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Self-organization of charged particles on a two-dimensional lattice, subject to an anisotropic Jahn-Teller-type
interaction and three-dimensional Coulomb repulsion, is investigated. In the mean-field approximation without
Coulomb interaction, the system displays a phase transition of first order. In the presence of the Coulomb
repulsion, the global phase separation becomes unfavorable and the system shows a mesoscopic phase sepa-
ration, where the size of the charged regions is determined by the competition between the ordering energy and
the Coulomb energy. The phase diagram of the system as a function of particle density and temperature is
obtained by systematic Monte Carlo simulations. With decreasing temperature, a crossover from a disordered
state to a state composed of mesoscopic charged clusters is observed. In the phase separated state, charged
clusters with even number of particles are more stable than those with odd number of particles in a large range
of particle densities. With increasing particle density at low temperatures, a series of crossovers between states
with different cluster sizes is observed. Above half-filling, in addition to the low temperature clustering,
another higher temperature scale, which corresponds to orbital ordering of particles, appears. We suggest that
the diverse functional behavior observed in transition metal oxides can be thought to arise from the self-
organization of this type.
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I. INTRODUCTION

The presence of nanoscale inhomogeneities is ubiquitous
in cuprate superconductors,1–6 magnetoresistive
manganites,7–12 and other doped transition metal oxides.13–15

Furthermore, there is an emerging consensus that doped
charge carriers in oxides may phase segregate to form nanos-
cale textures. These are believed to be of importance for
achieving their functional properties such as superconductiv-
ity in cuprates5 and giant magnetoresistance in manganites.16

For cuprates, the idea of charge segregation appeared
soon after the discovery of superconductivity.17–19 In a doped
semiconductor, the phase separation may have two different
origins. The first is the chemical origin and is associated with
the segregation of dopant atoms. This type of phase segrega-
tion is usually temperature independent and weakly depen-
dent on external perturbation. Exceptions may appear due to
the large mobility of dopant atoms at relatively high
temperature.

If the mobility of impurity atoms is small, one might ex-
pect a pure electronic mechanism of phase separation. In this
case, the electronic system is in thermodynamic equilibrium
and competing phases are close in energy. This is typical for
systems exhibiting a first order phase transition. Electronic
phase separation is very often observed in magnetic semi-
conductors such as EuSe or EuTe.20–22 Therefore, the idea of
charge segregation in cuprate superconductors and in man-
ganites is very often associated with magnetic degrees of
freedom,23–25 where the phase separation is discussed within
the t-J model. In Refs. 26–29, phase separation was studied
within the Hubbard model. The results are still controversial.
In some cases, the t-J model displays clear static23 or
dynamic24 phase separation. The situation is quite different

for the Hubbard model. For example, the results of numerical
simulations29 suggest that the phase separation is absent at
any set of parameters and for any size of the lattice. Never-
theless, all these models do not consider long-range Cou-
lomb repulsion which has very strong effect on the phase
separation.19,30–35

The long-range Coulomb repulsion, together with the sur-
face energy, determines the topology of the two phase state.
The charged carriers have the tendency toward spatial segre-
gation, which is caused by the fact that the free energy den-
sity of the phase with finite density of carriers is lower than
the free energy density of the undoped system. On the other
hand, charge segregation leads to the charging effect because
the dopant atoms are distributed uniformly in the system.
Therefore, a strong electric field appears which has a ten-
dency to mix the charged phases. In the low doping limit,
there is a low concentration of charged droplets and they do
not overlap. The system behaves as an insulator. When the
concentration increases, the percolative transition to a new
phase is expected.16,36,37

More recently, it was suggested that an interplay of a
short-range lattice attraction and the long-range Coulomb re-
pulsion could lead to the formation of short metallic or insu-
lating strings of polarons.38,39 This was mainly motivated by
the observation of giant isotope effect in manganites and
cuprates.40,41 In Ref. 42, we suggested that an anisotropic
mesoscopic Jahn-Teller interaction between electrons and k
�0 optical phonons might lead to the formation of carrier
pairs and stripes. A slightly different approach, based on
elasticity, was considered more recently for the case of man-
ganites by Khomskii and Kugel43 using the methods of
Eremin et al.44 and Lookman and co-workers.45

The fundamental question which we try and answer here
is how charged particles order in the presence of anisotropic
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Jahn-Teller-type interaction, particularly when their density
becomes large. We consider charged particles on a two-
dimensional �2D� square lattice subject to only the long-
range Coulomb interaction and an anisotropic Jahn-Teller
�JT� deformation. In the preliminary report, we have consid-
ered a narrow doping range but have found clear evidence of
phase segregation and preferential formation of pairs.32 Here,
we extend this study over the full doping range.

In the mean-field �MF� approximation without Coulomb
repulsion, the system displays a first order phase transition to
an ordered state below some critical temperature. In the pres-
ence of Coulomb repulsion, global phase separation becomes
unfavorable and the system shows a mesoscopic phase sepa-
ration, where the size of charged regions is determined by
the competition between the ordering energy and the Cou-
lomb energy. Using Monte Carlo �MC� simulations, we show
that the system can form many different mesoscopic textures,
such as clusters and stripes, depending only on the magni-
tude of the Coulomb repulsion compared to the anisotropic
lattice attraction and the density of charged particles. Sur-
prisingly, in agreement with the previous report, a feature
arising from the anisotropy introduced by the Jahn-Teller in-
teraction is that in a wide part of the phase diagram, objects
with even number of particles are found to be more stable
than those with odd number of particles, which could be
significant for superconductivity when tunneling is
included.36

II. FORMULATION

The model proposed in Ref. 42 involves all interactions
allowed by the symmetry. We consider a simplified version
of the model, where only the interaction leading to the de-
formation of the B1g symmetry is taken into account. The
interaction with B2g mode leads to similar effects and, there-
fore, for our purposes, we can restrict ourselves by consid-
ering B1g mode only. As a result, the interacting part of the
Hamiltonian has the form

HJT = g�
r,l

�3,l��rx
2 − ry

2�f0�r���bl+r
† + bl+r� . �1�

Here, the Pauli matrix �3,l describes two components of the
electronic doublet, and f0�r� is a symmetric function describ-
ing the range of the interaction. We omit the spin index in the
sum, since we ignore spin structure at present. The resulting
model could be easily reduced to a lattice gas model. This is
performed using the Lang-Firsov transformation or, equiva-
lently, the adiabatic approximation for the phonon field. Let
us introduce the classical variable �i= �bi

++bi� /�2 and mini-
mize the energy as a function of �i in the presence of the
harmonic term ��i�i

2 /2. We obtain the deformation, which
corresponds to the minimum energy,

�i
�0� = − �2g/��

r
�3,i+rf�r� , �2�

where f�r�= �rx
2−ry

2�f0�r�. Substituting �i
�0� to the Hamil-

tonian in Eq. �1� and taking into account that the carriers are
charged, we arrive to the lattice gas model. To formulate the

model, we use a pseudospin operator S with S=1 to describe
the occupancies of the two electronic levels n1 and n2. Here,
Sz=1 corresponds to the state with n1=1, n2=0, Si

z=−1 to
n1=0, n2=1, and Si

z=0 to n1=n2=0. Simultaneous occu-
pancy of both levels is excluded due to the high on-site Cou-
lomb repulsion �CR� energy. The Hamiltonian in terms of the
pseudospin operator is given by

HJT−C
LG = �

i,j
„Vl�i − j�Si

zSj
z + Vc�i − j�QiQj… , �3�

where Qi= �Si
z�2. Vc�m�=e2 /�0am is the Coulomb potential, e

is the charge of electron, �0 is the static dielectric constant,
and a is the effective unit cell period. The anisotropic short-
range attraction potential is given by

Vl�m� = g2/��
i

f�i�f�m + i� . �4�

The attraction in this model is generated by the interaction
of electrons with optical phonons. The radius of the attrac-
tion force is determined by the radius of the electron-phonon
interaction and the dispersion of the optical phonons.39

A similar model can be formulated in the limit of the
continuous media. In this case, the deformation is character-
ized by components of the strain tensor. For the two-
dimensional case, we can define three components of the
strain tensor: e1=uxx+uyy transforming as the A1g represen-
tation of the D4h group, �=uxx−uyy transforming as the B1g
representation, and e3=uxy transforming as the B2g represen-
tation. These components of the tensor are coupled linearly
with the twofold degenerate electronic state which trans-
forms as the Eg or Eu representation of the point group. Simi-
lar to the case of interaction with optical phonons, we will
keep the interaction with deformation of the B1g symmetry,
namely, � only. The Hamiltonian without the Coulomb term
has the form

H = g̃�
i

Si
z�i +

1

2
�A1e1,i

2 + A2�i
2 + A3e3,i

2 � . �5�

Here, Aj are the corresponding components of the elastic
modulus tensor, and g̃ is the coupling constant of the charge
carriers with the strain tensor. The components of the strain
tensor are not independent45 and obey the compatibility con-
dition

�2e1�r� − 4�2e3�r�/�x�y = ��2/�x2 − �2/�y2���r� .

The compatibility condition leads to the long-range aniso-
tropic interaction between polarons. To derive the Hamil-
tonian, we minimize Eq. �5� with respect to e1 and e3 taking
into account the compatibility condition. The resulting
Hamiltonian in the reciprocal space has the form

H = g̃�
k

Sk
z �k + „A2 + A1U�k�…

�k
2

2
. �6�

The wave vector dependence of the potential is given by
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U�k� =
�kx

2 − ky
2�2

k4 + 8�A1/A3�kx
2ky

2 . �7�

By minimizing the energy with respect to �k and including
the long-range CR, we again obtain Eq. �3�. The anisotropic
interaction potential Vl�m�=−�k exp�ik ·m� g̃2

2(A2+A1U�k�) is de-

termined in this case by the interaction with the classical
deformation and is long range as well. The potential U�k�
�Eq. �7�� depends on the direction of the wave vector k̂ only;
therefore, Vl�r� decays as 1/r2 at large distances.46 Since
attraction forces decay faster than the Coulomb repulsion at
large distances, the attraction can overcome the Coulomb
repulsion at short distances leading to the mesoscopic phase
separation.

Irrespective of whether the resulting interaction between
polarons is generated by acoustic or optical phonons, the
main physical picture remains the same. In both cases, there
is an anisotropic attraction between polarons over short dis-
tances. This interaction can be either ferromagnetic or anti-
ferromagnetic in terms of the pseudospin operators depend-
ing on the spatial direction. Without losing generality, we
assume that Vl�m� is nonzero only for the nearest neighbors
and can be either ferromagnetic or antiferromagnetic.

III. MEAN FIELD

Our main goal is to study this lattice gas model �Eq. �3��
at a constant average density,

n =
1

N
�

i
Qi, �8�

where N is the total number of sites. However, to clarify the
physical picture, we first perform calculations in the absence
of long-range CR at a fixed chemical potential by adding the
term −��iQi to the Hamiltonian in Eq. �3�.

Similar models were studied many years ago on the basis
of the molecular-field approximation in the Bragg-Williams
formalism.47,48 The mean-field equations for the two vari-
ables n and M = 1

N�iSi
z have the forms47

M =
2 sinh�2zVlM/kBT�

exp�− �/kBT� + 2 cosh�2zVlM/kBT�
, �9�

n =
2 cosh�2zVlM/kBT�

exp�− �/kBT� + 2 cosh�2zVlM/kBT�
. �10�

Here, z=4 is the number of the nearest neighbors for the
square lattice in two dimensions and kB is the Boltzmann
constant. For positive ��0, Eq. �9� has two solutions below
Tc. The solution with M =0 is unstable while the solution
with a finite M corresponds to the global minimum with n
→1 for T→0. When −2zVl���0, the equation has three
solutions below Tc1�Tc. The free energy has two minima
and one maximum. The phase transition at Tc1 is of first
order. The trivial solution M =0 corresponds to the case
when n→0 as T→0. For ��−2zVl, there is only the trivial
solution of the equation M =0.

When the number of particles is fixed �Eq. �8��, the sys-
tem is unstable with respect to global phase separation below
Tcrit�n�. The line of the phase transition is determined by the
condition F(M =0,�crit�T� ,T)=F(M�T� ,�crit�T� ,T), where F
is the free energy, �crit�T� is the critical chemical potential,
and M is the solution of Eq. �9�. As a result, at a fixed
average n, two phases with n0�T�=n(M =0,�crit�T� ,T) and
nM�T�=n(M�T� ,�crit�T� ,T) coexist as determined by Eqs. �9�
and �10�. The region of phase coexistence is shown in Fig.
1.49 For comparison with the MF solutions, we performed
Monte Carlo simulations of the model �Eq. �3�� in the ab-
sence of the Coulomb forces. Due to strong fluctuations in
two dimensions, the critical temperature determined from
MC simulations is reduced by a factor of 	2 in comparison
to the MF result.

IV. COULOMB FRUSTRATED FIRST ORDER PHASE
TRANSITION

Let us now consider the role of the Coulomb repulsion.
The area under the Tcrit�n� in Fig. 1 is the area of phase
coexistence. If we fix the temperature, the two phases with
the bulk concentrations n0 and nM will have volume fractions
1−x and x, respectively, where x= �n−n0� / �nM −n0�. Since
the system is globally electroneutral, the phases with n0 and
nM are charged. However, a large increase of the Coulomb
energy is required to break electroneutrality. As a conse-
quence, growth of charged regions with two different charge
densities is blocked by the Coulomb forces.

In the literature, there are a few examples of introduction
of charging effects in the problem of phase separation.32–35

There are several different possibilities to include long-range
Coulomb forces in the model. Muratov35 proposed that the

FIG. 1. �a� The phase diagram of the model in the absence of the
Coulomb repulsion �Ref. 49�. The dashed line represents the MF
solution. The full squares ��� represent the tcrit�n� line calculated
for the periodic boundary conditions by means of the multicanoni-
cal MC algorithm with the system of size L=40. For comparison,
the tcrit�n� line is shown ��� for open boundary conditions. The
tcl�n� lines for periodic ��� and open ��� boundary conditions are
also shown. �b� The dependence of the nearest neighbor density
correlation function g	L on temperature in the absence of the Cou-
lomb repulsion. The definition of tcl�n� is indicated by the arrow.
The numerical error bars are of the order of the symbol sizes.
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order parameter is a charged scalar and the charge density is
proportional to the order parameter. This situation is similar
to the problem of a charged Bose gas in magnetic field con-
sidered in Ref. 50. A similar situation is considered in Ref.
34, where the free energy has two distinct minima as a func-
tion of the density and gradient terms in the free energy are
replaced by the surface tension. Jamei et al.33 considered the
case with a scalar order parameter where the charge density
is coupled to the order parameter as an external field.

In our case, symmetry allows coupling of the charge den-
sity with the square of the order parameter only. Let us con-
sider the classical free energy density corresponding to the
first order phase transition:

F1 = „�
 − 1� + ��2 − 1�2
…�2. �11�

Here, 
= �T−Tc� / �T0−Tc� is the dimensionless temperature.
At 
=4/3 (T=T0+ �T0−Tc� /3), a nontrivial minimum in the
free energy appears. At 
=1 �T=T0�, the first order phase
transition occurs. Below 
=1, the trivial solution �=0 cor-
responds to the metastable phase. At 
=0 �T=Tc�, the trivial
solution becomes unstable. In order to study the case of the
Coulomb frustrated phase transition, we have to add cou-
pling of the order parameter to the local charge density. In
our case, the order parameter describes the sublattice orbital
magnetization and, therefore, only the square of the order
parameter can be coupled to the local 2D charge density 	:

Fcoupl = − ��2	 . �12�

The proposed free energy functional is similar to that pro-
posed in Ref. 33. In our case, the charge plays the role of the
local temperature, while in Ref. 33, there is a linear coupling
of the charge to the order parameter and the charge density
plays the role of the external field.

The total free energy density should also contain the gra-
dient term and the electrostatic energy:

Fgrad + Fel = C����2 +
1

2
K�	�r� − 	̄�


 d2r��	�r�� − 	̄�/�r − r�� . �13�

Here, we write 	̄ explicitly to take into account global elec-
troneutrality. The total free energy �Eqs. �11�–�13�� should be
minimized at fixed 
 and 	̄.

Next, we proceed to show that the Coulomb term leads to
phase separation in two dimensions. Minimization of F with
respect to the charge density 	�r� leads to the following
equation:

− ��3D
2 �2 = 4�K�	�r� − 	̄���z� . �14�

Here, we write explicitly that the electrostatic field is three
dimensional but the charge density 	�r� is confined in the 2D
plane �z=0�. We believe that this condition is favorable for
creating charge segregation because the electrostatic field is
not screened in the third direction. Solving this equation by
applying the Fourier transform and substituting the solution
back into the free energy density, we obtain

F = F1 − ��2	̄ + C����2

−
�2

8�2K

 d2r�

�„��r�2
… � „��r��2

…

�r − r��
. �15�

As a result, the free energy functional is similar to the case of
first order phase transition with a shifted critical temperature
due to the presence of the term ��2	̄ and with an additional
nonlocal gradient term.

To demonstrate that the uniform solution has a higher free
energy than a nonhomogeneous solution, we make the Fou-
rier transformation of the gradient term:

Fgrad � Ck2��k�2 −
�2k���2�k�2

4�K
, �16�

where �k and ��2�k are Fourier components of the order
parameter and square of the order parameter, respectively. If
we assume that the solution is uniform, i.e., �0�0 and
��2�0�0, small nonuniform corrections to the solution re-
duce the free energy at small k, where the second term domi-
nates.

In addition to the ordinary CR term, a charge compress-
ibility term was introduced in Ref. 51. This term changes the
relation between the order parameter and charge density �Eq.
�14�� at large wave vectors �short distances� leading to the
momentum independent relation ��2�k�	k. On the other
hand, it has a small effect on Eq. �14� in the long wavelength
limit. Therefore, Eq. �16� remains unaffected by the charge
compressibility in the long wavelength limit.

The situation is different in three dimensions. Direct so-
lution of the equation for the charge density leads to the local
gradient term of higher order, − �2

8�K (���r�2)2. This term can
also lead to instability, and higher order expansion in gradi-
ent terms becomes important.

V. MONTE CARLO SIMULATIONS

To substantiate the above arguments, we performed MC
simulations of the system described by the Hamiltonian in
Eq. �3� with and without the presence of the long-range CR.
The simulations were performed on a square lattice with di-
mensions LL sites with 10�L�100 at different dimen-
sionless temperatures t=kBT�0a /e2. The short-range poten-
tial vl�i�=Vl�i��0a /e2 was taken to be nonzero only for �i�
=1 and was therefore specified by a single parameter
vl�1,0�.

We first performed MC simulations of the model at a
constant chemical potential in the absence of CR. Due to the
presence of first order phase transition, the particle density
probability distribution Pt,��n� has two peaks when the
chemical potential is near the critical value �crit�t�. At
�crit�t�, the two peaks have equal height corresponding to the
densities of the two coexisting phases n0 and nM. A standard
Metropolis algorithm,52 in combination with simulated
annealing53 and histogram reweighting technique,54 gave re-
liable results only at higher temperatures near maximum
tcrit�n�. At lower temperatures the standard Metropolis simu-
lation becomes strongly nonergodic. To improve ergodicity
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we used a variant of multicanonical approach55 adapted to
uniformly sample states over the full range of densities56 n at
a constant dimensionless temperature tsim and chemical po-
tential �sim. At each temperature, the final histogram acqui-
sition run involved at least 106 MC pseudospin flips per site.
The density probability histograms Ptsim,��n� for several val-
ues of the chemical potential � close to the simulation
chemical potential �sim were then calculated at each tsim by
reweighting54 �see Fig. 2�. From the histogram with equal
peak heights, the densities of the two coexisting phases n0
and nM were then determined at a given tsim.

In simulations at constant n, one MC step consisted of a
single update per particle, where the trial move consisted of
setting Sz=0 at the site with nonzero Qi and Sz= ±1 at a
randomly selected site with zero Qi. A standard Metropolis
algorithm,52 in combination with simulated annealing,53 was
used in this case. A typical simulated annealing run consisted
of a sequence of MC simulations at different temperatures.
At each temperature, equilibration phase consisting of
103–106 MC steps was first executed followed by the aver-
aging phase consisting of the same or greater number of MC
steps. Observables were measured after each MC step during
the averaging phase only.

At constant n in the absence of the CR, global phase
separation below tcrit�n� occurs in the form of a large cluster
with M �0. To detect onset of clustering, we measure the
nearest neighbor density correlation function �CF� g	L

= 1
4n�1−n�L2 ��m�=1��i�Qi+m−n��Qi−n�L, where � L represents

the MC average. We define the temperature tcl�n� at which
g	L rises to 50% of its low temperature value �see Fig. 1�b��
as the characteristic crossover temperature related to the for-
mation of clusters.

In Fig. 1�a�, we show the results of MC simulations in the
absence of the Coulomb repulsion. We find that for n�0.4,
the boundary conditions strongly affect the tcrit�n� line calcu-
lated at the constant chemical potential. When we use open
boundary conditions �OBC�, tcrit�n� is strongly suppressed
above n�0.4 in comparison to the result obtained with the

periodic boundary conditions �PBC�. At constant n, on the
other hand, the influence of the boundary conditions on tcl�n�
is less pronounced. The tcl�n� calculated with both types of
boundary conditions closely follow the tcrit�n� line calculated
with PBC. Above n�0.6, tcl�n� for OBC is only slightly
higher than that for PBC. We attribute the insensitivity of
tcl�n� to boundary conditions at fixed n to sensitivity of the
correlation function to the short-range correlations which are
less sensitive to boundary conditions.

Next, we analyze the model in the presence of the long-
range CR at constant n. In Fig. 3, we show a typical tem-
perature dependence of the average energy per particle esti-
mator �eMCL for different system sizes L in the presence of
the long-range CR using OBC. Error bars represent the stan-
dard deviation �eMC

=��eMC
2 L− �eMCL

2. The average energy
monotonously drops with decreasing temperature. The drop
is more pronounced in the temperature interval 	0.5� t�
	0.1 in which clusters start to form. Below t	0.1, the clus-
ters are partially ordered. The temperature dependence of
�eMCL is virtually identical for all L �we should note that the
curves are vertically shifted by 0.1 for clarity� indicating that
the boundary effects on �eMCL are negligible even for the
smallest system sizes.

In the temperature region where clusters partially order,
the heat capacity cL=��eMCL /�t displays the peak at tco�n�
�see Fig. 5�b��. The peak displays no scaling with L indicat-
ing that no long-range ordering of clusters appears. Inspec-
tion of the particle distribution snapshots at low
temperatures32 reveals that finite size domains form �see Fig.
6�. Within the domains, the clusters are ordered. The domain
wall dynamics seems to be much slower than our MC simu-
lation time scale, preventing domains from growing. The ef-
fective L is therefore limited by the domain size. This ex-
plains the absence of the scaling and clear evidence for a
phase transition near tco�n�. From the simulations, it is there-
fore not clear whether the absence of complete cluster order-
ing is due to the finiteness of the MC simulation or also due

FIG. 2. Histograms of the density probability distribution
Pt,��n� at the chemical potential near �crit�t� obtained by multica-
nonical MC simulation in the absence of Coulomb repulsion. The
values of the coexisting densities n0 and nM at the given tempera-
ture are indicated by the arrows. Note the logarithmic scale.

FIG. 3. A typical temperature dependence of the average energy
per particle estimator �eMCL for different system sizes L. The insets
show snapshots of particle distribution at different temperatures,
where the darker and brighter shades of gray represent Si

z=1 and
−1, respectively. The curves are vertically shifted for 0.1; the error
bars represent �eMC

.
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to the glassy form of the free energy landscape. The square
shape of the sample may frustrate the cluster orders with
nontetragonal symmetries, while a practically achievable
number of MC steps per temperature step warrants reliable
MC averages only above the temperature which is of the
same order as tco�n�. The cluster ordering temperature tco�n�,
which is the lowest energy scale at all densities, is only
weakly n dependent in the range 0.1�n�0.9.

To check the convergence of our simulations, we analyzed
the MC update dynamics by calculating the autocorrelation
function of energy fluctuations,

geL�
MC� =
1

K�eMC

2 �
i=1

K

„eMC�i + 
MC� − �eMCL…„eMC�i�

− �eMCL… , �17�

where eMC�i� represents the energy per site at the ith MC step
and 
MC represents the MC time. A typical time dependence
of geL�
MC� is shown in the inset in Fig. 4. The autocorrela-
tion function drops with the characteristic MC relaxation
time 
R. 1 /
R displays Arrhenius temperature dependence
�see Fig. 4� down to the temperature where clusters start to
order. Below this temperature, 
R behaves more erratically.
The activation energy strongly depends on the magnitude of
the short-range potential vl�1,0�. The lowest temperature for
which our simulation gives reliable results therefore strongly
depends on the magnitude of the short-range potential due to
the limited number of steps in the MC production runs. For
our choice of the short-range potential strength, the achiev-
able number of steps was large enough to ensure conver-
gence for all temperatures down to tco�n�.

We now set vl�1,0�=−1 and study the dependence of
clustering on particle density. To detect clustering, we again
use the nearest neighbor CF. In Fig. 5�c�, we plot a typical
nearest neighbor CF, g	40�1,0�, as a function of temperature.
At high temperatures t� �vl�1,0��, CF is slightly negative
due to the long-range CR. When the temperature decreases,

CF becomes positive and further rises with the decreasing
temperature. No saturation of CF as in the case of the ab-
sence of the CR forces is observed with the decreasing tem-
perature �see Fig. 1�b��. Again, we define the temperature at
which CF rises to 50% of its low temperature value as the
characteristic crossover temperature tcl�n� related to the for-
mation of clusters. The dependence of tcl�n� on the particle
density is shown in Fig. 5�a� for different boundary condi-
tions. While in the absence of the long-range CR tcl�n�
closely follows the tcrit�n� line �Fig 1�a��, suppression of
clustering by the CR forces results in a significant decrease
of tcl�n�.

Different boundary conditions influence tcl�n� only for
densities above n�0.5. In this region, the particles that form
clusters are holes �Qi=0� in the background of pseudospins
�Qi=1�. The open boundary conditions are effectively a pe-
rimeter formed from holes which attracts holes and, by pin-
ning, enhances hole clustering, resulting in an increase of
tcl�n� for OBC.

In addition, for n�0.5 and our choice of vl�i�, the pseu-
dospin background ferromagnetically orders at tS�n�, which
increases with increasing density, as shown in Fig. 5�a�. The
pseudospin ordering temperature is significantly higher than
tcl�n�. Despite this, the particle-hole symmetry of the tcl�n�
line is absent. The absence of the particle-hole symmetry is a
consequence of different entropy contributions of doubly de-
generate particle level �Siz= ±1 for Qi=1� and singly degen-
erate hole level �Siz=0 for Qi=0�.

The tcl�n� line does not appear smooth. There are clear
dips at n�0.14, n=0.5, and n�0.86. With increasing den-
sity, the ground state of the system apparently goes through a
series of crossovers related to the most probable cluster sizes,
as shown in Fig. 6. While the dip at half-filling clearly cor-

FIG. 4. The characteristic MC relaxation time 
R as a function
of temperature for different values of vl�1,0�. The thin lines repre-
sent the Arrhenius fits. The inset shows the autocorrelation function
ge30�
MC� at a few temperatures for vl�1,0�=−1. For convenience,

R is defined as a value of 
MC where geL�
MC�=0.25.
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FIG. 5. �a� The phase diagram of the model in the presence of
the long-range Coulomb repulsion. The open circles ��� and full
circles ��� represent the tcl�n� line for periodic and open boundary
conditions, respectively, while the dotted circles ��� represent the
tcl�n� line for periodic boundary conditions in the absence of the
long-range CR. The onset of clustering, t0�n�, is shown by the open
squares ��� and the cluster ordering temperature tco�n� by the open
triangles �∆�. The pseudospin �orbital� ordering temperature is
shown by the full stars ���. Note the logarithmic scale. The error
bars are of the order of the symbol sizes or smaller. �b� The defini-
tion of tp from the peak in the temperature dependence of the heat
capacity. �c� The definitions of t0 and tcl from the temperature de-
pendence of the nearest neighbor density correlation function.
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responds to commensurate ordering of stripes, the other two
dips approximately correspond to the densities at which clus-
ters of size 4 start to replace pairs �see Fig. 6�. There is no
obvious commensuration to the underlying lattice at these
densities. At densities at which larger clusters start to replace
quartets, no comparable anomaly is observed in the tcl�n�
line.

Despite the presence of the CR forces, some clusters al-
ready start to form at temperatures higher than tcl�n�. We can
estimate the upper limit for the onset of cluster formation by
the temperature t0�n� at which g	L�1,0� crosses 0. It is inter-
esting that t0�n� almost coincides with the tcrit�n� line �see
Fig. 5�a�� below n�0.4, while at higher densities, the onset
of clustering appears at much higher temperatures. In the
region 0.5�n�0.75, the temperature at which the onset of
clustering occurs is higher than the pseudospin ordering tem-
perature tS�n�, while above n�0.75, the pseudospin ordering
represents the highest energy scale.

To get further insight into the cluster formation, we mea-
sured the cluster-size distribution function. In Fig. 6, we
show the low temperature density dependence of the cluster-
size distribution function, xj =Np�j� / �nL2�, where Np�j� is the
number of particles for n�0.5 or holes for n�0.5 in clusters
of size j. At the highest temperature, xj is close to the distri-
bution expected for the random ordering. When the tempera-
ture decreases, the number of larger clusters starts to increase
at the expense of the single particle number.32 Further down
in temperature, depending on the average density n, clusters
of a certain size start to prevail at the expense of all other
sizes. Depending on the particle density, prevailing clusters
can be pairs up to n�0.14, quartets up to n�0.3, etc. The
situation is qualitatively symmetrical for the clusters formed
by holes at n�0.5. The preference for clusters with an even
number of particles is not very sensitive to the shape of the
anisotropic attractive potential. However, some nearly isotro-
pic choices of vl�i , j� do not show the preference for an even
number of particles in a cluster.

Analysis of binding energies of isolated clusters with vari-
ous numbers of particles did not reveal any systematics that
would lead to a simple explanation of the even-number pref-

erence. The observed behavior is therefore not just a conse-
quence of anisotropy of vl�i , j� but also of a subtle interplay
between the lattice topology and correlations due to the long-
range Coulomb repulsion.

It should also be emphasized that the preference to certain
cluster sizes becomes clearly apparent only at temperatures
lower than tcl�n�; however, the transition is not abrupt but
gradual with decreasing temperature. This is also seen from
the gradual increase of the average cluster size with decreas-
ing temperature shown in Fig. 7. Around half-filling, the av-
erage cluster size starts to diverge at low temperatures, indi-
cating formation of long stripelike objects �see insets in Fig.
6� and proximity of the percolation.

VI. CONCLUSIONS

We presented the results of extensive investigation of the
ordering of charged Jahn-Teller polarons as a function of
doping and temperature. We consider charged particles on a
2D square lattice subject to only the long-range Coulomb
interaction and an anisotropic JT deformation.

We prove that without the long-range Coulomb repulsion,
the system is unstable with respect to the first order phase
transition below the density dependent critical temperature.
This was demonstrated by the solution of the mean-field
equation, as well as by direct Monte Carlo simulations. It
was shown that this result does not depend on the type of
boundary conditions and the error due to finite size effect is
estimated.

In the presence of the Coulomb repulsion, the global
phase separation becomes unfavorable and the system shows
a mesoscopic phase separation, where the size of the charged
regions is determined by the competition between the order-
ing energy and the Coulomb energy. The phenomenological
theory of this effect was formulated where the square of the
order parameter is coupled with the charge density. The
charge density plays the role of the local temperature. This
type of coupling is more general in comparison with the
models where the charge plays the role of an external field.

Using MC simulations, we showed that below a charac-
teristic clustering temperature, the system forms many differ-

FIG. 6. The density dependence of the cluster-size distribution
function xj for a few of the smallest cluster sizes as a function of the
average density at the temperature t=0.14. The regions of densities
where pairs prevail are shadowed.

FIG. 7. The temperature dependence of the average cluster size
for different particle densities n �a� below half-filling �particle clus-
ters� and �b� above half-filling �hole clusters�.
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ent mesoscopic textures, such as clusters and stripes, depend-
ing only on the magnitude of the Coulomb repulsion
compared to the anisotropic lattice attraction and the density
of charged particles. Below the clustering temperature, the
system goes through a series of crossovers between phases
with different mesoscopic textures when the particle density
is increased. The low temperature part of the phase diagram
is rather symmetric with respect to half-filling. However,
above half-doping, another high temperature scale appears
corresponding to orbital ordering of the particles. Surpris-
ingly, a feature arising from the anisotropy introduced by the
Jahn-Teller interaction is that objects with an even number of

particles are more stable than those with an odd number of
particles. Such a behavior could have significant implications
for superconductivity when tunneling is included.36
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