
Quantum transport in noncentrosymmetric superconductors and thermodynamics
of ferromagnetic superconductors

J. Linder1 and A. Sudbø1,2

1Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
2Centre for Advanced Study, Norwegian Academy of Science and Letters, Drammensveien 78, N-0271 Oslo, Norway

�Received 23 February 2007; revised manuscript received 21 May 2007; published 13 August 2007�

Motivated by recent findings of unconventional superconductors exhibiting multiple broken symmetries, we
consider a general Hamiltonian describing coexistence of itinerant ferromagnetism, spin-orbit coupling, and
mixed spin-singlet and spin-triplet superconducting pairing in the context of mean-field theory. The Hamil-
tonian is diagonalized and exact eigenvalues are obtained, thus allowing us to write down the coupled gap
equations for the different order parameters. Our results may then be applied to any model describing coex-
istence of any combination of these three phenomena. As a specific application of our results, we consider
tunneling between a normal metal and a noncentrosymmetric superconductor with mixed singlet and triplet
gaps. The conductance spectrum reveals information about these gaps in addition to how the influence of
spin-orbit coupling is manifested. Explicitly, we find well-pronounced peaks and bumps in the spectrum at
voltages corresponding to the sum and the difference of the magnitude of the singlet and triplet components.
Our results may thus be helpful in determining the relative sizes of the singlet and triplet gaps in noncen-
trosymmetric superconductors. We also consider the coexistence of itinerant ferromagnetism and triplet super-
conductivity as a model for recently discovered ferromagnetic superconductors. The coupled gap equations are
solved self-consistently, and we study the conditions necessary to obtain the coexistent regime of ferromag-
netism and superconductivity. Analytical expressions are presented for the order parameters, and we provide an
analysis of the free energy to identify the preferred system state. It is found that the uniform coexistence of
ferromagnetism and superconductivity is energetically favored compared to both the purely ferromagnetic state
and the unitary superconducting state with zero magnetization. Moreover, we make specific predictions con-
cerning the heat capacity for a ferromagnetic superconductor. In particular, we report a nonuniversal relative
jump in the specific heat, depending on the magnetization of the system, at the uppermost superconducting
phase transition. We propose that this may be exploited to obtain information about the superconducting
pairing symmetry realized in ferromagnetic superconductors, in addition to the magnitude of the exchange
splitting between majority- and minority-spin bands.
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I. INTRODUCTION

Recent findings of superconductors that simultaneously
exhibit multiple spontaneously broken symmetries, such as
ferromagnetic order or lack of an inversion center1–3 and
even combinations of such broken symmetries,4 have led to
much theoretical and experimental research.5–7 The symme-
try of the superconducting gap in these and other unconven-
tional superconductors is presently a matter of intense
investigation.8–12 Multiple spontaneously broken symmetries
are of interest not only in terms of studying the properties of
specific condensed matter systems but also due to the fact
that it may provide clues for what could be expected in other
systems in vastly different areas of physics. Topics such as
mass differences of elementary particles and emergent phe-
nomena in biology are caused by spontaneously broken
symmetries,13 and in many cases, the phenomena may even
be described by the same type of equations. In this paper, we
will address the issue of competition and coexistence be-
tween three phenomena giving rise to broken symmetries
which are highly relevant in condensed-matter physics: fer-
romagnetism, superconductivity, and spin-orbit coupling.

The discovery of superconducting materials that lack a
center of inversion,3,4,9,14,15 such as CePt3Si, UIr, Li2Pd3B,
Li2Pt3B, and Cd2Re2O7, has lately triggered extensive theo-

retical work on these compounds. Properties of a supercon-
ductor without an inversion center were investigated early by
Edelstein,16 while in Ref. 17, it was shown that a two-
dimentional �2D� superconducting system with a significant
spin-orbit coupling induced by the lack of inversion symme-
try would display a mixed singlet-triplet superconducting
state. This means that the superconducting order parameter
would possess the exotic feature of having no definite parity.
Later studies18–20 also investigated specific noncentrosym-
metric superconductors with a model Hamiltonian consisting
of a superposition of spin-orbit and superconducting terms.
In an attempt to determine the correct pairing symmetry of
the superconducting state in such unconventional supercon-
ductors, it was found that the favored triplet pairing state21

for the heavy-fermion material CePt3Si is dk� �ky ,−kx ,0�.
Very recently, however, an experimental study22 of thermal
transport properties in the present compound concluded that
the correct gap function �dk vector� may exhibit nodal lines
in contrast to the point nodes displayed by the dk vector
suggested by Ref. 21. It is therefore of considerable interest
to investigate several specific models for noncentrosymmet-
ric superconductors in order to reveal characteristic features
in physical observables that might be helpful in classifying
the symmetry of the superconducting order parameter.
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In Ref. 23, the authors studied tunneling between a nor-
mal metal and a noncentrosymmetric superconductor consid-
ering the particular form of dk suggested by Ref. 21 in the
limit of weak spin-orbit coupling and in the absence of spin-
singlet pairing. Anderson24 showed that the only stable triplet
pairing states in the presence of a spin-orbit coupling would
have to satisfy dk �gk, where gk=−g−k is the vector function
describing this interaction, such that in CePt3Si, one also has
gk=��ky ,−kx ,0�. Moreover, it was demonstrated by
Samokhin et al.25 that the spin-orbit coupling in this particu-
lar material is significant, i.e., �kBTc, which indicates ad-
mixturing of singlet and triplet Cooper pairs. In the present
paper, we solve the full Bogoliubov–de Gennes �BdG� equa-
tions for a system with spin-orbit coupling including both
spin-singlet and spin-triplet superconducting gaps, studying a
gap vector dk,point� �ky ,−kx ,0� as suggested by Ref. 21. We
then apply this gap vector to what we believe is the simplest
model that captures the essential features that could be ex-
pected to appear in the conductance spectrum of a 2D
normal/CePt3Si junction. Our work then significantly ex-
tends the considerations made in Ref. 23 primarily in that we
present analytical and numerical results that allow for both
triplet and singlet gap components. Also note that a similar
Hamiltonian was studied very recently in Ref. 26, where it
was shown that the presence of a weak external magnetic
field would significantly change the nodal topology of
CePt3Si. With regard to noncentrosymmetricity, we underline
that breaking the symmetry of spatial inversion does not, in
general, give rise to a significant spin-orbit coupling. Also, it
is well known that spin-orbit coupling may be induced in a
centrosymmetric crystal by means of an external symmetry-
breaking electrical field. In the latter case, however, the bro-
ken symmetry is strictly speaking not spontaneous as it cer-
tainly is for, e.g., a crystal lattice undergoing a structural
phase transition which breaks spatial inversion.9

Another interesting scenario in the context of spontane-
ously broken symmetries is the study of superconductors that
exhibit coexistence of ferromagnetic and superconducting or-
der, i.e., systems where two continuous internal symmetries,
SU�2� and U�1�, are simultaneously broken. Due to the pre-
ferred orientation of the spins in a ferromagnetic system,
time-reversal symmetry �or equivalently spinor SU�2� rota-
tional symmetry� is broken such that angular momentum is
no longer a conserved quantity. Similarly, in a superconduct-
ing system, the broken U�1� symmetry breaks the conserva-
tion of particle number. Note that by the terminology broken
symmetry, we are referring to the fact that the wave function
describing the state of the system acquires a complex phase
which characterizes the ground state. In the ferromagnetic
and superconducting systems we will consider in this paper,
superconductivity appears at a lower temperature than the
temperature at which onset of ferromagnetism is found. This
may be simply due to the fact that the energy scales for the
two phenomena are quite different, with the exchange energy
naturally being the largest. It may, however, also be due to
the fact that superconductivity is dependent on ferromag-
netism for its very existence. Such a suggestion has recently
been put forth.27

In the context of ferromagnetic superconductors �FM-
SCs�, it is crucial to address the question of whether the

superconductivity and ferromagnetism order parameters co-
exist uniformly or if they are phase separated. One plausible
scenario28 is that a spontaneously formed vortex lattice due
to the internal magnetization M is realized, but studies of a
uniform superconducting phase in spin-triplet FMSCs29 has
also been conducted. As argued by Mineev in Ref. 30, an
important factor with respect to whether a vortex lattice ap-
pears or not should be the magnitude of the internal magne-
tization M. Specifically, Ref. 31 suggested that vortices may
arise if 4�M�Hc1, where Hc1 is the lower critical field. In
the case of URhGe, a weakly ferromagnetic state coexisting
with superconductivity seems to be realized, and the domain
structure in the absence of an external field is thus vortex-
free. Unfortunately, current experimental data concerning
URhGe are not as of yet strong enough to unambiguously
settle this question. On the other hand, evidence for uniform
coexistence of ferromagnetism and superconductivity has
been indicated32 in UGe2.

Although this is an unsettled issue, it seems natural to
assume that in FMSCs, the electrons involved in the SU�2�
symmetry breaking also participate in the U�1� symmetry
breaking. As a consequence, uniform coexistence of spin-
singlet superconductivity and ferromagnetism can be dis-
carded since s-wave Cooper pairs carry a total spin of zero,
although spatially modulated order parameters could allow
for magnetic s-wave superconductors.33,34 However, spin-
triplet Cooper pairs are, in principle, perfectly compatible
with ferromagnetic order since they can carry a net magnetic
moment. There is strong reason to believe that the correct
pairing symmetries in the discovered FMSCs constitute non-
unitary states.35,36 Spin-triplet superconductors have a multi-
component order parameter dk, which for a given spin basis
reads

dk = ��k↓↓ − �k↑↑
2

,
− i��k↓ + �k↑↑�

2
,�k↑↓� . �1�

Note that dk transforms like a vector under spin rotations.
The superconducting order parameter is characterized as
nonunitary if i�dk�dk

*��0, which effectively means that
time-reversal symmetry is broken in the spin part of the Coo-
per pairs, since the average spin of Cooper pairs is given as
�Sk	= i�dk�dk

*�. Note that time-reversal symmetry may be
broken in the orbital part �angular momentum� of the Cooper
pair wave function even if the state is unitary. In the general
case where all superconducting �SC� gaps are included, it is
generally argued that �k↑↓ would be suppressed in the pres-
ence of a Zeeman splitting between the ↑, ↓ conduction
bands. Distinguishing between unitary and nonunitary states
in FMSCs is clearly one of the primary objectives in terms of
identifying the correct order parameter. Studies of quantum
transport in junctions involving FMSCs have explicitly
shown that the conductance spectrum should be helpful in
revealing the correct pairing symmetry.37,38 Hence, an itiner-
ant electron model of ferromagnetism augmented by a suit-
able pairing kernel should be a reasonable starting point for
describing such systems.

Although we have mentioned two specific examples of
systems exhibiting multiple broken symmetries, our aim with
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this paper is to construct a solid starting point for consider-
ation of a condensed-matter system exhibiting any combina-
tion of the broken symmetries resulting from superconduc-
tivity, ferromagnetism, and/or spin-orbit coupling. By
applying the appropriate limits to our theory, one may then
obtain special cases such as FMSCs or noncentrosymmetric
superconductors with significant spin-orbit coupling.

This paper is organized as follows. In Sec. II, we establish
the Hamiltonian accounting for general coexistence of ferro-
magnetism, spin-orbit coupling, and superconductivity. The
diagonalization procedure and coupled gap equations are de-
scribed in Sec. III. Then, we apply our findings to a model of
normal/noncentrosymmetric superconductor junction, calcu-
lating the tunneling conductance spectrum, in Sec. IV, in
addition to a discussion of these results. As a second appli-
cation, we consider a FMSC in Sec. V, solving the coupled
gap equations self-consistently and calculating the free en-
ergy and heat capacity of such a system. Our main conclu-
sions are summarized in Sec. VI. We will use boldface nota-

tion for vectors, ˆ for operators, and ˇ for 2�2 matrices.

II. MODEL FOR COEXISTENCE OF FERROMAGNETISM,
SPIN-ORBIT COUPLING, AND SUPERCONDUCTIVITY

For our model, we will write down a Hamiltonian describ-
ing the kinetic energy, exchange energy, spin-orbit coupling,
and attractive electron-electron interaction, respectively. The
total Hamiltonian can then be written as

Ĥ = Ĥkin + ĤFM + ĤSOC + ĤSC, �2�

where the respective individual terms read

Ĥkin = 

k�

	kĉk�
† ĉk�,

ĤFM = − JN

k


�k�Ŝk · Ŝ−k,

ĤSOC = 

k��

ĉk�
† �gk · �̌���ĉk�,

ĤSC =
1

2N



kk���

�Vkk���
S + Vkk���

T �ĉk�
† ĉ−k�

† ĉ−k��ĉk��. �3�

Above, 	k=k−�, where k is the dispersion relation for the
free fermions and � is the chemical potential,39 J�0 is a
ferromagnetic coupling parameter, 
�k� is a geometrical
structure factor for the lattice, gk is a vector function ac-
counting for the antisymmetric spin-orbit coupling, and
Vkk��� is an attractive pair potential. The factor of 1 /2 in

ĤSC is included to obtain more convenient expressions later
on and simply corresponds to a redefinition of Vkk���

S,T

→ 1
2Vkk���

S,T . In Eqs. �3�, the spin operators are given by

Ŝk =
1

N


k�

ĉk��
† �̌��ĉ�k+k���. �4�

Moreover, we have explicitly split the attractive pairing po-
tential into a singlet and a triplet part according to Vkk���

=Vkk���
S +Vkk���

T . The symmetry properties of the antisym-
metric spin-orbit coupling and superconductivity terms with
respect to spatial inversion symmetry read

gk = − g−k, Vkk���
S = V±k±�k���

S ,

Vkk���
T = ± ±�V±k±�k���

T . �5�

In order to find eigenvalues and gap equations for our sys-
tem, we introduce the mean-field approximation for the two-
particle Hamiltonians �ferromagnetic and superconducting

terms�, such that the operators Ŝk and ĉk�
† ĉ−k�

† may be written
as a mean-field value plus small fluctuations. We define
�ĉk�

† ĉ−k�
† 	=bk�� and write

Ŝk = �Ŝk	 + ��Ŝk	 ,

ĉk�
† ĉ−k�

† = bk�� + �bk��. �6�

Inserting Eqs. �6� into Eqs. �3� and discarding all terms of
order O��2�, one obtains in the standard fashion

ĤFM = − 

k��

ĉk�
† �VM · �̌���ĉk� +

INM2

2
,

ĤSC =
1

2 

k��

����k��
S �† + ��k��

T �†�ĉ−k�ĉk� + ��k��
S + �k��

T �

��ĉk�
† ĉ−k�

† − bk��
† �� . �7�

In Eqs. �7�, M= �Mx ,My ,Mz�= �Ŝi	= �Ŝk=0	 denotes the mean
value of the spin operators in real space, interpreted as the
magnetization of the system. We have introduced the vector
describing the magnetic exchange energy VM = IM and the
order parameters �OPs�

V = �VM�x − i�VM�y = I�Mx − iMy�, Vz = IMz, �8�

for ferromagnetism, while the OP for superconductivity is
described by

�k��
S,T =

1

N


k�

Vkk���
S,T bk���,

�k���
S,T =

1

N


k

Vkk���
S,T bk��

† . �9�

The quantity I appearing in Eq. �8� is a measure of the
strength of the magnetic exchange coupling. Although we
have derived the ferromagnetic part of our Hamiltonian from
a lattice model �where I=2JN
�0��, this generic Hamiltonian
describes a general mean-field model of a system with mag-
netic exchange energy. The Pauli principle places the follow-
ing restrictions upon the superconductivity OPs:

singlet pairing: �k��
S = − �k��

S , �k��
S = �−k��

S ,

triplet pairing: �k��
T = �k��

T , �k��
T = − �−k��

T . �10�

In total, we have thus obtained a Hamiltonian Ĥ describing
coexistence of ferromagnetism, spin-orbit coupling, and
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superconductivity in the mean-field approximation by adding all of the above terms. For more compact notation, one may
introduce a basis for fermion operators �̂k= �ĉk↑ , ĉk↓ , ĉ−k↑

† , ĉ−k↓
† �T and write

Ĥ = Ĥkin + ĤFM + ĤSOC + ĤSC = H0 +
1

2

k

�̂k
†Ak�̂k, �11�

where we have introduced the quantities

H0 = 

k

	k +
INM2

2
−

N�V + V†�
2

−
1

2 

k��

��k��
S + �k��

T �bk��
† ,

Ak =
	k↑ + gk,z − V + gk,− �k↑↑

T �k↑↓
S + �k↑↓

T

− V† + gk,+ 	k↓ − gk,z − �k↑↓
S + �k↑↓

T �k↓↓
T

��k↑↑
T �† ��k↑↓

T �† − ��k↑↓
S �† − 	k↑ + gk,z V† + gk,+

��k↑↓
T �† + ��k↑↓

S �† ��k↓↓
T �† V + gk,− − 	k↓ − gk,z

� . �12�

Above, we have defined 	k�=	k−�Vz in addition to gk,±
= �gk�x± i�gk�y. The matrix Ak will be central in this work,
and we note that it may be further compactified by introduc-
ing the dk-vector formalism.40 By means of the definitions
dk,0=�k↑↓

S and

dk =
1

2
��k↓↓

T − �k↑↑
T ,− i��k↑↑

T + �k↓↓
T �,2�k↑↓

T � �13�

that transforms like a vector under spin rotations, one may
write

Ak = �	k1̌ − �̌ · �VM − gk� i�d0,k + dk · �̌��̌y

�i�d0,k + dk · �̌��̌y�† − 	k1̌ + �VM + gk� · �̌T� ,

�14�

where 1̌ denotes the identity matrix and T designates the
matrix transpose. The rest of this paper will now be devoted

to obtaining the excitation energies for Ĥ by diagonalizing
Ak, writing down the coupled gap equations, and considering
some important special cases.

III. EXCITATION ENERGIES AND GAP EQUATIONS

The characteristic polynomial for a general matrix Ak
with eigenvalues Ek may be written as41

��Ek� = Ek
4 − �Tr�Ak��Ek

3 + �1

2
��Ak − I� + �Ak + I�� − 1

− det Ak�Ek
2 +

1

2
��Ak − I� − �Ak + I��Ek + det Ak = 0,

�15�

where I denotes the 4�4 identity matrix. Since Ak in our
case is Hermitian, Tr�Ak�=0, and the polynomial reduces to
a depressed quartic equation. For ease of notation, we intro-
duce the quantity

�k
± �

1

2
��Ak − I� ± �Ak + I�� , �16�

such that Eq. �15� is rewritten as

Ek
4 + ��k

+ − 1 − det Ak�Ek
2 + �k

−Ek + det Ak = 0. �17�

The solutions of Ek can be written as42

2Ek��
= �ak + ��− �3��k

+ − 1 − det Ak� + 2yk + �
2�k

−

ak
��1/2

.

�18�

Here, we have defined the auxiliary quantities

ak = ���k
+ − 1 − det Ak� + 2yk,

yk = −
5��k

+ − 1 − det Ak�
6

− bk,

bk = Rk
1/3, Rk =

Qk

2
+�Qk

2

4
+

Pk
3

27
,

Qk =
��k

+ − 1 − det Ak�det Ak

3
−

��k
−�2

8
−

��k
+ − 1 − det Ak�3

108
,

�19�

Pk = −
��k

+ − 1 − det Ak�2

12
− det Ak.

In Eq. �18�, �� ,�� take the values +1 and −1 such that there
exists a total of four solutions for Ek. Also note that any of
the roots in the expressions for bk and Rk will do the job. A
special case of the above solutions, which occurs quite fre-
quently in various contexts, considerably simplifies the ob-
tained eigenvalues: 1

2 ��Ak− I�− �Ak+ I��=0. In this case, the
quartic equation reduces to an effective quadratic equation
with the solutions
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2Ek��
= ��− 2��k

+ − 1 − det Ak�

+ 2����k
+ − 1 − det Ak�2 − 4 det Ak�1/2. �20�

This is the situation considered in most problems dealing
with superconductors. Having calculated the energy eigen-
values, Eq. �11� may now be diagonalized by writing

Ĥ = H0 +
1

2

k

�̂k
†Ak�̂k = H0 +

1

2

k

��̂k
†Pk��Pk

†AkPk��Pk
†�̂k�

= H0 + 

k

�̂̃k
†Dk�̂̃k, �21�

where Dk=diag�Ek,1 ,Ek,2 ,Ek,3 ,Ek,4� is a diagonal matrix
containing the eigenvalues of Ak. Here, we have defined �see
Eq. �18��

Ek,1 =
1

2
Ek++

,
1

2
Ek,2 = Ek+−

,

Ek,3 =
1

2
Ek−+

,
1

2
Ek,4 = Ek−−

, �22�

thus absorbing the factor 1
2 in front of 
k into the eigenval-

ues. Above, Pk are the orthonormal diagonalizing matrices
which, by the Hermiticity of Ak, are ensured to be unitary.
We write our new basis of fermion operators as

�̃
ˆ

k
† = �
̂k↑

† ,
̂k↓
† ,
̂−k↑,
̂−k↓� . �23�

These operators satisfy the fermion anticommutation rela-
tions, as can be verified by direct insertion. From Eq. �21�,
we may now write

Ĥ = H0 + 

k

�
k↑
† 
k↑Ek,1 + 
k↓

† 
k↓Ek,2 + 
−k↑
−k↑
† Ek,3

+ 
−k↓
−k↓
† Ek,4�

= �H0 + 

k

�Ek,3 + Ek,4�� + 

k

�
k↑
† 
k↑�Ek,1 − E−k,3�

+ 
k↓
† 
k↓�Ek,2 − E−k,4�� = H̃0 + 


k
�
k↑

† 
k↑Ẽk,1

+ 
k↓
† 
k↓Ẽk,2� , �24�

where we have defined H̃0=H0+
k�Ek,3+Ek,4� and Ẽk,1

= �Ek,1−E−k,3�, Ẽk,2= �Ek,2−E−k,4�. Our Hamiltonian now has
the form of a free-fermion theory. It is then readily seen that
the free energy of the system is given by

F = H̃0 −
1

�


k

�ln�1 + e−�Ẽk,1� + ln�1 + e−�Ẽk,2�� . �25�

From F, the gap equations for the ferromagnetic and super-
conducting OPs V, Vz, and �k��

S,T may be obtained by de-
manding the value of these which corresponds to a minimum
in F. The possible extrema of F are given by the conditions

�F

��k��
S,T = 0,

�F

���k��
S,T �† = 0,

�F

�Vz
= 0,

�F

�V
= 0,

�F

�V† = 0. �26�

By first defining the quantity

F�x� = 

k
�nF�Ẽk,1�

�Ẽk,1

�x
e−�Ẽk,1 +

�Ek,3

�x

+ nF�Ẽk,2�
�Ẽk,2

�x
e−�Ẽk,2 +

�Ek,4

�x
� , �27�

where nF�E�=1/ �1+e�E� is the Fermi distribution, the con-
ditions in Eqs. �26� may be evaluated by inserting Eq. �25�.
The extrema of F are thus determined by the following equa-
tions:

− bk��
† + F��k��

S,T � = 0, �28�

− bk�� + F���k��
S,T �†� = 0, �29�

NVz

2J
�0�
+ F�Vz� = 0, �30�

−
N

2
+

NV†

2J
�0�
+ F�V� = 0, �31�

−
N

2
+

NV
2J
�0�

+ F�V†� = 0. �32�

The challenge then lies in obtaining the derivatives of the
energies Ek,i with respect to the different order parameters.
In the general case described by Eq. �12�, this is a formidable
task. Nevertheless, the above provides a general framework
which may serve as a starting point for any model consider-
ing the coexistence of ferromagnetism, spin-orbit coupling,
and superconductivity. We will apply our findings onto a
specific case which currently is a topic attracting much at-
tention: noncentrosymmetric superconductors with signifi-
cant spin-orbit coupling.

IV. PROBING THE PAIRING SYMMETRY OF
NONCENTROSYMMETRIC SUPERCONDUCTORS

As an application of our model, we consider tunneling
between a normal metal and a noncentrosymmetric super-
conductor treated in the spin-generalized Blonder-Tinkham-
Klapwijk formalism.43,44

A. Model and formulation

The Hamiltonian in the superconducting state using stan-
dard mean-field theory with a spin-orbit coupling may be
written as

Ĥ = H0 +
1

2

k

�̂k
†Mk�̂k, �33�

using a spin basis �̂k= �ĉk↑ , ĉk↓ , ĉ−k↑
† , ĉ−k↓

† �T and with
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Mk =
k gk,− �k↑↑ �k

gk,+ k − �k �k↓↓

�k↑↑
† − �k

† − k gk,+

�k
† �k↓↓

† gk,− − k

� . �34�

In Eq. �34�, all quantities have been defined in the previous
section. It is usually argued that interband pairing in a non-
centrosymmetric superconductors can be neglected due to a
spin-split Fermi surface in the presence of spin-orbit cou-
pling. This is motivated by realizing that the splitting could
be as large as25 50–200 meV for the noncentrosymmetric
superconductor CePt3Si, thus far greater than the supercon-
ducting critical temperature kBTc�0.06 meV in that com-
pound. Accordingly, one might be tempted to also exclude
the spin-singlet gap in the presence of a strong spin-orbit
coupling motivated on physical grounds by the suppression
of interband pairing due to the spin-split Fermi surfaces.
However, it is necessary to investigate the presence, although
possibly small in magnitude, of a spin-singlet component of
the gap to examine whether the conductance spectrum
changes significantly in any respect compared to the scenario
with exclusively triplet pairing. Another motivation for in-
cluding the singlet gap is that the authors of Ref. 21 demon-
strated that for small spin-orbit coupling, dk �gk yields the
highest TC for CePt3Si. This would thus correspond to a sce-
nario where the triplet gap �k↑↓ is suppressed due to the
above condition, although intraband pairing is not strictly
forbidden as a result of weak spin-orbit coupling, thus allow-
ing for singlet pairing.

Consider now a gap vector exhibiting point nodes. Since
dk, in general, is given by Eq. �1�, the vector characterizing
spin-orbit coupling gk=��ky ,−kx ,0� suggested by Ref. 21 re-
sults in

�k↑↑ = −
�t

2�k�
�ky + ikx�, �k↓↓ =

�t

2�k�
�ky − ikx� . �35�

Diagonalization of the Hamiltonian in Eq. �33� yields eigen-
values and eigenvectors which are necessary to calculate the
normal- and Andreev-reflection coefficients in a N/CePt3Si
junction. Assuming the simplest form of a s-wave supercon-
ducting gap that obeys the symmetry requirements dictated
by the Pauli principle, namely, an isotropic gap �k=�s, we
find that the eigenvalues of Mk read

Ek��
= ��� + ��gk��2 + ��s + ��t/2�2. �36�

This is in complete agreement with the result of Ref. 26. We
are here assuming that all gaps have the same phase associ-
ated with the broken U�1� gauge symmetry. In Eq. �36�, �
=+ ��� refers to electronlike �holelike� excitations, while
�=+ ��� denotes the spin-orbit helicity index. The wave
vectors may then be written as

qe
↑ = qh

↑ = �kF
2 + m2�2 − m� ,

qe
↓ = qh

↓ = �kF
2 + m2�2 + m� , �37�

when making the approximation that the magnitude of the
superconducting gaps is small compared to the Fermi energy
� and considering the low-energy transport regime. Here, kF
is the Fermi wave vector.

We now calculate the normal- and Andreev-reflection co-
efficients for an incident electron with spin �, which, in turn,
will allow us to derive the tunneling conductance of the junc-
tion. To do so, we first set up the Bogoliubov–de Gennes
�BdG� equations for the system which read �see the Appen-
dix for a derivation�


−

�̂2

2m
− � + V0��x� ��p̂y + ip̂x���x� �k↑↑��x� �s��x�

��p̂y − ip̂x���x� −
�̂2

2m
− � + V0��x� − �s��x� �k↓↓��x�

�k↑↑
† ��x� − �s

†��x� �̂2

2m
+ � − V0��x� ��p̂y − ip̂x���x�

�s
†��x� �k↓↓

† ��x� ��p̂y + ip̂x���x� �̂2

2m
+ � − V0��x�

���x,y� = E��x,y� , �38�

where p̂x�y�=−i�̂x�y� and we make use of the following bound-
ary conditions:

��0� = ��0� �continuity of wave function� ,

2mV0��0� = �̂x��0� − �̂x���0�

− m����0� �continuity of flux� . �39�

Note that we have applied the usual step-function approxi-
mation for the order parameters instead of solving for their
spatial dependence self-consistently near the interface, i.e.,
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�k���r�=�k����x� and ��r�=���x� �we comment further
on this later�. For convenience, we have defined the 4�4
matrix

� =
0 1 0 0

− 1 0 0 0

0 0 0 1

0 0 − 1 0
� . �40�

The presence of spin-orbit coupling leads to off-diagonal
components in the velocity operator, such that it would be
erroneous to merely match the derivatives of the wave func-
tion in this case.45 The coupled gap equations that arise by
demanding a minimum in the free energy are obtained by
considering Eqs. �27� and �28�. For the sake of obtaining
analytical results, we continue our discussion of the conduc-
tance spectra of noncentrosymmetric superconductors by in-
serting values of the superconductivity gaps a priori instead
of using the self-consistent solutions. This approach does
not, then, account for the entire physical picture but has
proven to yield satisfactory results for many aspects of qua-
siparticle tunneling in the case of, e.g., spin-singlet d-wave
superconductors.43,46 For the simplest model that illustrates
the physics, we have thus chosen a two-dimensional
N/CePt3Si junction with a barrier modeled by V�r�=V0��x�
and superconductivity gaps �k���r�=�k����x� ���x� and
��x� represent the delta and Heaviside functions, respec-
tively�. Consider Fig. 1 for an overview. Choosing a plane-
wave solution ��x ,y�=��x�eikyy, for �=↑, the wave func-
tion on the normal ���x�� side of the junction reads

��x� =
eikF cos �x + re

↑e−ikF cos �x

re
↓e−ikF cos �x

rh
↑eikF cos �x

rh
↓eikF cos �x

� . �41�

On the superconducting side ���x��, the BdG equation may
be written, for our particular choice of gk and gaps in Eq.
�35�, as


k �gk�ei� − ��t/2�ei� �s

�gk�e−i� k − �s ��t/2�e−i�

− ��t/2�e−i� − �s − k �gk�e−i�

�s ��t/2�ei� �gk�ei� − k

��

= E� with tan ���� = 1/tan � . �42�

We are here concerned with positive excitations E�0, as-
suming an incident electron above Fermi level. In this case,
there are four possible solutions for wave vectors k with a
given energy E�0. Consequently, one may verify that the
correct wave function for x�0, which is a linear combina-
tion of these allowed states, reads

��x� =
te
↑

�2
u��+�

u��+�e−i���e
↑�

− v��+�e−i���e
↑�

v��+�
�eiqe

↑ cos �e
↑x

+
te
↓

�2
u��−�

− u��−�e−i���e
↓�

v��−�e−i���e
↓�

v��−�
�eiqe

↓ cos �e
↓x

+
th
↑

�2
v��+�

v��+�e−i���h
↑�

− u��+�e−i���h
↑�

u��+�
�eiqh

↑ cos �h
↑x

+
th
↓

�2
v��−�

− v��−�e−i���h
↓�

u��−�e−i���h
↓�

u��−��74�
�eiqh

↓ cos �h
↓x. �43�

We have defined �±=�s± ��t /2�, and the spreading angles in
Eq. �43� are given as sin �e

�= �kF sin �� /q�, �h
�=�−�e

�. This
follows from the fact that translational symmetry is con-
served along the y axis. The coherence factors entering the
wave functions in Eq. �43� are given as

u��� =�1

2
+

�E2 − ���2

2E
, v��� =�1

2
−

�E2 − ���2

2E
.

�44�

We also define the dimensionless parameters Z=2mV0 /kF
and �=2m� /kF as measures of the intrinsic barrier strength
and magnitude of the spin-orbit coupling, respectively.

Note that we are using the same effective masses in the
normal part of the system as in the superconducting part. The
mass of the quasiparticles in heavy-fermion materials is, as
the name itself implies, ordinarily much larger than in nor-
mal metals. It was recently shown by Yokoyama et al.47 that
in a two-dimensional electron gas �2DEG�/superconductor
junction where spin-orbit coupling was substantial in the
2DEG, the effect of including a larger effective mass in the
2DEG was equivalent to that caused by an increase of Z.

θθθθ

θθθθ↓↓↓↓eeee

Incoming electron σ

Retroreflected hole (↑, ↓)

Reflected electron (↑, ↓)

ŷ̂ŷŷy

ˆ̂̂̂xxxx

Normal metal Noncentrosymmetric superconductor

Transmitted e-like quasiparticle (σ)

Transmitted e-like quasiparticle (σ)

Transmitted e-like quasiparticle (−σ)

Transmitted e-like quasiparticle (−σ)

θθθθ↑↑↑↑eeee

FIG. 1. �Color online� Schematic illustration of the scattering
processes taking place at the interface of the 2D planar N/CePt3Si
junction. The arrows indicate the direction of group velocity �which
is not equal to the momentum vector for the holes�. Note that the
presence of spin-orbit coupling causes electronlike and holelike ex-
citations on the superconducting side to be spread into different
angles.
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Note that in the presence of a time-reversal breaking mag-
netic field, it was shown in Refs. 48 and 49 that the effect of
Fermi-vector mismatch could not be reproduced simply by
varying the barrier parameter Z. Since there is no time-
reversal breaking field present in this case, however, we here
restrict ourselves to considering equal effective masses in the
two systems. With the above equations, one is able to find
explicit expressions for �re

� ,rh
��. The procedure illustrated

here is identical for incoming electrons with �=↓ when us-
ing

��x� =
re
↑e−ikF cos �x

eikF cos �x + re
↓e−ikF cos �x

rh
↑eikF cos �x

rh
↓eikF cos �x

� �45�

instead of Eq. �41�. This establishes the framework which
serves as the basis for calculating the conductance spectrum.

B. Conductance spectra for noncentrosymmetric
superconductors

We now proceed to calculate the tunneling conductance
for our setup. Generalizing the theory of Blonder et al.44 one
obtains a conductance G�E ,�� �scaled on the conductance in
a N-N junction� for an incoming electron with angle � to the
junction normal with spin �, where

G�E,�� = 1 + 

�

��rh
��E,���2 − �re

��E,���2� , �46�

and RN-N=�−�/2
�/2 ��4 cos3 �� / �4 cos2 �+Z2��d�. The angularly

averaged conductance reads

G�E� = �RN-N�−1�
−�/2

�/2

G�E,��P���d� , �47�

where P��� is the probability distribution function �P�0�
=1� for incoming electrons at an angle �. This is, in many
cases, set to P���=cos �, but other forms modeling, e.g.,
effective tunneling cones may also be applied. In obtaining
the total conductance, one has to find G�E� for both �=↑ and
�=↓ and then add these contributions. The original deriva-
tion of this specific formula for the tunneling conductance
given in Ref. 48 relies on the relation

�rh
��E��2 = �rh

��− E��2 �48�

to hold. This is known to be valid for subgap energies, but
for energies above the gap, the relationship does not hold in
general, a fact which implies that the conductance formula
derived in Ref. 48 is only valid for applied voltages below
the gap, strictly speaking. However, since the probability for
Andreev reflection rapidly diminishes for energies above the
gap �especially for Z�0�, the conductance formula may still
be applied for larger voltages as a reasonable approximation,
even for the high-transparency case of low values for Z.

The explicit analytical expressions for the normal- and
Andreev-reflection probabilities, �re

��2 and �rh
��2, respectively,

are too large and unwieldy to be of any instructive use. We

shall therefore be content with plotting these expressions to
reveal the physics embedded within them. In most scanning
tunneling microscopy �STM� experiments, a high-
transparency interface is often realized, corresponding to low
Z. Also, since the band splitting 2�kF at the Fermi level may
be of order25 of 100 meV for CePt3Si, a simple analysis re-
lating this to our dimensionless parameter � yields that �
�0.05. We therefore plot in Fig. 2 the angularly averaged
�and normalized� conductance spectrum for several values of
barrier strength and singlet/triplet gap ratios, fixing the spin-
orbit coupling parameter at �=0.05. From Fig. 2, we see that
one may infer the relative size of the singlet and triplet com-
ponents of the gap by the characteristic behavior of G�E� at
voltages corresponding to �s±�t /2. This is in agreement
with what one could expect by studying the form of the
eigenvalues in Eq. �36�, since it is this precise combination
of the gaps that appears in the expression.

In a recent study50 by Iniotakis et al., a normal/
noncentrosymmetric superconductor junction was studied for
low-transparency interfaces, where it was found that zero-
bias anomalies would take place for certain STM measure-
ment orientations if a specific form of the mixed singlet-
triplet order parameter was realized. This may be attributed
to the formation of zero-energy bound states,51 which is pos-
sible when the gap contains nodes. In the present study, we
are using an isotropic spin-singlet gap and also isotropic
p-wave gaps ���k�� � =constant�,52 such one does not expect
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FIG. 2. �Color online� Tunneling conductance for N/CePt3Si
junction with �=0.05. We study barrier strengths corresponding to
�a� Z=0.1, �b� Z=1, and �c� Z=10. In all cases, we plot the ratios
�t /�s= �3,10� to see how the spectra are affected. It is seen that the
conductance spectra reveal information about the relative size of the
singlet and triplet components of the gaps by characteristic features
located at bias voltages E= ��s±�t /2�.
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the appearance of a zero-bias conductance peak, in contrast
to Ref. 50. Moreover, we note that the spin-orbit coupling in
the system gives rise to effectively spin-active boundary con-
ditions �see Eq. �39��.53,54

It is also instructive to consider the Andreev-reflection
probabilities explicitly to resolve the spin structure of the
quasiparticle current, as shown in Fig. 3 for an incoming
electron with spin �=↑. It is seen that the spin-↓ coefficient
becomes larger with increasing voltage, such that the spin
polarization of the current will vary with the bias voltage.
The proper definition of a spin current in systems exhibiting
spin-orbit coupling has, however, been shown55 to be more
subtle than applying the usual relations for charge and spin
currents,

jcharge = − e

�

j�, jspin = 

�

�j�, �49�

where j� is the particle current of fermions with spin �.
Therefore, it is fair to claim that it is not obvious how one
might detect such a change in polarization of the quasiparti-
cle current with a change in bias voltage. On the other hand,
the charge current remains unaffected by these consider-
ations, and our results thus indicate that the conductance
spectrum of the charge current in a N/CePt3Si junction may
provide valuable information about the relative size of the
singlet and triplet components of the superconductivity gap.

We now comment on effects that have not been taken
into account in our analysis of this problem. First, the
issue of how boundary effects affect the order parameters
is addressed. Studies56–58 have shown that interfaces and/or
surfaces may have a pair-breaking effect on unconventional
superconductivity order parameters. This is relevant in tun-

neling junction experiments as in the present case. The sup-
pression of the order parameter is caused by a formation of
the so-called midgap surface states �also known as zero-
energy states�,51 which occurs for certain orientations of the
k-dependent superconducting gaps that satisfy a resonance
condition. Note that this is not the case for conventional
s-wave superconductors since the gap is isotropic in that
case. This pair-breaking surface effect was studied specifi-
cally for p-wave order parameters in Refs. 56 and 57, and it
was found that the component of the order parameter that
experiences a sign change under the transformation k�→
−k�, where k� is the component of momentum perpendicu-
lar to the tunneling junction, was suppressed in the vicinity
of the junction. By vicinity of the junction, we mean here a
distance comparable to the coherence length, typically of or-
der of 1–10 nm. Thus, depending on the explicit form of the
superconducting gaps in the noncentrosymmetric supercon-
ductor, these could be suppressed close to the interface.
Moreover, we are dealing with an easily observable effect,
since distinguishing between the peaks occurring for various
values of R� requires a resolution of order O�10−1�↑,0�,
which typically corresponds to 0.1–1 meV. These structures
should readily be resolved with present-day STM technol-
ogy. However, it should be pointed out that a challenge with
respect to tunneling junctions is dealing with nonidealities at
the interface, which may affect the conductance spectrum.

In order to fully consider the possible pair-breaking effect
of the interface in an enhanced model, one would obviously
need to solve the scattering problem self-consistently in or-
der to obtain more precise results for the conductance, espe-
cially in terms of the quantitative aspect. To obtain analytical
results, however, we have inserted the gaps a priori, since we
believe that our model captures essential qualitative features
in a N/CePt3Si junction that could be probed for. This belief
is motivated by studies59 for dx2−y2 superconductors which
show that the conductance shape around zero bias remains
essentially unchanged even if the spatial dependence of the
order parameters is taken into account. The spectra around
the gap edges may be modified in the sense that since the
gap, in general, will be somewhat reduced close the inter-
face, the appearance of characteristic features in the conduc-
tance could occur at lower bias voltages than the bulk value
of the gaps. However, it seems reasonable to hope that our
simple model may be of use in predicting qualitative features
of the conductance spectrum when considering junctions in-
volving noncentrosymmetric superconductors such as
CePt3Si.

V. PROBING THE PAIRING SYMMETRY OF
FERROMAGNETIC SUPERCONDUCTORS

As a second application of our model, we consider a
model of a ferromagnetic superconductor described by uni-
formly coexisting itinerant ferromagnetism and equal-spin
pairing nonunitary spin-triplet superconductivity.

A. Model and formulation

We write down a mean-field theory Hamiltonian with
equal-spin pairing Cooper pairs and a finite magnetization
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FIG. 3. �Color online� Andreev-reflection coefficients for spin-↑
and spin-↓ fermions in the case of incoming �=↑ electrons. It is
seen that the degree of spin polarization of the generated quasipar-
ticle current will vary with the bias voltage. The inset contains a
plot of the sum of reflection coefficients �both normal and An-
dreev�, showing that no transmittance of quasiparticles occurs for
voltages below E= ��s−�t /2�.
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along the easy axis similar to the model studied in Refs.
60–62, namely,

Ĥ = 

k

	k +
INM2

2
−

1

2

k�

�k��
† bk�� +

1

2

k�

�ĉk�
† ĉ−k��

�� 	k� �k��

�k��
† − 	k�

�� ĉk�

ĉ−k�
† � , �50�

Applying the diagonalization procedure described in Sec. II,
we arrive at

Ĥ = H0 + 

k�

Ek�
̂k�
† 
̂k�,

H0 =
1

2

k�

�	k� − Ek� − �k��
† bk��� +

INM2

2
, �51�

where �
̂k� , 
̂k�
† � are new fermion operators and the eigen-

values read

Ek� = �	k�
2 + ��k���2. �52�

Recall that it is implicit in our notation that 	k is measured
from the Fermi level. The free energy is obtained by using
the procedure explained in Sec. II, and one obtains

F = H0 −
1

�


k�

ln�1 + e−�Ek�� , �53�

such that the gap equations for the magnetic and supercon-
ducting order parameters become60

M = −
1

N


k�

�	k�

2Ek�

tanh��Ek�

2
� ,

�k�� = −
1

N


k�

Vkk���

�k���

2Ek��

tanh��Ek��

2
� . �54�

For concreteness, we now consider a specific form of the
gaps, similar to those studied in Refs. 60 and 62. Assuming
that the gap is fixed on the Fermi surface in the weak-
coupling limit, we write

�k�� = �k̄F�� =
��,0

�3/8�
Yl=1

� ��,�� , �55�

where k̄F is the normalized Fermi wave vector, such that the
gap only depends on the direction of the latter. We have
introduced the spherical harmonics

Yl=1
� ��,�� = − ��3/8�ei�� sin � , �56�

such that the gaps in Eq. �55� experience a change in sign
under inversion of momentum, i.e., �→�+�. We shall con-
sider the case sin �=1 which renders the magnitude of the
gaps to be constant, similar to the A2 phase in liquid 3He.
The motivation for this is that it seems plausible that uniform
coexistence of ferromagnetic and superconducting orders
may only be realized in thin-film structures, where the
Meissner �diamagnetic� response of the superconductor is
suppressed for in-plane magnetic fields. This enables us to

set sin �=1, since the electrons are restricted from moving in
the ẑ direction in a thin-film structure. In a bulk structure, as
considered in Ref. 62, we expect that a spontaneous vortex
lattice should be the favored thermodynamical state.28 The
pairing potential may then, in general, be written as

V����,��� = − 

m

g��
m

3/8�
Y�����Y������*, �57�

which for the chosen gaps reduces to

V����,��� = −
8�g

3
Y�����Y������*. �58�

Conversion to integral gap equations is accomplished by
means of the identity

1

N


k

f�	k�� =� dN��� , �59�

where N��� is the spin-resolved density of states. In three
spatial dimensions, this may be calculated from the disper-
sion relation by using the formula

N��� =
V

�2��3�
k�=const

dSk�

��̂kk��
. �60�

With the dispersion relation 	k�=k−�IM −EF �having set
the chemical potential equal to the Fermi energy, �=EF�, one
obtains

N��� =
mV�2m� + �IM� + EF

2�2 . �61�

In their integral form, the gap equations read

M = −
1

2

�

��
−EF−�IM

�

d
N���

�2 + ��,0
2

tanh��E���
2

� ,

1 =
g

2
�

−�0

�0

d
N���
E���

tanh��E���
2

� . �62�

B. Zero-temperature case

Consider now T=0, where we are able to obtain analytical
expressions for the superconductivity order parameters in the
problem. Since the superconductivity gap equation reduces
to

1 =
g

2
�

−�0

�0

d
N���
E���

, �63�

one readily finds

��,0 = 2�0e−1/c�1+�M̃, � = ↑,↓ , �64�

where we have defined M̃ = IM /EF, i.e., the exchange energy
scaled on the Fermi energy. Moreover, the weak-coupling
constant c=gN�0� /2 will be set to 0.2 throughout the rest of
this paper, unless specifically stated otherwise. Moreover, we
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set �̃0=�0 /EF=0.01 as the typical spectral width of the
bosons responsible for the attractive pairing potential. From
Eq. �64�, we see that the effect of increasing the magnetiza-
tion is an increase in the gap for majority spin. The important
influence of the magnetization is that it modifies the density

of states, which affects the superconductivity gaps. For M̃
=1, i.e., an exchange splitting equal to the Fermi energy, the

minority-spin gap is completely suppressed, as shown in Fig.
4. Thus, the presence of magnetization reduces the available
phase space for the minority-spin Cooper pairs, suppressing
the gap and the critical temperature compared to the pure
Bardeen-Cooper-Schrieffer �BCS� case.

After the appropriate algebraic manipulations of Eq. �62�,
the self-consistency equation for the magnetization becomes

f�M̃� = M̃ +
Ĩ

4
�

−1−M̃

�

dx�1 + x + M̃��1 − 2��− �x2 + �̃↑,0
2 �M̃���

x−1�x2 + �̃↑,0
2 �M̃�

−
�1 − 2��− ��x + 2M̃�2 + �̃↓,0

2 �M̃���

�x + 2M̃�−1��x + 2M̃�2 + �̃↓,0
2 �M̃�

� = 0, �65�

where we have defined the parameter Ĩ= IN�0�, in similarity

to Ref. 60, and introduced �̃�,0�M̃�=��,0 /EF. We have thus
managed to decouple the gap equations completely, such that
one only has to solve Eq. �65� to find the magnetization, and
then plug that value into Eq. �64�. Note that strictly speaking,
one should divide the integral in Eq. �65� into three parts: �
−1−M̃ ,−�0�, ��0 ,��, and �−�0 ,�0�, where the supercon-
ductivity gaps are only nonzero in the latter interval. How-
ever, the error associated with doing the integration numeri-
cally over the entire regime with a finite value for the gaps is
completely negligible. From Eq. �65�, we see that the trivial

solution M̃ =0 is always possible. Interestingly, we find that a
nontrivial solution implying coexistence of ferromagnetism

and superconductivity is only possible when Ĩ�1 �in agree-
ment with Ref. 60�. To illustrate this fact, consider Fig. 5 for

a plot of f�M̃� in Eq. �65� as a function of M̃ for several

values of Ĩ. In fact, it is seen that more than one solution is

possible for any Ĩ�1: the trivial solution M̃ =0 correspond-
ing to a unitary superconducting state and a nontrivial solu-

tion M̃ =M̃0 representing a nonunitary superconducting state.
Recall that in terms of the dk-vector formalism, these classi-
fications are defined as

unitary:dk � dk
* = 0, nonunitary:dk � dk

* � 0. �66�

We will later show that the free energy is minimal in the
nonunitary state, which implies that the coexistence of ferro-
magnetism and superconductivity may indeed be realized in
our model.

The order parameters depend on the parameters �T , Ĩ ,c�.
To illustrate their dependence on Ĩ at T=0, consider Fig. 6. It
is clearly seen that the superconductivity gaps are equal for

Ĩ�1, corresponding to a unitary spin-triplet pairing state.

For Ĩ�1, a spontaneous magnetization arises and the
majority- �minority-� spin gap increases �decreases�. This
corresponds to the coexistent phase of ferromagnetism and
superconductivity. An important point concerning Eq. �65� is
the inclusion of the step-function factors, which are superflu-

ous as long as we are considering the coexistent regime of
ferromagnetism and superconductivity, since their argument
is always negative. However, if one, for instance, were to set
one or both of the superconductivity gaps to zero, the correct
gap equation for the magnetization would not be reproduced
without them. This is due to the loss of generality in taking
the limit tanh��E��→1 when �→� in deriving Eq. �65�,
since E��0 is replaced with  when superconductivity is
lost, which can be both larger and smaller than zero when
��,0→0. The present form of Eq. �65� is generally valid for
the purely magnetic and the coexistent A1 and A2 phases of
the ferromagnetic superconductor.

In order to correctly characterize the pairing symmetry of
FMSCs, it is of interest to find clear-cut experimental signa-
tures that distinguish between the possible phases of such an
unconventional superconductors. As we have alluded to, it
seems reasonable to assume that a superconducting phase
analogous to the A1 or A2 phase of 3He may be realized in
FMSCs. We now investigate how the magnetization at T=0

depends on the ferromagnetic exchange energy constant Ĩ in
these possible phases and compare them to the purely ferro-
magnetic case. Our results are shown in Fig. 7, where we

have self-consistently solved for M̃ as a function of Ĩ in three
cases: �1� the purely ferromagnetic phase, �2� the A1 phase
where only spin-↑ fermions are paired, and �3� the A2 phase
where all spin bands participate in the superconducting pair-
ing. It is seen that the magnetization is practically identical in

all phases regardless of the value of Ĩ. Analytically, this may
be understood since the difference �f �see Eq. �65�� between
the gap equation for the magnetization in the purely ferro-
magnetic case and the coexistent state reads

�f = 

�

���
−�0

�0

dN����1 −
��

�2 + ��,0
2 �� � 0. �67�

Note that in our results, an enhancement of the magnetiza-
tion below the superconductivity critical temperature is ab-
sent, contrary to the results of Ref. 62, which predicted that
the magnetization should be enhanced in the coexistent
phases compared to the purely ferromagnetic phase. For the
weak-coupling approach applied here, it seems reasonable
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that the presence of superconductivity should not alter the
magnetization much, while superconductivity itself is drasti-
cally modified depending on the strength of the exchange
energy. The result of Ref. 62 may be a consequence of the
fact that they do not set sin �=1 �Eq. �56�� and, conse-
quently, have additional nodes compared to the gaps we are
using.

C. Finite temperature case

The critical temperature for the superconductivity order
parameter is found by solving the equation

1 =
g

2
�

−�0

�0

d
N���


tanh� 

2Tc,�
� , �68�

which yields the BCS-like solution
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spontaneous magnetization arises.
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It is seen that M̃ is virtually unaltered by the presence of supercon-
ductivity, at least in the weak-coupling approach we have adopted
here �see also Ref. 62�.
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Tc,� = 1.13�0e−1/c�1+�M�Tc,��˜
. �69�

Since the transition temperature for paramagnetism-
ferromagnetism is, in general, much larger than the super-
conducting phase transition, one may, to good approxima-
tion, set M�Tc,��=M�0�. It is then evident that the critical
temperature depends on the magnetization in the same man-
ner as the gap itself, and the cutoff dependence in Eq. �64�
may be removed in favor of the critical temperature by sub-
stituting Eq. �69�. In order to solve the coupled gap equations
self-consistently at arbitrary temperature, we considered Eq.
�62� with the result given in Fig. 8. It is seen that the
minority-spin gap is clearly suppressed compared to the
majority-spin gap in the presence of a net magnetization.
Also, the graph clearly shows that the BCS-temperature de-
pendence constitutes an excellent approximation for the de-
crease of the OPs with temperature. In what follows, we shall
therefore use self-consistently obtained solutions at T=0 for
the OPs and make use of the BCS-temperature dependence
unless specifically stated otherwise. In general, the critical
temperature for the ferromagnetic order parameter Tc,M ex-
ceeds the superconducting phase transition temperatures Tc,�

by several orders of magnitude. However, for Ĩ very close to
1, we are able to make these transition temperatures compa-
rable in magnitude. In the experimentally discovered FMSCs
UGe2 and URhGe, one finds that Tc,M is 50–100 times higher
than the temperature at which superconductivity arises.

To illustrate how the magnetic order parameter depends

on Ĩ, consider Fig. 9 for a plot of the temperature dependence

for several values of Ĩ. The inset shows how the critical
temperature depends on this parameter.

D. Comparison of free energies

Although a nontrivial solution of M exists, care must be
exercised before concluding that this is the preferred ener-
getical configuration of the system. Specifically, it may in
theory be possible that the systems prefers the M =0 solution

regardless of the value of Ĩ, corresponding to a unitary su-
perconducting state with �↑,0=�↓,0. It is therefore necessary
to compare the free energies of the M =0 and M �0 cases at

values of Ĩ where the latter is a possible solution and also
study their temperature dependence. In the general case, the
analytical expression for the free energy in the coexistent
nonunitary superconducting phase reads

F

N
=

IM2

2
+ 


�

��,0
2

2g
− 


�
�

−EF−�IM

�

dN�����2 + ��,0
2

2

+
1

�
ln�1 + e−��2+��,0

2
�� . �70�

Note that the gap should be set to zero in the above equation
everywhere except in the interval �−�0 ,�0�. We obtain a
dimensionless measure of the free energy by multiplying
with I /EF

2 and denote FNU=FI / �NEF
2�. Note that the free en-

ergies of the unitary state, pure ferromagnetic state, and para-
magnetic state are obtained as follows:

FU = lim
M→0

FNU,

FPM = lim
M→0,��,0→0

FNU,

FFM = lim
��,0→0

FNU. �71�
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In Fig. 10, we plot the difference between the unitary and
nonunitary solutions at zero temperature, �F=FU−FNU,
which clearly shows how the system favors the nonunitary

solution with spontaneous magnetization as Ĩ increases. As a
result, we suggest that the coexistent phase of ferromag-
netism and superconductivity should be realized at suffi-
ciently low temperatures whenever a magnetic exchange en-
ergy is present. For consistency, we also verified that FNU
�FFM at T=0, since the system otherwise would prefer to
leave superconductivity out of the picture and stay purely
ferromagnetic.

We now turn to the temperature dependence of the free

energy at the fixed value of Ĩ=1.01 �the order parameters
were self-consistently solved for this value and plotted in
Fig. 8�. The results are shown in Figs. 11–13. Note that we
now use a different scaling of the free energy, namely, FNU
=F / �NN�0�EF

2�. The well-known result that the free energy
of a purely superconducting state joins the free energy of the
paramagnetic state continuously as the temperature increases
is reproduced in Fig. 11. In Fig. 12, we see that the coexist-
ent phase of ferromagnetism and superconductivity is ener-
getically favored compared to the purely ferromagnetic case,
which is consistent with the experimental fact that a transi-
tion to superconductivity occurs below the Curie temperature
for certain materials.1,2 Finally, in Fig. 13, we have plotted
the energy difference between the unitary and nonunitary
free energies in addition to the difference between the para-
magnetic and ferromagnetic phases. It is seen that the non-
unitary state is energetically preferred over the unitary state,
a statement which, strictly speaking, has only been shown to

hold for our current choice of Ĩ �Ĩ=1.01�, but it seems rea-
sonable to assume that it holds under quite general circum-
stances due to the presence of an exchange energy. At T

=Tc,↑, when all superconductivity is lost, the two curves join
each other smoothly since FNU→FFM and FU→FPM when
T�Tc,↑. Our results then suggest the very real possibility of
a coexistent phase of spin-triplet superconducting pairing
and itinerant ferromagnetism being realized in the experi-
mentally discovered ferromagnetic superconductors, since
we have shown that the coexistent phase is energetically fa-
vored over both the purely magnetic and the nonmagnetic
superconducting state.

E. Specific heat

We next consider some experimental signatures that could
be expected in the different possible phases of a FMSC. Con-
sequently, we have calculated the electronic contribution to
the specific heat of the system by making use of CV=T �S

�T
with

S = − 

k�

�f�Ek��ln�f�Ek��� + �1 − f�Ek���ln�1 − f�Ek����

�72�

as the entropy, leading to

CV =
�2

4 

k�

Ek�
2 − �−1���,0

���,0

�T
− �k�I

�M

�T
�

cosh2��Ek�/2�
. �73�

Note that the above equation reduces to the correct
normal-state heat capacity in the limit ���,0 ,M�→0, with

the usual linear T dependence. The term
���,0

�T ensures that the
well-known mean-field BCS discontinuity �strictly speaking
valid only for a type-I superconductor,63 but clearly in-
valid at the transition temperature of a strong type II
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FIG. 11. �Color online� Free energy difference between the para-
magnetic state �FPM� and the unitary superconducting state �FU�. In
consistency with established results �see, e.g., Ref. 68�, the free
energies merge continuously as the temperature gets closer to Tc,U.
In the inset, we have chosen the zero-temperature value of the para-
magnetic free energy as zero, serving as a reference point. We have

solved all order parameters self-consistently for Ĩ=1.01.
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superconductor64–66� at the superconducting critical tempera-
ture is present in the heat capacity, while the presence of
ferromagnetism induces another term proportional to �M

�T .
However, due to our previous argument that Tc,M �Tc,�, this
term may be neglected since the magnetization remains vir-
tually unaltered in the temperature regime around Tc,�. Go-
ing to the integral representation of the equation for the heat
capacity, one thus obtains

CV =
�2

4 

�
�

−EF−�IM

�

dN����E�
2��

−
���,0

�T
��,0T�cosh−2��E���

2
� . �74�

Strictly speaking, one should again divide the above integral
into the regions �−EF ,−�0�, ��0 ,��, and �−�0 ,�0�, where
the superconductivity gap should be set to zero in all regions
except the latter. However, since the integrand is strongly
peaked around =0 �Fermi level�, there is little error made in
using the form of Eq. �74�. In order to obtain the derivatives
of the gap functions with respect to temperature, an analyti-
cal approach is permissible since the gaps have the BCS-
temperature dependence �see Fig. 8�

��,0�T� = ��,0�0�tanh�1.74�Tc,�/T − 1� , �75�

where the superconductivity critical temperature for spin-�
fermions is given by Eq. �69�. To illustrate how the super-

conductivity pairing symmetry leaves important fingerprints
in the heat capacity, we solved Eq. �74� self-consistently for
two values of Ĩ corresponding to strong �M̃ �0.5� and weak

�M̃ �0.1� exchange splittings �Fig. 14�. At Ĩ=1.01, the dis-
continuity is clearly pronounced for T=Tc,↑, but it is hardly
discernible at T=Tc,↓. However, for Ĩ=1.0005 where the su-
perconductivity transition temperatures for majority and mi-
nority spins become comparable, a clear double-peak signa-
ture is revealed in the heat capacity. We thus propose that
this particular feature should serve as unambiguous evidence
of a superconducting pairing corresponding to the A2 phase
of liquid 3He in ferromagnetic superconductors.

An classic feature of the BCS theory of superconductivity
was the prediction that the jump in the heat capacity at Tc
normalized on the normal-state value was a universal num-
ber, namely,

���CV

CV
��

T=Tc

� 1.43. �76�

In the presence of a net magnetization, one would expect that
the universality of this ratio would break down and depend
on the strength of the exchange energy. This is due to the fact
that the discontinuity in the specific heat at the superconduct-
ing transition is dominated by the majority-spin carriers,
while the total specific heat to a larger extent has contribu-
tions from both minority-spin and majority-spin carriers. To
investigate this statement quantitatively, we consider the
jump in CV at T=Tc,↑ since no analytical approach is possible
at T=Tc,↓, as seen from Eq. �74�. We find that the normal
�ferromagnetic� state heat capacity reads

CV
FM =

�2Tc,↑
3 


�

N��0� , �77�

where N��0� is the spin-resolved density of states �DOS� at
Fermi level, while the difference between the heat capacity
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FIG. 12. �Color online� Free energy difference between the fer-
romagnetic state �FFM� and the nonunitary superconducting state
�FNU�, which displays coexistence of ferromagnetism and supercon-
ductivity. It is seen that the nonunitary phase is favored compared to
the purely ferromagnetic state. In the inset, we have chosen the
zero-temperature value of the ferromagnetic free energy as zero,
serving as a reference point. We have solved all order parameters

self-consistently for Ĩ=1.01. The curves of this figure and Fig. 13
may be made congruent by a simple scaling of the axes. This is a
consequence of the weak-coupling limit, where superconductivity
sets in at a temperature much smaller than the ferromagnet-
paramagnet transition temperature, such the that magnetic order pa-
rameter across the superconducting transition is essentially a
temperature-independent constant.
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FIG. 13. �Color online� Free energy difference between the uni-
tary and nonunitary states �FU−FNU� as well as the paramagnetic
and ferromagnetic state �FPM−FFM�. At T=Tc,↑, the curves merge
smoothly into each other since all superconductivity is lost. Each
step along the ordinate corresponds to an increment of unit 0.1. We

have solved all order parameters self-consistently for Ĩ=1.01.
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in the coexistent state and in the ferromagnetic state at T
=Tc,↑ reads

�CV =
1.742�↑,0

2 �0�N↑�0�
2Tc,↑

. �78�

Since the zero-temperature value for the gap is �↑,0�0�
=1.76Tc,↑, one arrives at

���CV

CV
��

T=Tc,↑

= 1.43
1

1 +�1 − M̃

1 + M̃

. �79�

The above equation reduces to the BCS limit for complete

spin polarization M̃ =1 �zero DOS for spin-↓ fermions at
Fermi level�. This is due to, as noted above, the larger extent
to which majority-spin carriers dominate the jump in specific
heat compared to the total specific heat. As anticipated, the
jump in CV depends on the exchange energy, as illustrated in

Fig. 15. Of course, in the unitary state M̃ =0, the jump also
reduces to the BCS value although this is not seen from Eq.
�79�. The reason for this is that we have implicitly assumed

that M̃ �0 in the derivation of Eq. �79�, taking Tc,↑�Tc,↓. In
the case where these transition temperatures are equal, the
contribution from both is additive and equal �1.43/2, to be
specificc, as seen from Eq. �79�� and gives the correct BCS
result.

Our study of CV then offers two interesting opportunities:
�i� the presence or absence of a double-peak signature in the
heat capacity reveals information about the superconductiv-
ity pairing symmetry realized in the FMSC, and �ii� the nor-
malized value of the discontinuous jump at Tc,↑ contains in-
formation about the exchange splitting between the majority-
and minority-spin carrier bands.

VI. SUMMARY

In summary, we have derived a general Hamiltonian de-
scribing coexistence of itinerant ferromagnetism, spin-orbit
coupling, and mixed spin-singlet and spin-triplet supercon-
ducting pairing using mean-field theory. Exact eigenvalues
and coupled gap equations for the different order parameters
have been obtained. Our results may serve as a starting point
for any model describing coexistence of any combination of
these three phenomena simply by applying the appropriate
limit.

As a specific application of our results, we have studied
quantum transport between a normal metal and a supercon-
ductor lacking an inversion center with mixed singlet and
triplet gaps. We find that there are pronounced peaks and
bumps in the conductance spectrum at voltages correspond-
ing to the sum and difference of the magnitude of the singlet
and triplet gaps. Consequently, our results may be helpful in
obtaining information about the size of the relative contribu-
tion of different pairing symmetries.

Moreover, we considered a system where itinerant ferro-
magnetism uniformly coexists with spin-triplet superconduc-
tivity as a second application of our theory. We solved the
coupled gap equations numerically and presented analytical
expressions for the order parameters and their dependences
on quantities such as exchange energy and temperature. It
was found that the coexistent regime of ferromagnetism and
superconductivity may indeed be realized, since it is ener-
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FIG. 14. �Color online� Specific heat capacity as a function of

temperature for two values of Ĩ, corresponding to a strong exchange

splitting �M̃ �0.5� and a weak exchange splitting �M̃ �0.1�. A
double-peak signature is clearly visible when the transition tem-
peratures for the majority- and minority-spin bands are comparable.
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FIG. 15. �Color online� The discontinuity of the heat capacity at
T=Tc,↑ as a function of exchange splitting �Eq. �79��. It is seen that

the BCS value is recovered at M̃ =1. Note that it would also be

recovered at M̃ =0, although this is not shown explicitly in the
figure. The reason for this is that we have assumed that Tc,↓�Tc,↑.
We have also plotted the numerical results ��� for the jump with
self-consistently solved OPs, i.e., without assuming BCS-

temperature dependence, for Ĩ= �1.001,1.005,1.01,1.02,1.05�,
which yields good agreement with the analytical solution �Eq. �79��.
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getically favored compared to a unitary superconducting
state �M =0� and a purely ferromagnetic state. In order to
make contact with the experimental situation, we studied the
heat capacity and found interesting signatures in the spec-
trum that may be used in order to obtain information about
both the superconductivity pairing symmetry present in the
system and the magnitude of the exchange energy.
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APPENDIX: BOGOLIUBOV–DE GENNES EQUATIONS
FOR SYSTEMS EXHIBITING COEXISTENCE OF

FERROMAGNETISM, SPIN-ORBIT COUPLING, AND
SUPERCONDUCTIVITY

1. Derivation

We start out with a real-space Hamiltonian described by
fermionic field operators ��†��r , t� with a general attractive
pairing kernel V����r−r���, namely,

Ĥ = 

��
� dr��

†�r,t��−
�̂r

2

2m
− � + �V + �Vs���x��

+ �− VM + g�p̂�� · �̌����
†�r,t� +

1

2

��
� � drdr�

�V����r − r�����
†�r,t���

†�r�����r�����r,t� . �A1�

Here, V0 accounts for a nonmagnetic scattering potential as-
sociated with a barrier located at x=0, while Vs is the mag-
netic scattering potential, i.e., the barrier is spin active.
Moreover, VM is the magnetic exchange energy vector,
g�p̂�=−g�−p̂� is a term describing an antisymmetric spin-

orbit coupling energy �p̂=−i�̂r�, and �̌ is the vector of Pauli
matrices. We now introduce the mean-field approximation

��
†�r,t���

†�r�� = ���
†�r,t���

†�r�,t�	 + ����
† , �A2�

where the last term describes the fluctuations around the av-
erage field, and also define the superconducting order param-
eter

����r,r�� = V����r − r�������r�,t����r,t�	 . �A3�

Above, we have explicitly made the superconductivity order
parameter time independent, which effectively amounts to
saying that it does not depend on energy �the weak-coupling
limit�. This provides us with

Ĥ = 

��
� dr��

†�r,t��−
�̂r

2

2m
− � + �V + �Vs���x�

+ �− VM + g�p̂�� · �̌�
��

��
†�r,t�

+
1

2

��
� � drdr�����

† �r,r�����r�,t����r,t�

+ ����r,r����
†�r,t���

†�r�,t� − V����r − r���

����
†�r,t���

†�r�,t�	����r�,t����r,t�	� . �A4�

The time-dependent field operators ��r , t�=eiĤt��r�e−iĤt

obey the Heisenberg equations of motion,

i�t���r,t� = ����r,t�,Ĥ�

= 

�
� dr���r − r��Ĥ��

0 �r�,p̂����r�,t�

+ 

�
� dr�����r,r����

†�r�,t� ,

i�t��
†�r,t� = ���

†�r,t�,Ĥ�

= 

�
� dr���r − r���− Ĥ0�r�,− p̂����

T ��
†�r�,t�

+ 

�
� dr����

† �r,r�����r�,t� . �A5�

For convenience, we have defined

Ĥ��
0 �r,p̂� = �−

�̂r
2

2m
− � + �V + �Vs���x��

+ �− VM + g�p̂�� · �̌��. �A6�

The above equations may be comprised in compact matrix
form,

i�t��r,t� =� dr�H�r,r����r�,t� ,

��r,t� = ��↑�r,t�,�↓�r,t�,�↑
†�r,t�,�↓

†�r,t��T,

H�r,r�� = �Ĥ0�r�,p̂��rr� �̂�r,r��

�̂†�r,r�� �− Ĥ0�r�,− p̂��T�rr�

� ,

�A7�

with ��r−r��=�rr�, and where we have defined

�̂�r,r�� = ��↑↑�r,r�� �↑↓�r,r��
�↓↑�r,r�� �↓↓�r,r��

� . �A8�

Note that �↑↓�r ,r�� is, in general, a superposition of triplet
�T� and singlet �S� components that satisfies

�↑↓�r,r�� = �↑↓
T �r,r�� + �↑↓

S �r,r�� ,
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�↑↓
T �r,r�� = �↓↑

T �r,r�� ,

�↑↓
S �r,r�� = − �↓↑

S �r,r�� . �A9�

Regarding ��r , t� as a c number and assuming a stationary
solution ��r , t�=��r�e−iEt, with E as the wave function en-
ergy, it suffices to solve the equation

E��r� =� dr�H�r,r����r�� . �A10�

By considering a plane-wave solution of ��r� and dividing
out the fast oscillations on an atomic scale �see, e.g., Ref.
67�, one is left with the most familiar form of the BdG equa-
tions appearing in the literature, namely,

�Ĥ0�r,p̂� �̂�k,r�

�̂†�k,r� �− Ĥ0�r,− p̂��T
���r� = E��r� , �A11�

where the quasiparticle momentum k is the Fourier trans-
form of the relative coordinate s= �r−r�� /2, i.e.,

F�f�k�� =� dsf�s�e−ik·s. �A12�

This is usually assumed to be fixed on the Fermi surface,
such that only the directional dependence of k enters in Eq.

�A11�, k→kFk̂.

2. Boundary conditions

We proceed to provide a general approach in order to
obtain the correct boundary conditions at the interface for the
wave functions. Continuity of the wave function itself is as-
sumed in this context. Consider our Eq. �38� which describes

the Hamiltonian for the N/CePt3Si junction. The first row of
the equation explicitly reads

�−
1

2m
� �2

�x2 +
�2

�y2� − � + V0��x���↑�x,y�

+ �� �

�x
− i

�

�y
���x��↓�x,y� + �k↑↑��x��↑

†�x,y�

+ ���− x��↓
†�x,y� = E�↑�x,y� . �A13�

If we now integrate the above equation over a an interval
�� ,−�� along the x̂ axis and apply the limit �→0+, one ob-
tains

lim
�→0+

�−
1

2m
��↑���,y� − �↑��− �,y�� + V0�↑�0,y�

+ ��
−�

�

dx���x��↓�x,y���� = 0, �A14�

where � denotes derivation with respect to x. The last term
yields 1

2��↓�� ,0� �since ��0�= 1
2 �, such that the boundary

condition for derivative of the �↑�x ,y� component becomes

lim
�→0+

���↑���,y� − �↑��− �,y�� − m��↓��,0�� = 2mV0�↑�0,y� .

�A15�

It is seen that the presence of spin-orbit coupling and the
delta-function barrier leads to a discontinuity of the deriva-
tive of the wave-function. A similar procedure may be ap-
plied to the other components of ��x ,y�, and this method
can also be extended to include different effective masses on
each side of the junction modeled by a simple step function
��x�.
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