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In this paper, we employ an experimentally feasible scheme to realize a uniaxial spin model in supercon-
ducting charge qubits connected in parallel to a common superconducting inductance. Furthermore, we dem-
onstrate that this nonlinear spin model with nonzero parallel field can give rise to a second-order phase
transition under periodic modulation. It is shown that, when the amplitude of the periodically driven gate
voltage in our proposal is varied, this second-order phase transition occurs from a normal to a deformed phase
in the resonant case. Furthermore, in this system the adiabatic and cyclic conditions needed to generate the
geometric phase can be easily implemented, and therefore this predicted phase transition could be detected in
experiments by measuring the ground-state geometric phase.
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Since experiments have demonstrated that a supercon-
ducting charge qubit �SCCQ� can display good quantum co-
herence properties for a long time,1–3 it has been regarded as
a promising solid-state system to process quantum informa-
tion and implement quantum computing. It has been shown
that, when the charging energy is much larger than the Jo-
sephson energy, the SCCQ can play the essential role of an
artificial two-level atom near the degeneracy point.4–7 How-
ever, it should be noticed that this artificial atom can be
controlled by both current, voltage, and external magnetic
flux, whereas the natural atom is driven only by using mi-
crowave photons that excite electrons from one state to an-
other. Recently, time-dependent electromagnetic fields have
been used to control the coupling between superconducting
flux qubits in terms of two different theoretical approaches,
which offer a remarkable way to implement any logic gate as
well as to measure flux qubit states tomographically.8–12 For
SCCQs, coupling between qubits can also be successfully
achieved using variable-frequency magnetic fields.13 Here
we use a periodically driven gate voltage to manipulate a
quantum phase transition �QPT� for many SCCQs. More-
over, we consider that all charge qubits work at the optimal
point, and that the qubits are mostly immune to charge noise
produced by uncontrollable charge fluctuations.2

When a many-body quantum system is driven by a con-
trollable parameter, the ground-state energy has a structural
change at a critical value of this parameter. This phenomenon
is called a QPT, and it has attracted considerable attention in
the modern theoretical and experimental communities.14 In
condensed matter physics, the QPT has been a key concept
in the study of electrical and magnetic properties. Recently,
concepts of quantum information such as entanglement and
the geometric phase have also been used to characterize
quantum critical phenomena theoretically.15–26 Here we
mainly focus on the uniaxial spin model in an arbitrary field,
whose Hamiltonian can be written as H=−�1/N�Sx

2+hxSx

+hzSz with hz�0. It has been demonstrated that this model
can exhibit a first-order phase transition at hx=0 when the
parallel field hx is varied, and, moreover, for hx�0 no phase
transition can be found when the perpendicular field hz is
varied.26–28 However, it should be noticed that this model as

well as the Lipkin-Meshkov-Glick model29–31 have long
been of primarily theoretical interest. Experimental observa-
tion of the phase transition has not been achieved success-
fully; this remains an interesting and open problem in solid-
state physics due to the highly developed fabrication
techniques required.

In this paper, we demonstrate that the above-mentioned
uniaxial spin model with hx�0 can exhibit a second-order
QPT under periodic modulation of the perpendicular field hz.
This technique may be regarded as an additional way to con-
trol QPTs. Moreover, we employ an experimentally feasible
scheme to realize this Hamiltonian in SCCQs connected in
parallel to a common superconducting inductance. In such a
system, this second-order phase transition occurs from the
normal to the deformed phase as a function of the amplitude
of the periodically driven gate voltage in the resonant case.
Finally, it is also given that for a lower frequency of a driven
gate voltage the ground-state geometric phase, which is, re-
markably, of the first order, can be generated naturally, and is
a good witness to demonstrate this QPT.

Figure 1 shows our proposed solid-state device where
many identical SCCQs are connected in parallel to a com-
mon superconducting inductance. If we choose a material
where the superconducting energy gap is larger than the
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FIG. 1. Schematic diagram of implementation of the uniaxial
spin model of superconducting charge qubits connected in parallel
to a common superconducting inductance L. The ith qubit is con-
nected by two Josephson junctions with phase drops �A

i and �B
i , and

is biased by a voltage Vi through the gate capacitor Ci.
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single-electron charging energy, which can suppress the qua-
siparticle tunneling at low temperatures, the Hamiltonian for
the ith SCCQ is given by4–7

Hi = 4EC
i �ni − ng

i �2 − 2EJ
i cos���e/�0�cos �i �1�

with EC
i =e2 /2Ci being the charging energy and ng

i

=CiVi /2e being the total dimensionless gate charge, where
Ci is the gate capacitance, Vi is the controllable gate voltage,
ni is the number of excess Cooper pairs on the island while
its conjugate variable is the phase difference �i of two Jo-
sephson junctions, EJ

i is the Josephson energy, �e is the ex-
ternal magnetic flux through the common superconducting
inductance L, and �0=�� /e is the flux quantum. When the
charging energy is much larger than the Josephson energy,
the relevant physics for the SCCQ near the degeneracy point
can be captured by considering only two charge eigenstates
such as �0� and �1�,4–7 which correspond to zero and one extra
Cooper pair in the superconducting island of each qubit. In
the representation of these eigenstates, we can obtain a two-
state Hamiltonian

Hi = − 2EC
i �1 − 2ng

i ��z
i − EJ

i cos���e/�0��x
i , �2�

where the Pauli matrixes �l
i �l=z ,x� are given by �z

i

= �0�i i�0�− �1�i i�1�, �x
i = �0�i i�1�+ �1�i i�0�.

Because the common superconducting inductance L for
coupling the SCCQs has a large value �L�10 nH�,32–34 if the
circuit is not too large, the inductance of the circuit except
for L can be neglected. Therefore, the whole Hamiltonian for
Fig. 1 can be written as

H = �
i

Hi +
1

2
LI2 �3�

with I=�iIi being the total persistent current through the
common superconducting inductance L, which can be re-
duced to the Hamiltonian32–34

H = �
i=1

N

���z
i + ĒJ�x

i � − �
j	i=1

N


�x
i �x

j , �4�

where the bias energy is �=Ec�CV /e−1� /2, the tunneling

energy is ĒJ=−EJ cos���e /�0�, and the long-range interac-
tion constant among qubits is


 = L��2EJ
2/�0

2�sin2���e/�0� . �5�

It should be noticed that in another proposal the interbit cou-
pling term �y

i �y
j has also been achieved.5 However, in that

device two conditions should be met: �i� the eigenfrequency
�LC of the LC circuit is much greater than the quantum ma-
nipulation frequencies, that is, the allowed number N of qu-
bits is limited since �LC scales with 1/�N; �ii� the phase
conjugate to the total charge on the qubit capacitors fluctu-
ates weakly. In our scheme, a common inductance is used to
couple all SCCQs and both dc and ac supercurrents can flow
through the inductance. Therefore, these two limitations do
not apply to our approach; namely; the number N of qubits
can be any required value.

By using the collective spin operators Sz=�i=1
N �z

i and Sx
=�i=1

N �x
i , the Hamiltonian �4� can be rewritten as

H = − �
/2�Sx
2 + ĒJSx + �Sz, �6�

which is identical to the uniaxial model in arbitrary field

�hx= ĒJ and hz=��. However, it should be noticed that here
the effective parallel and perpendicular fields hx and hz can
be controlled by the external magnetic flux �e and gate volt-

age V, independently. It has been demonstrated that when ĒJ

is varied a first-order phase transition occurs at 2ĒJ /N
=0
for 1	2� /N
�0, whereas no transition happens for

2� /N
�1. Also, for 2ĒJ /N
�0 no QPT has been found
when � is varied.26–28 However, in the present paper we will
demonstrate that a second-order phase transition can occur

when 2ĒJ /N
�0 in terms of periodic modulation. Further-
more, this predicted phase transition can be achieved using
current experimental techniques in solid-state systems. To
show our proposal, the gate voltage is chosen as

V = V̄ + V0 cos��t� , �7�

where V0 and � are the amplitude and the frequency of this

periodically driven gate voltage, respectively, and V̄ is
the static gate voltage. If the SCCQs work at their optimal

point �CV̄=e�, where the qubits can be mostly immune
from charge noise produced by uncontrollable charge
fluctuations,2 the Hamiltonian �6� can be reduced to a time-
dependent collective Hamiltonian

H�t� = −

̄

N
Sx

2 + ĒJSx + �̄ cos��t�Sz, �8�

where �̄=EcCV0 /2e and 
̄=N
 /2. If a rotation of coordi-
nates such that x→z and z→x is implemented, the Hamil-

tonian �8� can be rewritten as Hr�t�=−�
̄ /N�Sz
2+ ĒJSz

+ �̄ cos��t�Sx, which can be transformed to a time-
independent Hamiltonian by using the unitary operator R�t�
=exp	−i�tSz
. In terms of this unitary transformation
��n�t��=R+�t��n�t�� and the well-known rotating-wave ap-
proximation, the time-dependent Schrödinger equation
id�n�t�� /dt=Hr�t��n�t�� can be reduced to the equation
id��n�t�� /dt=HR��n�t�� with

HR = R+�t�H�t�R�t� + iR�t�dR+�t�/dt

= − �
̄/N�Sz
2 + �Sz + ��̄/2�Sx �9�

with �= �ĒJ−�� being the detuning parameter. By using the
rotation of coordinates again, the required time-independent
Hamiltonian is given by

HR = −

̄

4N
�S+

2 + S−
2 + S+S− + S−S+� +

�

2
�S+ + S−� +

�̄

2
Sz,

�10�

where S±=Sx± iSy. The expression �10� enables us to conve-
niently employ the Holstein-Primakoff transformation of an-
gular momentum operators defined as S+=b+�N−b†b, S−
=�N−b†bb, and Sz= �b†b−N /2� with 	b ,b†
=1,35 which can
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approximately lead to the ground-state energy dominating
the QPT.

It is known that in the standard way of expanding boson
operators of the Holstein-Primakoff transformation we
should suppose b†b /N�1, which indicates that the quantum
system is located in the ground state in the thermodynamic
limit or fully polarized in the z direction. In order to describe
the collective behavior of the Hamiltonian �10� induced by
the long-range corrections, we can either perform a rotation
to bring the z axis along the semiclassical spin direction,36 or
shift the boson operator by setting37

d† = b† − �N� . �11�

Here we choose the latter procedure in which the condition
b†b /N�1 can be satisfied automatically. By means of the
new boson operator d†, the Hamiltonian �10� can be ex-
panded as a power series in 1/�N by38

HR = NH0 + N1/2H1 + N0H2 + ¯ �12�

with

H0 =
1

2�1 + �2�2�− 2
̄�2 −
�̄

2
�1 − �4� + 2���1 + �2�� ,

�13�

H1 =
�d† + d�

2�1 + �2�3/2 	− 2
̄��1 − �2� + ��1 − �4� + �̄��1 + �2�
 ,

�14�

H2 =
1

2�1 + �2�
	�̄�1 + �2� − 
̄�1 − 6�2�

+ ���1 + �2��4 + �2�
�d†d

+ �−

̄�1 − 4�2�

2
+ ���1 +

�2

2
��1 + �2��

� 	�d†�2 + d2
 − 
̄�1 − 2�2�/2 + ���1 + �2�� ,

�15�

where �=� /�1+�2.
The first term �NH0� of the expansion Hamiltonian �12� is

the Hartree-Bogoliubov ground-state energy.39 By means of
minimizing this ground-state energy we can cancel the sec-
ond term �N1/2H1�, which indicates that the free energy
should be fixed at the minimum value in any quantum sys-
tem. A simple study of the minimized ground-state energy
shows that the parameter � is an odd function of � for all

��0. However, for �=0 �ĒJ=��, namely, the resonant case,
a second-order phase transition can occur. According to the
resonant condition cos���e /�0�=−� /EJ resulting from H1

=0, the parameter � can be immediately obtained by �

=��2
̄− �̄� / �2
̄+ �̄� for V0� �V0�c and �=0 for V0� �V0�c,
where the critical gate voltage is given by

�V0�c =
2�2eNL�EJ

2 − �2�
EcC�0

2 . �16�

It is very necessary to check whether this critical gate voltage
can be reached with current experimental techniques. As in
Ref. 40, the Josephson and charging energies are chosen as
EJ=9.1 GHz and EC=152 GHz �C=798 aF�, respectively.
For large inductance L=10 nH and lower frequency �
	cos���e /�0�=−� /EJ�0
, the long-range interaction con-
stant can be evaluated as 
�0.2 GHz. If the number of qu-
bits is considered to be N=2000, the critical gate voltage is
given by �V0�c=1.06 mV, which can be easily achieved ex-
perimentally. It should be pointed out that a rigorous QPT
can only be realized in the thermodynamic limit N→�, but
some of the basic features of the phase transition can still be
demonstrated with a finite particle number, which is of pri-
mary interest and a hot topic in modern physics.29–31

With the help of the parameter �, the scaled Hartree-
Bogoliubov ground-state energy can be derived from E0 /N

=−
̄ /4− �̄2 /16
̄ for V0� �V0�c and E0 /N=−�̄ /4 for V0

� �V0�c. This ground-state energy and its second-order de-
rivative with respect to V0 as a function of V0 are plotted in
Fig. 2, which clearly illustrates a second-order phase transi-
tion in contrast to the well-known first-order phase
transition.26 For the case of V0� �V0�c, the energy of the first

term in the resonant Hamiltonian HR=−�
̄ /N�Sx
2+ ��̄ /2�Sz

dominates, which means that both quantum tunneling and
macroscopic collective excitation occur; however, for the
case of V0� �V0�c the energy of the second term is dominant,
which implies that the quantum tunneling is suppressed and
therefore no collective excitation happens. Therefore, similar
to the behavior in the Lipkin-Meshkov-Glick model,29–31 we
can call the phase when V0� �V0�c the deformed phase and
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FIG. 2. �Color online� Scaled ground-state energy E0 /N versus
gate voltage V0. The relative parameters are chosen as EJ

=9.1 GHz, EC=152 GHz, L=10 nH, and N=2000, respectively. In
order to obtain the adiabatic condition the frequency � satisfies
cos���e /�0�=−� /EJ�0. The corresponding critical gate voltage
is calculated as �V0�c=1.06 mV.

PERIOD-VOLTAGE-DRIVEN QUANTUM PHASE… PHYSICAL REVIEW B 76, 054512 �2007�

054512-3



the phase when V0� �V0�c the normal phase. On the other
hand, if the third term �N0H2� of the expansion Hamiltonian
�12� in the resonance condition �=0 is diagonalized by
means of the Bogoliubov transformation, the excited-state
energy in the normal phase can be given by E�

2= �	�̄�1+�0
2�

− 
̄�1−6�0
2�
2− 
̄2�1−4�0

2�2� /4�1+�0
2�2. When the amplitude

of the periodically driven gate voltage approaches the critical
value �V0�c, this excited-state energy vanishes as

E�	V0 → �V0�c
 � �V0 − �V0�c�1/2, �17�

whose corresponding characteristic length scale is l��V0
− �V0�c�−v with v=1/2. Therefore, the dynamical critical ex-
ponent can be derived from E���V0− �V0�c�zv by z=1, which
shows the universality principle of the QPT.14

In the rest of this paper, we discuss how to observe this
QPT experimentally. It has been shown that in our proposal
the frequency of a periodically driven gate voltage can be
chosen as a very low value 	cos���e /�0�=−� /EJ�0
 so
that the adiabatic condition can be well satisfied. Thus, the
GP, which describes a phase factor of the wave functions
depending only on the geometry of the path when a time-
dependent quantum system undergoes an adiabatic and cy-
clic evolution,41 can be generated naturally. For the time-
dependent Hamiltonian Hr�t�, the ground-state GP can be
calculated as follows:

�0 = i�
0

2�

�0�R†�t�
d

d�
R�t��0�d� = 2���0�Jz��0� ,

�18�

where ��0�= �0� is the vacuum state of the boson operator b.
However, for the time-dependent Hamiltonian H�t� the
ground-state GP becomes

�0 = 2���0�Jx��0� = ��N�4
̄2 − �̄2

2
̄
, V0 � �V0�c,

0, V0 � �V0�c.
�

�19�

Figure 3 shows the scaled ground-state GP and its first-order
derivative with respect to V0 as a function of V0, which in-
dicates that this predicted QPT characterized by the nonana-
lyticity of the ground-state GP is, remarkably, of the first
order. Thus, we argue that this QPT can be observed directly
by measuring the abrupt change of the ground-state GP,
which awaits experimental validation. The critical behavior
for the scaled ground-state GP is given by

�0/N	V0 → �V0�c
 � �V0 − �V0�c� , �20�

whose geometric critical exponent is z=2.
In conclusion, we have predicted a second-order QPT in

the uniaxial spin model by means of periodic modulation,
which may be regarded as an additional way to control the
QPT. Moreover, we have employed an experimentally fea-
sible scheme to realize this prediction in SCCQs connected
in parallel to a common superconducting inductance. In such
a system, this second-order phase transition occurs from the
normal to the deformed phase as a function of the amplitude
of the periodically driven gate voltage in the resonant case.
Since all charge qubits work at the optimal point, the qubits
can be mostly immune from charge noise produced by un-
controllable charge fluctuations. Furthermore, in our pro-
posed time-dependent solid-state quantum system, the adia-
batic and cyclic conditions needed to generate the GP can be
easily implemented. In experiments, this predicted QPT can
be detected by measuring the ground-state GP, which is re-
markably of the first order.
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