experimental features are

well reproduced by the theory: decreasing intensity of the
main peak with increasing field and the appearance of the
satellite peak in the low-frequency part of the line. The ori-
gin of this satellite peak is distinctly different from the high-
frequency satellites found for small dissipation. Figure 2
demonstrates that this peak only appears for sufficiently
strong in-plane dissipations. As this peak is absent in the
low-dissipation limit, it does not correspond to any specific
mode of phase oscillations. It is caused by the decrease of the
relative contribution of the in-plane dissipation channel with
increasing frequency. To verify this interpretation, we plot in
Fig. 7 the loss function for Nz=2 and h=1, together with the
relative contribution of in-plane dissipation to losses, Rab

=	abEx
2 / �	cEz

2+	abEx
2�, which can be rewritten in reduced

coordinates,

Rab =
�ab���n/�x�2

�c�1 + ��n+1 − �n�2� + �ab���n/�x�2
. �27�

One can see that Rab decreases with increasing frequency and
almost vanishes above the plasma resonance. The small-
frequency peak roughly corresponds to the frequency where
Rab drops to one-half. The decrease of the in-plane dissipa-
tion also leads to the peak in the real part of the optical
conductivity 	1, also shown in Fig. 7. Note that the peak in
	1 corresponds to the dip in the loss function.

At high fields, in the dense-lattice limit, only a single
broad dissipation peak remains. In contrast to the low-
dissipation case, this peak is displaced to lower frequencies
with increasing magnetic field. This behavior is not verified
experimentally yet; data are only available for field range h
�1.22,23
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VI. SUMMARY

In summary, we developed a comprehensive description
of the high-frequency response of the Josephson vortex lat-
tice in layered superconductors. We found the general rela-
tion �13� connecting the dynamic dielectric constant with the
averages containing the static and oscillating phases. Ana-
lytical formulas for the dynamic dielectric constant and loss
function were derived for the high-field regime and the
vortex-oscillation regime at low frequencies. Numerically
solving equations for the oscillating phases, we explored the
evolution of the loss function with increasing magnetic field
for the cases of weak dissipation describing BSCCO and
strong dissipation describing underdoped YBCO. Several
features were found. The most interesting feature in the
weak-dissipation case is the high-frequency satellites in the
dilute-lattice regime, which appear due to the excitation of
plasma modes at the wave vectors of the reciprocal lattice. In
the strong-dissipation limit, we reproduced the additional
peak in the loss function below the JPR peak experimentally
observed in underdoped YBCO.22,23 We established that this

peak appears due to the frequency dependence of the in-
plane contribution to losses.
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APPENDIX A: JOSEPHSON-VORTEX MASS
AND VISCOSITY

The viscosity of an isolated Josephson vortex has been
considered in Refs. 35 and 36. In the case when the dissipa-
tion caused both c-axis and in-plane quasiparticle transport,
the viscosity coefficient is given by

�J =
1

�s2� �0

2�c
�2�Cc	c + Cab

	ab

�2 �
=

�c�p�0
2

��4�cs�2�
�Cc�c + Cab�ab� , �A1�

where the numerical constants Cc and Cab are determined by
the phase distribution of an isolated Josephson vortex, �n

�0�,

Cc = �
n=−�

� �
−�

�

du ���n+1
�0� − �n

�0��
�u

�2

� 9.0,

Cab = �
n=−�

� �
−�

�

du� �2�n
�0�

�u2 �2

� 2.4.

The mass of the Josephson vortex has been considered in
Ref. 34. This mass is determined by the kinetic energy Ek,
which, for a moving Josephson vortex, can be presented as

Ek =� d3r
�cEz

2

8�
= s�

n
� d2r

�c

8�
� �0

2�cs
�2

�̇n
2.

For a slowly moving vortex with velocity v, the phase dif-
ference is determined by its static distribution, �n�r , t�
=�n

�0��x−vt�, and we obtain

Ek = Ly
v2

2
s�

n
� dx

�c

4�
� �0

2�cs
�2�d�n

�0�

dx
�2

.

As, by definition, Ek=Ly�Jv2 /2, we obtain the following re-
sult for the linear vortex mass:

�J =
��0

2

��4�c�2s
�

n=−�

� �
−�

�

dx�d�n

dx
�2

=
Cc��0

2

���4�cs�2 . �A2�

The reduced combination in the dynamic dielectric constant
�Eq. �25�� can be represented as

1

�J�
2 + i�J�

B�0

4�
C
2 =

2�H

CC��̃2 + i�C�̃� + Cabi�ab�̃
.
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FIG. 7. �Color online� The frequency dependences of the loss

function, real part of conductivity, and relative contribution of in-
plane dissipation �Eq. �27�� for the same damping parameters as in
Fig. 6, Nz=2, and h=1. Rapid decreasing of in-plane inhomogene-
ity of the oscillations with increasing frequency can also be seen
from the visualization of oscillating patterns of the local electric
fields at different frequencies �Ref. 38�.
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APPENDIX B: PLASMA FREQUENCIES AT
RECIPROCAL-LATTICE VECTORS: EXPECTED

LOCATION OF SATELLITES

The satellite peaks are expected approximately at the
plasma frequencies for the wave vectors of the reciprocal
lattice. In the reduced units, the plasma spectrum at the zero
magnetic field and without the charging effects is given by

�p
2�k,q� = 1 +

k2

1/l2 + 2�1 − cos q�
, �B1�

where k and q are the wave-vector components along and
perpendicular to the layers, respectively. The reciprocal vec-
tors of the vortex lattice are given by

�k�n,m�,q�n,m�� = �2�n/a,2��m − n/2�/Nz� ,

where n and m are the integer indices and a is the vortex
separation, a=2� /hNz. Neglecting the small factor 1 / l2, we
obtain for the satellite frequencies

�s
2�n,m� � 1 +

�hNzn�2/2

1 − cos�2��m − n/2�/Nz�
. �B2�

The most intense satellite is expected for the basic reciprocal
vector with indices �n ,m�= �1,0�

�s
2�1,0� = 1 +

�hNz�2/2

1 − cos��/Nz�
.

In particular, for Nz=2, this gives �s
2�1,0�=1+2h2.
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