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The ground state property of Yukawa Bose fluid confined in a radial harmonic trap is studied. The calcula-
tion was carried out using the density functional theory formalism within the Kohn-Sham scheme. The excess-
correlation energy for this inhomogeneous fluid is approximated via the local density approximation. A com-
parison is also made with the Gross-Piteavskii model. We found that the system of bosons interacting in terms
of Yukawa potential in a harmonic trap is energetically favorable compared to the ones interacting via contact
delta potential.
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I. YUKAWA BOSE FLUID: AN INTRODUCTION

A system of N Bose particles interacting via the Yukawa
potential is called Yukawa Bose fluid �for short, YBF�. For
three-dimensional space, D=3, the Yukawa potential takes
the form V3�r̃�= ��� / r̃�exp�−r̃ /��, where � is an energy scale
and � is a length scale having the meaning of a screening
length. For the two-dimensional case, however, it is de-
scribed by V2�r̃�=�K0�r̃ /��, where K0�x̃� is the modified
Bessel function that decays as exp�−x̃� /�x̃ at large distance
while it behaves in a repulsive manner as −ln�x̃� at short
distances. In other words, the Yukawa potential presents a
combination of short range with soft-core-type potential.

Early numerical calculation �quantal Monte Carlo simula-
tions� in studying the ground state property of the three-
dimensional YBF can be traced back to the work of Ceperley
et al.1,2 There was a spurt of interest in numerical calculation
of two-dimensional �2D� ground state property of the 2D-
YBF in the 1990s following the idea of Nelson and Seung3

who have shown that the statistical mechanics of the flux-
line lattice �FLL� of high-Tc superconductors can be studied
through an appropriate mapping onto the 2D-YBF. Magro
and Ceperley4 have performed diffusion Monte Carlo �DMC�
and variational Monte Carlo �VMC� numerical simulations
to calibrate the ground state vortex properties and phases
�liquid or solid� that correspond to the density and kinetic
energy of the system. Similar work related to the first order
phase transition of the Abrikosov lattice to liquid of vortices
has been reported by Nordborg and Blatter5 using the path
integral Monte Carlo method. In the late 1990s, other meth-
ods such as the STLS model6,7 appeared in studying the
ground state properties of the 2D-YBF. It has to be noted that
all these works were spiralling around the system of homo-
geneous fluid.

Our work will focus on the harmonically trapped system
extending the work based on the quantal Monte Carlo calcu-
lations of Magro and Ceperley.4 Of particular interest to us is
the phase diagram obtained by them for the parameters
�� ,�� at transition points displayed in Fig. 1. Here, � indi-
cates the De Boer dimensionless parameter defined by �2

=�2 /2m�2�, while � and m denote the reduced density and
atomic mass, respectively.

Magro and Ceperley4 observed that for a particular region
��0.09, the system is dominated by kinetic energy and

does not crystallize. Below this threshold, however, a pecu-
liar behavior of reentrant liquid has been observed, which
means that system is in the liquid phase at very low density
as well at high density. The crystal melts on compression and
expansion. It is known that at low density, the system is in
liquid phase due to the fact that the screened potential cannot
bind to solid phase particles that are, on average, too far
apart. For the high density, the crystal is known to melt simi-
lar to the mechanism of thermal melting of a Wigner crystal.
However, in this work, we are dealing with the liquid phase
of Yukawa bosons only. Our calculation rely on the data of
the liquid phase near the transition point from the phase dia-
gram �Fig. 1� as an input to the local density approximation
�LDA�. The use of density functional theory �DFT�-LDA in
this work is only a matter of computational convenience pri-
marily due to the availability of the exact Monte Carlo4 data
of the homogeneous system.

The motivation behind this work is that we believe that
the theory of 2D-YBF can be used in studying the ground
state property of the strongly correlated liquid formed at the
melted phase of many vortex system in the dilute trapped
Bose gas.8–10 In the latter system, Bose-Einstein condensate
�BEC� is completely depleted by quantum fluctuations, and
quantum liquids appear with excitations that can carry frac-
tional statistics. In this situation, vortices can be treated as
fundamental objects forming themselves as strongly corre-
lated quantum fluid. This idea has been used in explaining
certain features of Hall conductance and magnetization ex-
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FIG. 1. The phase diagram of Yukawa bosons reproduced from
Ref. 4. The pluses are transition points computed with DMC. The
dashed line at high densities is the scaling law: ��0.04/��.
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periments in high-Tc superconductors.5,11,12 On the other
hand, the repulsive nature of vortices interacting in the short
ranges is well described by the soft-core logarithmic poten-
tial. At the edge of the trap, the potential is smoothed out by
exp�−x̃� /�x̃ that decays to zero, making it computationally
tractable and ruling out any instability that may occur at the
trap boundary. This characteristic makes it plausible for the
vortex liquid to be mapped as Yukawa bosons in a similar
fashion to one adapted by Nelson and Seung3 for the YBF-
FLL in the high Tc superconductors.

The paper is outlined as follows. In Sec. II, we introduce
the density functional theory formalism in showing that by
choosing a particular type of auxiliary external trapping po-
tential, the noninteracting system of bosons can be mapped
to a real interacting system. We present the numerical calcu-
lation the Kohn-Sham equation and Gross-Pitaevskii �GP� in
Sec. III. Then, the numerical results will be discussed and
concluded.

II. APPLICATION OF DENSITY FUNCTIONAL THEORY
IN THE YUKAWA BOSONS SYSTEM

The DFT is originally based on the notion that for a
many-electron system, there is a one-to-one mapping be-
tween the external potential and the electron density:
vext�r�↔��r�. In other words, the density is uniquely deter-
mined given a potential and vice versa. All properties are
therefore a functional of the density, because the density de-
termines the potential, which determines the Hamiltonian,
which determines the energy and the wave function. Follow-
ing this train of reasoning, the inhomogeneous dilute system
of N interacting bosons can be described within the second
quantization language as

Ĥ = H0
ˆ +� dr�†�r�Vext�r���r�

+
1

2
� dr� dr��†�r��†�r��V��r − r�����r����r�

= H0
ˆ + V̂ext + V̂int, �1�

where Ĥ0=�dr�†�r��− �2

2m�2−�	��r� and V��r−r��� is the
interatomic interaction potential. Here, Vext�r� is the external
trapping potential, while m and � are the atomic mass and
the chemical potential, respectively. The annihilation and
creation field operators are denoted by �†�r� and ��r��, re-
spectively, and obey the following Bose-Einstein commuta-
tion relations:

���r�,�†�r��	 = 	�r − r�� ,

���r�,��r��	 = ��†�r�,�†�r��	 = 0. �2�

Let us denote the ground state of the system as �
o
 so the

ground state energy is defined as Eo= �
o�Ĥ�
o
 and the
ground state density by no�r�= �
o��†��
o
. The
Hohenberg-Kohn �HK� theorem13 guarantees that there ex-
ists a unique functional of the density,

F�n	 = H0
ˆ �n	 + V̂int�n	 , �3�

irrespective of the external potential. The theorem was origi-
nally proven for fermions but its generalization also covers
bosons. Following HK, we can write the total energy func-
tional of the system as follows:

E�n	 = F�n	 +� drVext�r�n�r� . �4�

Determination of the ground state energy Eo follows by
imposing the stationary conditions

	E�n	
	n�r�

= 0, �5�

where we will obtain the ground state density no�r� that is
uniquely determined by the choice of our external potential
Vext. In general, the Hohenberg-Kohn theorem does not pro-
vide us with a computational scheme to determine the
ground state energy. This is provided by the Kohn-Sham
�KS� procedure.14 The idea is to use an auxiliary system
�noninteracting reference system� and look for and external
potential Vext

s such that the noninteracting system has the
same ground state density as the real, interacting system. We
write the Hamiltonian of the auxiliary system in the follow-
ing form:

Ĥs =� dr�†�r��−
�2

2m
�2 − ���r� +� dr�†�r�Vext

s �r���r� .

�6�

Thus, for the ground state �
o
, we can define the unique
total ground state energy functional of the auxiliary that can
be written as

Es�ns	 = Fs�ns	 +� drns�r�Vext
s �r� . �7�

By the KS scheme, we note that Es�ns	 can be approxi-
mated to E�n	 or, in other words, the density of the auxiliary
system ns�r� is equivalent to the real system n�r� by choos-
ing a proper choice of auxiliary external potential Vext

s .
Using the above argument and comparing the energy term

Fs�ns	 of Eq. �7� with Eq. �3�, we can deduce the following
functional relation:

F�n	 = Fs�n	 + VH�n	 + Fxc�n	 , �8�

where the second term V̂H is called the Hartree energy de-
fined as

V̂H =
1

2
� dr� dr�V��r − r���n�r�n�r�� . �9�

The last term in Eq. �8� represents the exchange-
correlation energy Exc�n�r�	 that includes all the contribu-
tions to the interaction energy beyond the mean field Hartree
term. Calculating the variational derivatives in Eq. �5� using
Eq. �8�, one finds

K. K. RAJAGOPAL PHYSICAL REVIEW B 76, 054519 �2007�

054519-2



	Fs�n	
	n�r�

+ VH�r� +
	Fxc�n	
	n�r�

+ Vext�r� = 0, �10�

where the Hartree field reads

VH�r� =� dr�V��r − r���n�r�� . �11�

Performing a similar variational calculation on Eq. �7�, we
deduce that the density of the auxiliary system is identical to
that of the actual system if

Vext
s �r� = Vext�r� + VH�r� + Vxc�r� , �12�

where we have introduced in Eq. �12� the exchange-
correlation potential Vxc=	Fxc�n�r�	 /	n�r�, which is un-
known for most of the systems of interest and thus one has to
resort to approximations such as the local density approxi-
mation �LDA�. This will be dealt with in the following sec-
tion.

Local density approximation

Before we can actually implement the Kohn-Sham for-
malism, we have to devise some workable approximations
for the exchange-correlation potential Vxc�r�. The first such
approximation to be suggested was the LDA. The idea be-
hind the LDA is very simple; it just ignores the nonlocal
aspects of the functional dependence of Vxc�r�. The true form
of Vxc�r� will depend not only on the local density n�r� but
also on n at all other points r�, and this functional depen-
dence is, in general, not known. This difficulty is avoided
with the assumption that Vxc depends only on the local den-
sity n�r� and that Exc�n	 can thus be written as

Exc�n�r�	 � � drExc
hom���	��→n�r�, �13�

where Exc
hom��	=��xc��	 and �xc��	 is the exchange-

correlation energy of a homogeneous system with uniform
density �. The functional derivatives of the above relation
read

Vxc�n�r�	 =
	Exc�n�r�	

	n�r�
= � ����xc��	�

��
�

�→n�r�
. �14�

The available numerical data of Magro and Ceperley4 and
Strepparola et al.7 permit one to obtain information on the
homogeneous excess free energy fex�n	 rather than the ho-
mogeneous exchange-correlation energy fxc�n	. Thus, it is
more convenient to work with excess free energy defined
as15

Fex�n�r�	 = V̂H�n�r�	 + Fxc�n�r�	 . �15�

In general, the excess-correlation functional energy
Fex�n�r�	 in a DFT calculation is not known exactly. One can
resort to approximations such as the LDA, which reads

Fex�n�r�	 � � drFex
hom��n	�n→n�r�, �16�

where Fex
hom�n	=nfex

hom�n	. The functional derivatives �excess-
correlation potential� of the above relation can be written as

Vex„r,n�r�… =
	Fex�n�r�	

	n�r�
= � ��nfex�n	�

�n
�

n→n�r�
. �17�

Information on the homogeneous excess-correlation en-
ergy fex�n	 can be obtained by subtracting the kinetic energy
from the total ground state energy of a homogeneous system
with N boson. In Fig. 2, plots of the DMC data of Magro and
Ceperley4 and the STLS data of Strepparola et al.7 are de-
picted along with the following fit:

fex��	 = −
2�

log���
. �18�

III. NUMERICAL CALCULATION FOR THE KOHN-SHAM
EQUATION

We summarize here the algorithm in our numerical calcu-
lations which are commonly used in the literature to mini-
mize energy functional E�
 ,
*	= �
�Ho+Vext

s �

, where

=�n�r� exp�i�� in which the phase � fixes the velocity of
the fluid through the relation v=�� /m. We minimize
E�
 ,
*	 by assuming the normalization condition
�dr
*
=N to obtain the following nonlinear the time inde-
pendent nonlinear Kohn-Sham equation:

�− �2 + x2 −
2n�x�

log�n�x�	
�x� = �
�x� . �19�

In the above equation, we have incorporated the auxiliary
external potential based on Eqs. �12� and �15�–�18� using an
isotropic planar trapping external potential Vext
= �1/2�m�2r2, with � as the radial frequency. We have
scaled all lengths and energies by harmonic oscillator unit
aho=�� /m� and �� /2, respectively. We obtained the ground
state solution of the system by numerical iteration method by
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FIG. 2. Homogeneous excess-correlation energy fex��� versus
the dimensionless homogeneous gas density � of the VMC data of
Magro and Ceperley �Ref. 4� �pluses� and STLS data of Strepparola
et al. �Ref. 7� �crosses� compared to the fit function �Eq. �18�	
�dashed line�.
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using a two-step Crank-Nicholson discretization technique.
The density profiles as a function of N are shown in Fig.

3. The profile shows a maximum at the center of trap and it
decreases monotonically with x. To make a quantitative mea-
surement, we fix the solution for Eq. �19� for N=100 �n1� as
a standard and compare the differences in density for the
other two values at the trap center �n=n2�0�−n1�0� and
ñ=n3�0�−n1�0�	. Here, n2�0� and n3�0� correspond to the
solution of Eq. �19� for N=150 and N=200, respectively, at
the center of trap. We found that the differences n and ñ
decrease with n /n1 and ñ /n1 by as large as 17%–26%.
The explanation of these results is quite straightforward. The
areal integral of the density n�r� yields the total number of
atoms in the system. Hence, larger number of atoms pro-
duced a much profound profile. The central density of the
cloud decreases rapidly with increasing N, but the density
distribution is flattened due to stronger repulsion between
particles.

We also compare the YBF model with the conventional
GP equation. This can be done by taking a contact potential
g	��r−r��� in Eq. �11�, where g= �4��2 /m�log�2�2 / �m�a2��
is the coupling parameter for the two-dimensional BEC16–18

incorporating the s-wave scattering length a. We assumed a
negligible exchange correlation between the atoms �Vxc=0�
and would like to stress here that the condensate density is
approximated to the total density nGP�r� at absolute zero
temperature �neglecting quantum fluctuation�. Based on the
similar arguments in obtaining Eq. �19�, we obtain the time
independent Gross-Pitaevskii equation

�− �2 + x2 + g̃nGP�x�	
�x� = �
�x� , �20�

where g̃ is the dimensionless scaled coupling parameter. We
have also calculated the total energy of YBF and GP model
as a function of the number of atoms, and the result is shown
in Fig. 4. Increasing N, we observe an increase of both in-

teraction and harmonic oscillator potential energy for both
GP and YBF models. The latter effect follows from the ex-
pansion of the cloud. On the contrary, the kinetic energy per
particle decreases because the density profile is flattened.
The GP energy curve �dashed line� remains well above the
YBF curve �solid line� for all ranges of N. The energetic
superiority of GP solution demonstrates the strongly repul-
sive nature of delta potential compared to the soft-core na-
ture of the Yukawa potential as the number of atoms in-
creases in the system.

In summary, we have studied the system of N Yukawa
bosons in a 2D harmonic trap at absolute zero temperature.
The central issue of this work is the use of density functional
theory formalism within the Kohn-Sham scheme in repro-
ducing the result of Monte Carlo simulation of Magro and
Ceperley4 for the liquid phase in a harmonic trap. Physically
sensible result through the local density approximation is
obtained for the trapped system by knowing the homoge-
neous exchange-correlation energy. The ground state proper-
ties �density profiles and total energies� have been obtained
by solving the nonlinear equations Eqs. �19� and �20�. Our
results show that bosons interacting with the Yukawa poten-
tial are energetically favorable compared to the contact delta
potential for all ranges of N considered in this work. The
results have, so far, not been verified. In light of the above,
we trust that the YBF model through an appropriate mapping
�boson-vortex� can be efficiently used to study strongly cor-
related liquid formed at the melted phase of vortices in a
harmonically trapped rotating Bose gases.
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