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We study Josephson effect in graphene superconductor/barrier/superconductor junctions with short and wide
barriers of thickness d and width L, which can be created by applying a gate voltage V0 across the barrier
region. We show that Josephson current in such graphene junctions, in complete contrast to their conventional
counterparts, is an oscillatory function of both the barrier width d and the applied gate voltage V0. We also
demonstrate that in the thin barrier limit, where V0→� and d→0 keeping V0d finite, such an oscillatory
behavior can be understood in terms of transmission resonance of Dirac–Bogoliubov–de Gennes quasiparticles
in superconducting graphene. We discuss experimental relevance of our work.
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I. INTRODUCTION

Graphene, a two-dimensional single layer of graphite, has
been recently fabricated by Novoselov et al.1 In graphene,
the energy bands touch the Fermi energy at six discrete
points at the edges of the hexagonal Brillouin zone. Two of
these six Fermi points, referred to as K and K� points, are
inequivalent and the quasiparticle excitations about them
obey linear Dirac-like energy dispersion.2 The presence of
such Dirac-like quasiparticles leads to a number of unusual
electronic properties in graphene including relativistic quan-
tum Hall effect with unusual structure of Hall plateaus,3

which has been verified in experiments.4 Further, as sug-
gested in Ref. 5, Dirac quasiparticles in graphene leads to
realization of interesting physical phenomenon such as Klein
paradox,4,6 Lorenz-boost-type phenomenon,7 and unconven-
tional Kondo effect.8,9

Other interesting consequences of the existence of Dirac-
like quasiparticles can be understood by studying super-
conductivity in graphene. It has been suggested that super-
conductivity can be induced in a graphene layer in the
presence of a superconducting electrode near it via prox-
imity effect10–12 or by intercalating it with metallic atoms.13

Consequently, studies on tunneling conductance on both
normal metal/superconductors and normal metal/barrier/
superconductor �NBS� junctions in graphene have been
undertaken.10,14,15 It has been shown in Refs. 14 and 15
that the tunneling conductance of such NBS junctions
are oscillatory functions of the effective barrier strength
and that this oscillatory phenomenon can be understood
in terms of the transmission resonance phenomenon of
Dirac–Bogoliubov–de Gennes �DBdG� quasiparticles of
graphene. Josephson effect has also been studied in a
superconductor/normal metal/superconductor �SNS� junction
in graphene.12,16 It has been shown in Ref. 12 that the
behavior of such junctions is similar to that of conventional
SNS junctions with disordered normal region. Such Joseph-
son junctions with thin barrier regions have also been experi-
mentally realized recently.17 However, Josephson effect in
graphene superconductor/barrier/superconductor �SBS� junc-
tions has not been studied so far.

In this work, we study Josephson effect in graphene for
tunnel SBS junctions. In this study, we shall concentrate on

SBS junctions with barrier thickness d��, where � is the
superconducting coherence length, and width L which has an
applied gate voltage V0 across the barrier region. Our central
result is that in complete contrast to the conventional Joseph-
son tunnel junctions studied so far,18,19 the Josephson current
in graphene SBS tunnel junctions is an oscillatory function
of both the barrier thickness d and the applied gate voltage
V0. We provide an analytical expression for the Josephson
current of such a junction. We also compute the critical cur-
rent of graphene SBS junctions. We find that this critical
current is also an oscillatory function of V0 and d and study
the amplitude and periodicity of its oscillation. We also show
that in the thin barrier limit, where the barrier region can be
characterized by an effective dimensionless barrier strength
�=V0d /�vF �vF being the Fermi velocity of electrons in
graphene�, the Josephson current becomes an oscillatory
function of � with period �.14 We find that in this limit, the
oscillatory behavior of Josephson current can be understood
as a consequence of the transmission resonance phenomenon
of DBdG quasiparticles in graphene. We demonstrate that the
Josephson current reaches the Kulik-Omelyanchuk limit20

for �=n� �n being an integer�, but, unlike conventional junc-
tions, never reaches the Ambegaokar-Baratoff limit21 for
large �. We also discuss simple experiments to test our
theory.

The organization of the rest of the paper is as follows. In
Sec. II, we obtain an analytical expression for Josephson
current for a general SBS junction of thickness d�� and
applied voltage V0 and demonstrate that the Josephson cur-
rent is an oscillatory function of both d and V0. This is fol-
lowed by Sec. III, where we discuss the limiting case of a
thin barrier and demonstrate that the oscillatory behavior of
the Josephson current can be understood in terms of trans-
mission resonance of DBdG quasiparticles in graphene. Fi-
nally, we discuss experimental relevance of our results in
Sec. IV.

II. JOSEPHSON CURRENT FOR TUNNEL
SUPERCONDUCTOR/BARRIER/SUPERCONDUCTOR

JUNCTIONS

We consider a SBS junction in a graphene sheet of width
L lying in the xy plane with the superconducting regions
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extending x=−� to x=−d and from x=0 to x=� to for all
0�y�L, as shown in Fig. 1. The superconducting regions
x	0 and x�−d shall be assumed to be kept close to super-
conducting electrodes so that superconductivity is induced in
these regions via proximity effect.10,11 Alternatively, one can
also possibly use intercalated graphene which may have
s-wave superconducting phases.13 In the rest of this work, we
shall assume that these regions are superconducting without
worrying about the details of the mechanism used to induce
superconductivity. Region B, modeled by a barrier potential
V0, extends from x=−d to x=0. Such a local barrier can be
implemented by using either the electric field effect or local
chemical doping.4,5 In the rest of this work, we shall assume
that the barrier region has sharp edges on both sides which
requires d�
=2� /kF, where kF and 
 are the Fermi wave
vector and Fermi wavelength for graphene in the supercon-
ducting regions. We note at the outset that kF, and hence 
, is
independent of the barrier potential V0. Such barriers can be
realistically created in experiments.5 The width L of the
sample shall be assumed to be large compared to all other
length scales in the problem. The SBS junction can then be
described by the DBdG equations10

�Ha − EF + U�r� ��r�

�*�r� EF − U�r� − Ha
��a = E�a. �1�

Here, �a= ��Aa ,�Ba ,�Aā
* ,−�Bā

* � are the four component wave
functions for the electron and hole spinors, the index a de-
notes K or K� for electron or holes near K and K� points, ā
takes values K� �K� for a=K�K��, EF denote the Fermi en-
ergy, A and B denote the two inequivalent sites in the hex-
agonal lattice of graphene, and the Hamiltonian Ha is given
by

Ha = − i�vF„
x�x + sgn�a�
y�y… , �2�

where sgn�a� takes values � for a=K�K��.
The pair potentials ��r� in Eq. �1� connect the electron

and the hole spinors of opposite Dirac points. We have mod-
eled the pair potential as

��r� = �0�exp�i�2���x� + exp�i�1���x + d�� , �3�

where �0 is the amplitude and �1�2� are the phases of the
induced superconducting order parameters in region I�II�, as
shown in Fig. 1, and � is the Heaviside step function. Notice
that the mean-field conditions for superconductivity is satis-
fied as long as �0�EF or, equivalently, kF��1, where �
=�vF /��0 is the superconducting coherence length.12 The
potential U�r� gives the relative shift of Fermi energies in the
barrier and superconducting regions and is modeled as

U�r� = V0��− x���x + d� . �4�

Solving Eq. �1�, we obtain the wave functions in the su-
perconducting and the barrier regions. In region I, for the
DBdG quasiparticles moving along the ±x direction with a
transverse momentum ky =q=2�n /L �for integer n� and en-
ergy �, the wave functions are given by10

�I
± = �u1

±,u2
±,u3

±,u4
±�e�i�±ksx+qy�+�x�, �5�

where

u2
±

u1
± = ± exp�±i��,

u3
±

u1
± = exp�− i��1 � ��� ,

u4
±

u1
± = ± exp�±i���1 + � + ��� , �6�

and �i=1,4�ui�2	2� is the normalization condition for the
wave function for d��−1, where �−1

= ��vF�2ks / �EF�0 sin���� is the localization length. Here, ks

=
�EF /�vF�2−q2, � �the angle of incidence for the quasipar-
ticles� is given by sin���=�vFq /EF, and � is given by

� = cos−1��/�0� if ��� � �0,

=− i cosh−1��/�0� if ��� � �0. �7�

Note that for �����0, � becomes imaginary and the quasi-
particles can propagate in the bulk of the superconductor.
The wave functions in region II �x	0� can also be obtained
in a similar manner,

�II
± = �v1

±,v2
±,v3

±,v4
±�e�i�±ksx+qy�−�x�, �8�

where �i=1,4�vi�2=2� and the coefficients vi are given by

v2
±

v1
± = ± exp�±i��,

v3
±

v1
± = exp�− i��2 ± ��� ,

v4
±

v1
± = ± exp�±i���1 − � + ��� . �9�

The wave functions for electrons and holes moving along
±x in the barrier region are given by

�B
e± = �1, ± e±i�,0,0�exp�i�±kbx + qy��/
2d ,

�B
h± = �0,0,1, ± e�i���exp�i�±kb�x + qy��/
2d . �10�

Here, the angle of incidence of the electron�hole� ����� is
given by

FIG. 1. �Color online� A schematic graphene SBS junction with
the barrier B sandwiched between two superconductors, I and II,
with pair potentials �0ei�1 and �0ei�2. The barrier region is created
by an external gate voltage V0.
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sin������� =
�vFq

� + �− ��EF − V0�
,

kb�kb�� =
� � + �− ��EF − V0�
�vF

�2

− q2. �11�

To compute the Josephson current in the SBS junction, we
now find the energy dispersion of the subgap Andreev bound
states which are localized with localization length �−1 at the
barrier.22,23 The energy dispersion �n �corresponding to the
subgap state characterized by the quantum number n� of
these states depends on the phase difference �=�2−�1 be-
tween the superconductors. It is well known that the Joseph-
son current I across the junction at a temperature T0 is given
by12,22

I��;�,T0� =
4e

�
�

n
�

q=−kF

kF ��n

��
f��n� , �12�

where f�x�=1/ �ex/�kBT0�+1� is the Fermi distribution function
and kB is the Boltzmann constant.24

To obtain these subgap Andreev bound states, we now
impose the boundary conditions at the barrier. The wave
functions in the superconducting and barrier regions can be
constructed using Eqs. �5�, �8�, and �10� as

�I = a1�I
+ + b1�I

−, �II = a2�II
+ + b2�II

− ,

�B = p�B
e+ + q�B

e− + r�B
h+ + s�N

h−, �13�

where a1�a2� and b1�b2� are the amplitudes of right and left
moving DBdG quasiparticles in region I�II� and p�q� and r�s�
are the amplitudes of right�left� moving electron and holes,
respectively, in the barrier. These wave functions must sat-
isfy the boundary conditions

��I�x=−d = ��B�x=−d, ��B�x=0 = ��II�x=0. �14�

Notice that these boundary conditions, in contrast to their
counterparts in standard SBS interfaces,23 do not impose any
constraint on the derivative of the wave functions. Thus, the
standard delta function potential approximation for short
barriers22,23 cannot be taken at the outset but has to be taken
at the end of the calculations.

Substituting Eqs. �5�, �8�, �10�, and �13� in Eq. �14�, we
find the equations for boundary conditions at x=−d to be

a1e−iksd−�d + b1eiksd−�d = pe−ikbd + qeikbd,

a1ei��−ksd�−�d − b1e−i��−ksd�−�d = pei��−kbd� − qe−i��−kbd�,

a1e−i��1−�+ksd�−�d + b1e−i��1+�−ksd�−�d = re−ikb�d + seikb�d,

a1ei��−�1+�−ksd�−�d − b1e−i��+�1+�−ksd�−�d = re−i���+kbd�

− sei���+kb�d�. �15�

Similar equations at x=0 read

a2 + b2 = p + q ,

a2ei� − b2e−i� = pei� − qe−i�,

a2e−i��2+�� + b2e−i��2−�� = r + s ,

a2ei��−�2−�� − b2e−i��+�2−�� = re−i�� − sei��. �16�

Equations �15� and �16� therefore yield eight linear homoge-
neous equations for the coefficients ai=1,2, bi=1,2, p, q, r, and
s, so that the condition for nonzero solutions of these coef-
ficients can be obtained as

A� sin�2�� + B� cos�2�� + C� = 0, �17�

where A�, B�, and C� are given by

A� = cos�kb�d�cos���cos����sin�kbd�„sin���sin��� − 1…

+ cos�kbd�cos���cos���sin�kb�d�

+ 1
2 cos�kbd�cos���sin�2��sin����sin�kb�d� ,

B� = sin�kb�d�sin�kbd��− 1 + sin���sin��� − sin����sin���

+ sin���sin����sin2����

− cos�kbd�cos�kb�d�cos2���cos���cos���� ,

C� = cos2���cos���cos����cos��� − sin�kbd�sin�kb�d�

��sin���sin���� − sin2��� + sin���„sin��� − sin����…� .

�18�

Note that, in general, the coefficients A�, B�, and C� depend
on � through kb, kb�, �, and ��, which makes it impossible to
find an analytical solution for Eq. �17�. However, for subgap
states in graphene SBS junctions, ���0�EF. Further, for
short tunnel barrier, we have �V0−EF�	EF. In this regime, as
can be seen from Eq. �11�, A�, B�, and C� become indepen-
dent of � since kb	kb�	k1=
��EF−V0� /�vF�2−q2 and �	
−��	�1=sin−1��vFq / �EF−V0��, so that the � dependence of
kb, kb�, �, and �� can be neglected. In this regime, one finds
that A� ,B� ,C�→A ,B ,C, where

A = 0,

B = − sin2�k1d��1 − sin���sin��1��2

− cos2�k1d�cos2���cos2��1� ,

C = sin2�k1d��sin��� − sin��1��2 + cos2���cos2��1�cos��� .

�19�

The dispersion of the Andreev subgap states can now be
obtained from Eqs. �17� and �7�. One finds that there are two
Andreev subgap states with energies �±= ±�, where

� = �0
1/2 − C/2B . �20�

Using Eq. �12�, one can now obtain the expression for the
Josephson current:

I��,V0,d,T0� = I0g��,V0,d,T0� ,
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g��,V0,d,T0�

= �
−�/2

�/2

d�� cos3���cos2��1�sin���
B�/�0

tanh��/2kBT0�
 ,

�21�

where I0=e�0EFL /2�2�vF and we have replaced �q

→EFL / �2��vF��−�/2
�/2 d� cos��� as appropriate for wide

junctions.12

Equations �20� and �21� represent the central result of this
work. From these equations, we find that both the dispersion
of the Andreev subgap states and the Josephson current in
graphene SBS junctions, in complete contrast to their con-
ventional counterparts,18,19,22 are oscillatory functions of the
applied gate voltage V0 and the barrier thickness d. This
statement can be most easily checked by plotting the Joseph-
son current I as a function of the phase difference � and the
applied gate voltage V0 for a representative barrier thickness
d=0.5
 and temperature kBT0=0.01�0, as done in Fig. 2. In
Fig. 3, we plot the critical current of these junctions,
Ic�V0 ,d ,T0�=max�I�� ,V0 ,d ,T0��, as a function of the ap-
plied gate voltage V0 and barrier thickness d for low tem-
perature kBT0=0.01�0. We find that the critical current of
these graphene SBS junctions is an oscillatory function of
both V0 and d. This behavior is to be contrasted with those of

conventional junctions where the critical current is a mono-
tonically decreasing function of both applied bias voltage V0
and junction thickness d.18,19,22

Next, we analyze the temperature dependence of the am-
plitude of oscillations of Ic. To find the amplitude of oscilla-
tion, we have computed Ic as a function of V0 �for a repre-
sentative value of d=0.3
�, noted the maximum �Ic

max� and
minimum �Ic

min� values of Ic, and calculated the amplitude
Ic

max− Ic
min. The procedure is repeated for several temperatures

T0 and the result is plotted in Fig. 4, which shows that the
amplitude of oscillations decreases monotonically as a func-
tion of temperature.

Finally, we discuss the period of oscillation of the critical
current. To obtain the period, we obtain the critical current Ic
as a function of barrier width d for the fixed applied gate
voltage V0 and note down dperiod. We then compute �period
=V0dperiod/�vF and plot �period as a function of V0 for kBT0
=0.01�0, as shown in Fig. 5. We find that �period decreases
with V0 and approaches a universal value � for large V0
	20EF. This property, as we shall see in the next section,
can be understood by analysis of graphene SBS junctions in
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FIG. 2. �Color online� Plot of Josephson current I as a function
of phase difference � and the applied gate voltage V0 for kBT0
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 showing oscillatory behavior of I / I0 as a
function of the applied gate voltage.
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the thin barrier limit �V0→� and d→0 such that �
=V0d /�vF remains finite14� and is a direct consequence of
the transmission resonance phenomenon of DBdG quasipar-
ticles in superconducting graphene.

III. THIN BARRIER LIMIT

In the limit of thin barrier, where V0→� and d→0 such
that �=V0d /�vF remains finite, �1→0 and k1d→�. From
Eqs. �19� and �20�, we find that in this limit, the dispersion of
the Andreev bound states becomes

�±
tb�q,�;�� = ± �0


1 − T��,��sin2��/2� , �22�

T��,�� =
cos2���

1 − cos2���sin2���
. �23�

where the superscript “tb” denotes thin barrier limit. The
Josephson current I can be obtained substituting by Eq. �23�
in Eq. �12�. In the limit of wide junctions, one gets

Itb��,�,T0� = I0gtb��,�,T0� ,

gtb��,�,T0�

= �
−�/2

�/2

d�� T��,��cos���sin���

1 − T��,��sin2��/2�

tanh��+/2kBT0�
 .

�24�

Equations �23� and �24� represent the key results of this sec-
tion. From these equations, we find that the Josephson cur-
rent in graphene SBS junctions is a � periodic oscillatory
function of the effective barrier strength � in the thin barrier
limit. Further, we observe that the transmission probability of
the DBdG quasiparticles in a thin SBS junction is given by
T�� ,��, which is also the transmission probability of a Dirac
quasiparticle through a square potential barrier, as noted in
Ref. 5. Note that the transmission becomes unity for normal
incidence ��=0� and when �=n�. The former condition is a
manifestation of the Klein paradox for DBdG quasiparticles.5

However, this property is not reflected in the Josephson cur-
rent which receives contribution from quasiparticles ap-
proaching the junction at all angles of incidence. The latter
condition ��=n�� represents transmission resonance
condition of the DBdG quasiparticles. Thus, the barrier
becomes completely transparent to the approaching quasi-
particles when �=n� and, in this limit, the Josephson
current reduces to its value for conventional tunnel junctions
in the Kulik-Omelyanchuk limit: Itb�� ,n� ,T0�
=4I0 sin�� /2� sgn(cos �� /2�) tanh (�0� cos �� /2�� /2kBT0).20

This yields the critical Josephson current Ic
tb��=n��=4I0 for

kBT0��0. Note, however, that in contrast to conventional
junctions, T�� ,�� cannot be made arbitrarily small for all �
by increasing �. Hence Ic

tb never reaches the Ambegaokar-
Baratoff limit of conventional tunnel junctions.21 Instead,
Ic

tb��� becomes a � periodic oscillatory function of �. The
amplitude of these oscillations decreases monotonically with
temperature, as discussed in Sec. II.

Finally, we compute the product Ic
tbRN, which is routinely

used to characterize Josephson junctions,18,19 where RN is the

normal state resistance of the junction. For graphene SBS
junctions, RN corresponds to the resistance of a Dirac quasi-
particle as it moves across a normal metal/barriers/normal
metal junction. For short and wide junctions discussed here,
it is given by RN=R0 /s1���, where R0=�2vF�2 / �e2EFL� and
s1��� is given by5,12

s1��� = �
−�/2

�/2

d�T��,��cos��� . �25�

Note that s1���, and hence RN, is an oscillatory function of �
with minimum 0.5R0 at �=n� and maximum 0.75R0 at �
= �n+1/2��. The product Ic

tbRN for thin SBS junctions is
given by

Ic
tbRN = ���0/2e�gmax

tb ��,T�/s1��� , �26�

where gmax
tb ��� is the maximum value of gtb�� ,��. Note that

Ic
tbRN is independent of EF, and hence survives in the limit

EF→0.12 For kBT0��0, gmax
tb �n��=4 and s1�n��=2, so that

�Ic
tbRN��=n�=��0 /e, which coincides with the Kulik-

Omelyanchuk limit for conventional tunnel junctions.20,23

However, in contrast to the conventional junction, Ic
tbRN for

graphene SBS junctions do not monotonically decrease to
the Ambegaokar-Baratoff limit21,23 of ��0 /2e	1.57�0 /e as
� is increased but demonstrates � periodic oscillatory behav-
ior and remains bounded between the values ��0 /e at �
=n� and 2.27�0 /e at �= �n+1/2��, as shown in Fig. 6.

IV. EXPERIMENTS

As a test of our predictions, we suggest measuring dc
Josephson current in these junctions as a function of the ap-
plied voltage V0. Such experiments for conventional Joseph-
son junctions are well known.25 Further, SNS junctions in
graphene have also been recently experimentally created.17

For experiments with graphene junctions which we suggest,
the local barrier can be fabricated by applying an additional
gate voltage in the normal region of the junctions studied in
Ref. 17. In graphene, typical Fermi energy can reach EF
�80 meV with Fermi wavelength 
=2� /kF	100 nm.5

FIG. 6. Plot of Ic
tbRN as a function of �. Ic

tbRN is an oscillatory
bounded function of � and never reaches its value ���0 /2e� for
conventional junctions in the Ambegaokar-Baratoff limit.
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Effective barrier strengths of 500–1000 meV and barrier
widths of d	20–50 nm can be achieved in realistic
experiments.4,5 These junctions, therefore, meet our theoret-
ical criteria: d�
 and �V0−EF�	EF. To observe the oscilla-
tory behavior of the Josephson current, it would be necessary
to change V0 in small steps �V0. For barriers with fixed
d /
=0.3 and V0 /EF=10, this would require changing V0 in
steps of approximately 30 meV, which is experimentally fea-
sible. The Joule heating in such junctions, proportional to
Ic

2RN, should also show measurable oscillatory behavior as a
function of V0.

In conclusion, we have shown that the Josephson current
in graphene SBS junction shows novel oscillatory behavior
as a function of the applied bias voltage V0 and the barrier
thickness d. In the thin barrier limit, such a behavior is the
manifestation of the transmission resonance of DBdG quasi-
particles in superconducting graphene. We have suggested
experiments to test our predictions.
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