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The thermal behavior of the square Ising model with exchange �J� and dipole �g� interactions is well
understood for values of J /g far from the phase boundaries between striped configurations of different widths
h. A variety of phase transitions were found by Monte Carlo simulations. Both first order and continuous phase
transitions were found depending on the value of the ratio J /g, but no intermediate phase was found between
the low temperature ordered striped phase and the high temperature paramagnetic one. Here, we investigate the
regions of J /g near the boundaries between the striped phases of width h and h+1. We find that for h=2,3, an
intermediate �modulated� phase occurs between the striped and paramagnetic phases. Of particular interest is
the region around the boundary between the Néel phase and the striped phase with h=1 where an infinite
sequence of �1,n� ��n ,1�� configurations, never seen before, are found to become stable. They are character-
ized by horizontal �vertical� stripes made up of n identical antiferromagnetic rows �columns� alternated with n
antiferromagnetic rows �columns� of spins reversed. The accumulation point of this sequence �n→�� corre-
sponds to the striped phase with h=1 �columnar phase�.
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I. INTRODUCTION

The square Ising model with ferromagnetic nearest neigh-
bor �NN� exchange interaction �J� and dipole �g� interaction
has been extensively investigated1–5 because of its theoretical
interest in studying the effect of long range interactions in
the critical region and in view of its possible application in
describing the qualitative features of the spin configurations
observed in ultrathin films of magnetic atoms on metal sub-
strates.

Assuming that the spins are aligned perpendicularly to the
plane, at increasing J /g, the zero temperature configuration
changes from a Néel �N� configuration for J=0 to a ferro-
magnetic �F� configuration for g=0 passing through a se-
quence of �h� “striped phases” characterized by alternate
stripes made up of h rows �columns� of spins up and down.
The width of the stripes increases with J /g from h=1 �co-
lumnar phase� to h→� �F phase�.

Here, we find that between the N configuration and the
columnar phase �1�, an infinite sequence of configurations
�1,n� ��n ,1�� with n=1,2 , . . ., � occurs. These configura-
tions, never seen before, are characterized by horizontal �ver-
tical� stripes made up of n identical antiferromagnetic rows
�columns� followed by n antiferromagnetic rows �columns�
of overturned spins.

At finite temperature, the model was extensively investi-
gated by Monte Carlo �MC� simulation, and some general
aspects have been well understood. For values of J /g far
from the boundary between striped phases �h� and �h+1�, a
direct transition from the low temperature ordered phase to
the high temperature paramagnetic phase was found.3,4,6 On
the contrary, in the neighborhood of the boundary between
�h� and �h+1�, an intermediate “modulated” phase may enter
between the �h� and the paramagnetic phase. The modulated
phase is characterized by an order wave vector Q intermedi-
ate between the commensurate wave vector characterizing
the nearby striped phases �h� and �h+1�. We show that the

modulated phase occurs near the boundaries �2�− �3� and
�3�− �4� but not at the boundary �1�− �2�.

In the literature, the striped, modulated, and paramagnetic
phases are sometimes referred as smectic, nematic, and te-
tragonal. Indeed, the existence of “smectic crystal,” “Ising
nematic,” and “tetragonal liquid” phases was conjectured
studying a microscopic ferromagnetic exchange Hamiltonian
with dipole interaction and easy-axis anisotropy describing
ultrathin ferromagnetic films in the continuum limit.7 Even
though the model studied by Abanov et al.7 differs signifi-
cantly from the two-dimensional ferromagnetic Ising model
with dipole interaction, the analogy between the smectic
phase and the striped phase and the tetragonal phase and the
disordered phase just above the transition temperature was
discussed.8 In particular no trace of the nematic phase was
found for J /g=6 �h=4� and J /g=8.9 �h=8�.8 Support to the
scenario where the striped phase goes directly into the tetrag-
onal phase was given by several authors.2,4,8 Later on, Can-
nas et al.5 predicted the existence of a nematic phase be-
tween the striped and tetragonal one for stripes large enough
on the basis of a MC simulation for J /g=4 �h=2�. On the
contrary, a direct transition from the striped to the tetragonal
phase is expected5 for thin stripes as confirmed by MC simu-
lation for J /g=2 �h=1�.

The layout of this paper is the following: In Sec. II, we
obtain the zero temperature energy of the �1,n� phases. In
Sec. III, we present and discuss our MC simulations. In Sec.
IV, we give the phase diagram of the model, and Sec. V is
devoted to the conclusions.

II. ZERO TEMPERATURE ENERGY

The Hamiltonian of the model is

H = − J�
�i,j�

�i� j + g�
i�j

1

rij
3 �i� j , �1�

where the first sum is restricted to distinct pairs of NN spins
and a ferromagnetic interaction J�0 is assumed; in the sec-
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ond sum, i and j run over all the sites of a square lattice L
�L. The spins �i= ±1 are supposed to be aligned out of
plane. The analytic investigation of the zero temperature en-
ergy of Eq. �1� leads to a variety of configurations.

Assuming a double periodic spin configuration with pe-
riod 2h1 along the x axis and 2h2 along the y axis, the zero
temperature energy is

E�h1,h2�

gL2 = − 2
J

g
�1 −

1

h1
−

1

h2
�

+ �
s1=0

h1−1

�
s2=0

h2−1 Dzz�2�

h1
�s1 + 1

2�,
2�

h2
�s2 + 1

2�	
h1

2h2
2 sin2� �

h1
�s1 + 1

2�	sin2� �

h2
�s2 + 1

2�	 ,

�2�

where

Dzz�Q� = �
r�0

eiQ·r

r3 , �3�

with Q= � 2�
L Qx , 2�

L Qy� with Qx ,Qy =0,1 ,2 , . . . ,L−1 and r
= lux+muy �l, m are integers�. The details of the calculation
are given in Appendix A. We find that the �h1 ,h2� “checker-
board” configurations with both h1 and h2�1 are never
stable with respect to the �1,n� or �n ,1� phases with n arbi-
trary or with respect to the striped phases �h� obtained for
h1→� and h2=h or h1=h and h2→�. The zero temperature
energy of the striped �h� phase is

E�h�

gL2 = − 2
J

g
�1 −

1

h
� +

1

h2 �
s=0

h−1 Dzz�2�

h
�s + 1

2�,0	
sin2��

h
�s + 1

2�	 . �4�

In Table I, we give the region of stability for several �1,n�
phases. The zero temperature Néel configuration �1,1� is
stable for J /g�0.830 406. For 0.830 406�J /g�0.880 62,
an infinite sequence of phases �1,n�, with n=2,3 , . . ., ap-

pears. These phases are characterized by stripes of n identical
antiferromagnetic rows followed by as many antiferromag-
netic rows of overturned spins. For n=1, the checkerboard
phase reduces to the N configuration �1,1�; for n=�, the
checkerboard phase reduces to the striped configuration �1�
corresponding to a “columnar phase” in which ferromagnetic
columns of spins up and down alternate. The width of the
stripes made up with antiferromagnetic rows becomes larger
as J /g increases from 0.83 to 0.88. For n→�, the zero tem-
perature energy becomes

E�1,n��n → ��

gL2 =
2

n

J

g
− 0.935 462 154 6

−
1.761 248 944

n
+ O� 1

n2� , �5�

as shown in Appendix A. Note that for J /g
=0.880 862 447 2, the energy of the �1,n� phase is indepen-
dent of n neglecting terms of order 1 /n2. This accumulation
point is similar to the multiphase point �T=0, J2 /J1=−1/2�
found in the anisotropic next nearest neighbor Ising
�ANNNI� model9 in two and three dimensions, where the
competition between the nearest neighbor �NN� interaction
J1 and the next nearest neighbor interaction J2 is restricted to
one direction �i.e., the x axis� of a square or a simple cubic
lattice.

In Fig. 1, we show the configurations �1,2�, �1,3�, and
�1,4� for a square lattice of side L=48. The white and black
squares correspond to spins of opposite orientations. The cor-
responding structure factor

S�Q� =

�Q
2

L2 , �Q =
1

L
�

i

�ie
iQ·ri �6�

is shown on the right of each configuration. As one can see,
the �1,n� phase is an “irregular” checkerboard, where the
squares are replaced by rectangles that are large one lattice
unit and high n lattice units. A checkerboard configuration
was proposed as possible zero temperature configuration for
the present model by Czech and Villain10 in the limit of large

TABLE I. Coefficients a and b of the zero temperature energy E�1,n� / �gL2�=a�J /g�+b for several �1,n�
phases.

n a b Region of stability

1 2 −2.6458865323 �0, 0.83040611�
2 1 −1.8154804206 �0.83040611, 0.87883981�
3 2/3 −1.5225338186 �0.87883981, 0.88055814�
4 1/2 −1.3757741285 �0.88055814, 0.88062192�
5 2/5 −1.2877119365 �0.88062192, 0.88062437�
6 1/3 −1.2290036451 �0.88062437, 0.88062447�
7 2/7 −1.1870691466 �0.880624468, 0.880624472�
8 1/4 −1.1556182726 �0.8806244718, 0.8806244720�
9 2/9 −1.1311564817 �0.88062447197, 0.88062447198�
10 1/5 −1.1115870490 �0.8806244719811, 0.8806244719814�
n→� 2/n −0.93546215−1.7612489/n J /g�0.88062447198136
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J /g. They arrived at the conclusion that for �m ,n� configu-
rations with m ,n→�, the zero temperature energy was char-
acterized by m=n that is a “regular” checkerboard configu-
ration. On the other hand, striped configurations are believed
to be lower in energy with respect to the checkerboard ones.6

Anyway, for J /g not too large �small n, m�, the previous
analysis does not apply and a direct comparison of the ener-
gies of the different spin configurations is in order. Indeed,
we find that irregular checkerboard phases �1,n� have an
energy lower than the striped phases in a narrow region of
J /g located between the N and �1� phase. Any other check-
erboard configuration �m ,n� with m�1 is never stable for
any J /g.

For J /g increasing from 0.880 62, a sequence of striped
configurations �h�, with h=1,2 , . . ., occurs until the ferro-
magnetic phase F corresponding to h→� is reached. In
Table II, we give the region of stability of the �h� striped
phases.

As shown in Appendix A for large h, the energy of the
striped configuration �h� is given by

E�h��h → ��

gL2 = − 2
J

g
�1 −

1

h
� + 9.033 622 −

8

h
ln h

−
9.143 326

h
+ O� 1

h2� , �7�

so that the transition between the F phase and the largest
striped phase �L /2� occurs at J /g=1.799 074+ln L4.

III. MONTE CARLO SIMULATION

We perform MC simulations on a square lattice of side
L=48 with periodic boundary conditions. The choice of a
size 48�48 is suggested by the fact that such a lattice sup-
ports stripes of width h=1,2 ,3 ,4 ,6 ,8 ,12,24.

In Table III, we give the zero temperature energies and the
stability regions of the �1,n� and �h� configurations consis-
tent with the lattice of side L=48. Comparing Table III with
Tables I and II, one can see the limitations entered by a finite
lattice with periodic boundary conditions. The main effect of
the finite lattice size is to dramatically reduce the number of
checkerboard or striped phases permitted. Indeed, for phases
with n�4 or h�4, no difference is noted between the zero
temperature energy sequence and the stability regions of the
“infinite” lattice and of the lattice with L=48. For higher n or
h, the “finite” lattice prevents the occurrence of phases with
L / �2n� or L / �2h� not equal to an integer number so that, for
instance, striped phases such as �4� and �6� or �6� and �8�
become adjoining. We have found that stripelike nonperiodic
configurations reminiscent of the striped phases prevented by
the finite size of the lattice may appear. Indeed, if we write
the more general zero temperature energy of a stripelike con-
figuration for a square lattice of side L,

E = �
Qx=0

L−1 �− J�1 + cos
2�

L
Qx�

+ gDzz�2�

L
Qx,0�	S�2�

L
Qx,0� , �8�

where S� 2�
L Qx ,0� is the finite Fourier transform defined in

Eq. �6�, we are able to give the energy for an arbitrary stripe-
like configuration. For L=48, we recover all the energies
shown in Table III assuming a regular striped configuration.
In addition, we have found that a configuration consisting of
two stripes of width h=4 followed by eight stripes of width
h=5 ��4258�� becomes stable in the range 6.63�J /g�7.23.
Let us call this phase ��5�. An analogous ��7� phase might
be expected between the striped phases �6� and �8�, but any
attempt to find such a phase was unsuccessful. Indeed,
phases such as �5474�, �536372�, and �10274� have a zero
temperature energy higher than, even though very close, to
the regular striped phases �6� or �8�. The lattice size L=48
is too small to allow a stripelike configuration of that
type. We performed the same investigation on a lattice with
L=32 for which the only possible �regular� striped phases are
characterized by h=1,2 ,4 ,8 ,16. We found that a phase
�395�= ��3� occurs between the striped phases �2� and �4�
for 4.56�J /g�5.41. Analogously, a phase �5462� appears
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FIG. 1. �Color online� Zero temperature configuration of the
phases �1,2� �upper panel�, �1,3� �middle panel�, and �1,4� �lower
panel� with the corresponding structure factors S�Q�.
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for 6.77�J /g�7.99 between the striped phases �4� and �8�.
For this reason, we restrict our investigation to the check-

erboard phases with n�3 or striped phases with h�4. Note
that for phases �1,n� with n�8, the region of stability is so
small that it cannot be shown within the numerical precision
of the table. For a lattice of side L=48, the striped configu-
ration with the widest stripe corresponds to �24�, so that the
phase boundary between the largest striped and the F phase
becomes J /g=17.27. We have also performed extensive MC
simulations in the F region for 20�J /g�100.

A. Method and observables

We perform at least eight independent MC runs starting
from the low temperature configuration. In each run, we in-
crease the temperature of 0.01 �in units of g /kB� taking the
last configuration of the previous temperature as the initial
configuration of the next one and disregarding 104 Monte
Carlo steps �MCSs� for equilibration. For each temperature,
we select 104 configurations over 105 MCSs and we evaluate
the specific heat

C =
�H2� − �H�2

L2kBT2 , �9�

the internal energy per spin in units of dipolar interaction

E =
�H�
L2g

, �10�

and the order parameter8

Ohv = �nh − nv

nh + nv
� , �11�

where nh �nv� is the number of horizontal �vertical� pairs of
NN antiparallel spins. Note that this parameter is zero in the
N phase where it is replaced by the conventional staggered
magnetization.4 Then, we evaluate the average �S�Q��, where
S�Q� is the structure the factor given by Eq. �6�. We have
checked that any step observed in the order parameter Ohv vs
temperature corresponds to a shift of the main peak of the
structure factor �S�Q�� that is to a change of the order wave
vector characterizing the spin configuration. The order pa-
rameter Ohv, originally introduced8 to describe the long
range order of a stripe configuration, may be convenient to
point out a possible transition to a modulated phase and fi-
nally to a disordered phase. To determine the nature of the
transition, a crucial role is played by the energy density dis-
tribution P�E�: The occurrence of a two-peak structure in
P�E� at some temperature is a strong indication of a first

TABLE II. Coefficients a and b of the zero temperature energy E�h� / �gL2�=a�J /g�+b for striped con-
figurations of width h.

h a b Region of stability

1 0 −0.9354621546 �0.880625,2.517077�
2 −1 1.5816148819 �2.517077,4.344909�
3 −4/3 3.0299178788 �4.344909,5.628990�
4 −3/2 3.9680829288 �5.628990,6.608484�
5 −8/5 4.6893131395 �6.608484,7.398049�
6 −5/3 5.1221346075 �7.398049,8.058698�
7 −12/7 5.5058821312 �8.058698,8.626345�
8 −7/4 5.8139658640 �8.626345,9.123814�
9 −16/9 6.0674051477 �9.123814,9.566483�
10 −9/5 6.2799936626 �9.566483,9.965190�
11 −20/11 6.4611789296 �9.965190,10.327855�
12 −11/6 6.6176615768 �10.327855,10.660440�
13 −24/13 6.7543338863 �10.660440,10.967544�
14 −13/7 6.8748563518 �10.967544,11.252788�
15 −28/15 6.9820257605 �11.252788,11.519072�
16 −15/8 7.0780180265 �11.519072,11.768757�
17 −32/17 7.1645530020 �11.768757,12.003788�
18 −17/9 7.2430091326 �12.003788,12.225789�
19 −36/19 7.3145049739 �12.225789,12.436127�
20 −19/10 7.3799582736 �12.436127,12.635966�
21 −40/21 7.4401295385 �12.635966,12.826302�
22 −21/11 7.4956546573 �12.826302,13.007999�
23 −44/23 7.5470696747 �13.007999,13.181806�
24 −23/12 7.5948298428 �13.181806,13.348380�
h→� −2�1−1/h� 9.033622− �8/h�ln h−9.143326/h J /g�1.799074+ln L4
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order transition at that temperature.11 As for the order param-
eter density distribution3 P�Ohv�, it is more convenient to
neglect the absolute value in Eq. �11� since the tetragonal
phase,1 characterized by a free rotation of the stripes from
horizontal to vertical or vice versa, implies a change of sign
of the order parameter Ohv so that if the absolute value is
omitted, a two-peak structure in P�Ohv� is expected when the
tetragonal phase occurs.

The phase transitions between the striped phase and the
modulated phase and between the modulated and tetragonal
phases are both first order5 for J /g=4 �h=2�. Cannas et al.5

arrived at this conclusion after having performed very long
single run MC simulations: Runs of 2�107–2�108 MCSs
disregarding 106–107 configurations for equilibration start-
ing from a random configuration were performed on a square
lattice of side L=56. Note that each MCS �L2 spin-flip trials�
takes about 0.02–0.03 s for lattices of size 48�48–56
�56, since the long range nature of the dipole interaction
between the spins implies that the computer time is propor-
tional to L4 instead of L2 for a system with short range in-
teractions.

On the contrary, we have performed independent series of
much shorter MC runs �eight or more independent MC runs
of 105 MCSs� increasing temperature from zero. Starting
from low temperature, we take advantage of the knowledge
of the exact zero temperature configuration of the system so
that the equilibrium configuration is reached soon. Moreover,
increasing temperature by 0.01 at each step, we keep the
system near the equilibrium configuration and the effective
number of MCSs at the transition temperature is large
enough to expect that the final configuration is similar to that
obtained using a much longer MC time series starting from a
random configuration.

The “short” runs used in our MC simulations allow us to
investigate a wide spectrum of values of J /g so that a real-

istic phase diagram of the model can be drawn. The reliabil-
ity of our method was checked comparing our results with
those of Cannas et al.5 for J /g=4. We find an overall agree-
ment with the data5 obtained performing much longer single
run MC simulations. Indeed, our independent runs are nearly
the same for values of J /g not too close to the phase bound-
aries so that the average over the independent runs leads to
very small error bars in the specific heat and order parameter.
On the contrary, in the proximity of the boundaries between
striped phases of different widths, the error bars become
larger for two reasons: The transition temperature at which
the specific heat shows a very narrow peak, typical of a first
order phase transition, changes slightly from one run to an-
other; for instance, the error affecting the transition tempera-
ture is less than 0.01 around the boundary �1�− �2�, and it
becomes 0.05 at the �2�− �3� boundary and 0.1 at the �3�
− �4� boundary. The uncertainty on the transition tempera-
ture, even though small, implies that the average over inde-
pendent runs broadens the peak of the specific heat reducing
its height. The second source of error concerns the height of
the peak which differs from one run to another. Indeed, we
have checked that the peak height is crucially dependent on
the amount of the coexisting phases at the transition tempera-
ture leading to a wide spectrum of values of the specific heat
maximum. Analogous considerations can be done for the
steps in the order parameter. To reduce the uncertainty on the
transition temperature and the error bar on the height of the
specific heat peak, one could reduce the temperature step
between one simulation and the next one and �or� take longer
simulations. However, since we are interested in the phase
diagram and in the nature of the transition, the precise loca-
tion of the transition temperature and the careful determina-
tion of the height of the specific heat maximum are beyond
the aim of the present work.

A nugget of information we receive from the “single run”
inspection is that each run shows a very narrow peak in the
specific heat even though its location and height fluctuate
from one run to another. For this reason, we investigate the
phase transition by looking at the density distribution of the
energy P�E� and of the order parameter P�Ohv� together with
the structure factor �S�Q�� obtained from the time series of a
single run MC simulation. Notice that a two-peak structure
of the energy density distribution, as well as a three-peak
structure of the order parameter density distribution, gives a
strong indication of a first order phase transition.3,5,11

As for the specific heat and the order parameter vs tem-
perature, we have performed an average over at least eight
independent runs to get reliable equilibrium results. Then, we
choose the time series of the run for which the location and
height of the specific heat peak are closer to the average in
order to study the behavior of the density distributions P�E�,
P�Ohv�, and the structure factor �S�Q��.

B. Néel and Š1,n‹ phases

For the Néel antiferromagnetic �N� phase �0�J /g
�0.8304�, we see that the specific heat vs temperature
shows a peak typical of a continuous phase transition located
at temperatures that decrease when J /g increases. For in-

TABLE III. Coefficients a and b of the zero temperature ener-
gies for �1,n� and �h� configurations compatible with a square lat-
tice of side L=48.

h a b Region of stability

�1,1�=N 2 −2.6458865323 �0, 0.830406�
�1,2� 1 −1.8154804206 �0.830406, 0.878840�
�1,3� 2/3 −1.5225338186 �0.878840, 0.880558�
�1,4� 1/2 −1.3757741285 �0.880558, 0.880622�
�1,6� 1/3 −1.2290036451 �0.880622, 0.880624�
�1,8� 1/4 −1.1556182726 J /g=0.880624

�1,��= �1� 0 −0.9354621546 �0.880624, 2.517077�
�2� −1 1.5816148819 �2.517077, 4.344909�
�3� −4/3 3.0299178788 �4.344909, 5.628990�
�4� −3/2 3.9680829288 �5.628990, 6.924310�
�6� −5/3 5.1221346075 �6.924310, 8.301975�
�8� −7/4 5.8139658640 �8.301975, 9.644349�
�12� −11/6 6.6176615768 �9.644349, 11.726019�
�24� −23/12 7.5948298428 �11.726019, 17.265502�
���=F −2 9.0336216831 J /g�17.265502
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stance, we find kBT /g=2.38,1.19,0.67,0.36 for J /g
=0,0.5,0.7,0.8. The shape of the specific heat changes ap-
proaching the transition between the N and �1,2� phase. This
unconventional behavior is shown in Figs. 2�a� and 2�b�
where the specific heat and the order parameter Mst �stag-
gered magnetization� vs temperature are given for J /g
=0.83. An abrupt increase of the specific heat, as well as a
sudden drop of the sublattice magnetization at kBT /g�0.25,
is clearly seen. In Figs. 2�c� and 2�d�, we show the energy
and order parameter density distribution for a single run that
shows a peak height of 0.67 in the specific heat at kBT /g
=0.27. A two-peak structure in both the energy and sublattice
magnetization density distribution is seen at kBT /g=0.27.
Notice that for kBT /g�0.23, the 	-like peak of P�E� is lo-
cated at E=−0.986, undistinguishable from the value E=
−0.985 89 deduced from the analytic result of Table I at T
=0. For kBT /g�0.23, the 	-like peak of P�Mst� is located at
Mst�1. In the same range of temperature, the structure fac-
tor shows a 	-like peak of intensity �1 located at the anti-
ferromagnetic wave vector Q= �� ,��. At kBT /g=0.24, the
height of the peak reduces to 0.65 even though its location
does not change. For 0.25�kBT /g�0.27, a ridgelike struc-
ture appears whose maximum, located at Q= �� ,��, is
�0.09. Such a structure is similar to that shown in the
middle panel of Fig. 3. For kBT /g�0.27, a crosslike struc-
ture of �S�Q�� centered about Q= �� ,�� appears with inten-
sity further reduced to less than 0.01. In Fig. 3, we show
three snapshots that illustrate the more significant configura-
tions observed at kBT /g=0.27. On the right of each snapshot,

the corresponding structure factor S�Q� is reported. The up-
per and lower panels represent configurations corresponding
to the peak on the left of the energy and order parameter
density distributions �black full circles� of Figs. 2�c� and
2�d�. As one can see, any combination of the N phase ��1,1��
and �1,2� occurs. The middle panel of Fig. 3 represents a
configuration typical of the peak on the right of both P�E�
and P�Mst�. The low intensity and the ridgelike shape of the
structure factor �that becomes a crosslike shape similar to
that shown in the middle panel of Fig. 5 for kBT /g
0.30�
point out the kind of short range order present in the disor-
dered phase.

In Fig. 4, we show the same quantities as in Fig. 2 for
J /g=0.86 ��1,2� phase� except that the staggered magnetiza-
tion Mst is replaced by the order parameter Ohv given by Eq.
�11�. In Figs. 4�a� and 4�b�, we show the average over eight
runs of the specific heat and the order parameter Ohv vs
temperature. As one can see, the value of the order parameter
at T=0 for the �1,2� phase is 1 /3. It is easy to see that the
order parameter at T=0 for the phases �1,n� is Ohv= �n
−1� / �n+1� going to 1 only at the accumulation point where
the �1,n� phases meet the striped phase �1�. The energy and
order parameter density distribution shown in Figs. 4�c� and
4�d� are obtained from the time series of the single run with
a specific heat peak height of 5.07 located at kBT /g=0.34.
For kBT /g=0.33, the 	-like peaks in P�E� at E=−0.949 and
in P�Ohv� at Ohv=0.327 correspond to the ordered �1,2�
phase �E=−0.955 48 and Ohv=1/3 at T=0�. The structure
factor shows two 	-like peaks of height of �0.5 located at

(a)

(b)

(c)

(d)

FIG. 2. �Color online� �a� Specific heat and �b� sublattice magnetization vs temperature for J /g=0.83 �Néel phase�; �c� energy density
distribution P�E� and �d� order parameter density distribution P�Mst� for selected temperatures.
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Q= �� , ±� /2� for 0�kBT /g�0.30. For 0.30�kBT /g
�0.33, the peaks broaden and consequently reduce their in-
tensity to 0.2–0.3. Finally, at kBT /g=0.34, the �1,2� and �2,1�
phases may be seen simultaneously, and the intensity of the
peaks is reduced to less than 0.1. At kBT /g=0.34, the energy
and order parameter density distribution assume a broaden
shape ��red� squares of Figs. 4�c� and 4�d�� even though a
two-peak structure in P�E� or a three-peak structure in
P�Ohv�, typical of a first order phase transition, is hardly
singled out. Typical configurations corresponding to kBT /g
=0.34 are shown in Fig. 5.

A support of the existence of a first order transition be-
tween the �1,2� phase and the tetragonal one can be caught
by looking at the discontinuous shift in the location of the
peaks of P�E� and P�Ohv� moving from kBT /g=0.33 to
kBT /g=0.35. The peaks at kBT /g=0.35 correspond to the
disordered phase as confirmed by the weak intensity �less
than 0.01� and by the crosslike shape of the structure factor
�see, for instance, the middle panel of Fig. 5�.

In Fig. 6, we show the same quantities as in Fig. 4 for
J /g=0.88. At T=0, the stable phase is the �1,3� configuration

shown in the lower panel of Fig. 1 with energy E=
−0.935 87 and order parameter Ohv=1/2. In Figs. 6�a� and
6�b�, we show the average over eight runs of the specific heat
and order parameter vs temperature. In Figs. 6�c� and 6�d�,
we show the density distributions P�E� and P�Ohv� for the
run whose specific heat peak is 3.60 high and located at
kBT /g=0.36. These distributions look very similar to those
of Fig. 4 even though the three-peak structure of P�Ohv� for
kBT /g=0.36 is better singled out �see �red� squares in Fig.
6�d��. In Fig. 7, we give three snapshots with the correspond-
ing structure factors for J /g=0.88 and kBT /g=0.36. In this
case the configurations of the upper and lower panels are not
easily amenable to the �1,3� and �3,1� phases. This is ex-
plained by the presence of the accumulation point J /g
=0.8806 very close to the value at which we performed the
MC simulation. Indeed, for J /g�0.88, any �1,n� phase with
n�2 has virtually the same energy as shown in Table I. Most
of the phases have an order parameter 0.5�Ohv�0.7, so that
the bump in the order parameter observed in Fig. 6�b� before
the sudden decrease at the transition can be explained. The
structure factor shows three 	 peaks at Q= �±� /3 ,�� �main
peaks of intensity of 0.44� and Q= �� ,�� with intensity 0.11
for 0�kBT /g�0.20. For 0.26�kBT /g�0.36, the peaks be-
come a ridge of intensity less than 0.1, and for kBT /g
�0.36, the ridge becomes a cross of intensity �0.01.

C. Striped phases

We have performed many MC simulations for several J /g
to draw a realistic phase diagram. The specific heat in the
region of stability of the striped phase �1� �0.8804�J /g
�2.5171� shows a maximum at kBT /g=0.51,0.58,0.80,
0.83,0.80,0.53, for J /g=0.95,1 ,1.4,1.7,2 ,2.5, respectively.
The peak is very sharp �high about 10� near the boundary
with the �1,n� phase and with the �2� striped phase. The peak
is less pronounced �high about 2� and wider in the inner
region. On the other hand, the error is less than 1% in the
inner region and about 10% near the boundaries. As for the
region of stability for the striped phase �2� �2.5171�J /g
�4.3449�, we find that the peak of the specific heat occurs at
kBT /g=0.66,1.15,1.45,1.57,1.58,1.48, for J /g
=2.6,3 ,3.4,3.7,4 ,4.3, respectively. The peak is very sharp
�high about 15� for 2.6�J /g�4 and less pronounced for
J /g=4 �3.7� and J /g=4.3 �0.5�. At the transition, the error
bars are between 2% and 30% �smaller errors are found for
values of J /g far from boundaries�. Moreover, for J /g=4
and 4.3, another peak at temperatures kBT /g=1.63 and 1.68
�with an error within 1%� is recorded. In the region of sta-
bility of the striped phase �3� �4.3449�J /g�5.6290�, the
first peak of the specific heat occurs at kBT /g
=1.51,1.93,2.12,2.16,2.14 for J /g=4.4,4.7,5 ,5.3,5.6, re-
spectively. A second peak at kBT /g=1.75,2.31,2.42 is seen
only for J /g=4.4,5.3,5.6 that is in the neighborhood of the
boundaries between the striped phases �2�− �3� and �3�− �4�.
For this reason, we focus on values of J /g very near to the
boundary of the stability region between the striped phases
�h� and �h+1�.

In Figs. 8 and 9, we give the specific heat, the order
parameter, and the density distributions for J /g=2.5 �h=1�
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FIG. 3. �Color online� Snapshots and corresponding structure
factors for J /g=0.83 and kBT /g=0.27: Mst=−0.107, E=−0.980
�upper panel�; Mst=0.303, E=−0.969 �middle panel�; Mst=−0.120,
E=−0.983 �lower panel�.
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and 2.6 �h=2�, respectively. For J /g=2.5, only one narrow
peak in the specific heat at kBT /g=0.53 is found as shown in
Fig. 8�a�. Also, the order parameter �Fig. 8�b�� shows a
single step from the low temperature striped configuration
�Ohv�1� to the high temperature paramagnetic phase �Ohv
�0� at kBT /g=0.53. This sudden drop of the order param-
eter suggests the occurrence of a first order transition. This
conjecture is supported by the inspection of the single run
time series. Selecting the single run with a peak in the spe-
cific heat of height of 17 located at kBT /g=0.53, a discon-
tinuous change in the location of the peak in the energy
density distribution �Fig. 8�c�� is seen going from kBT /g
=0.52 ��black� full circles� to kBT /g=0.54 ��blue� dia-
monds�. At kBT /g=0.53 ��red� squares�, a two-peak structure
is hard to be identified even though a broad energy distribu-
tion between E�−0.93 and E�−0.78 is clearly seen. Notice
the smooth displacement of the peak toward higher energy
from kBT /g=0.54 onward together with a narrowing of the
peak itself. A similar behavior is observed in the order pa-
rameter density distribution P�Ohv� �Fig. 8�d��: a discontinu-
ous shift of the peak from Ohv=−1 to Ohv=0 is recorded
passing from kBT /g=0.52 to kBT /g=0.60. We took many
snapshots of the spin configurations during the time series at
kBT /g=0.53, as well as for lower and higher temperatures. In
Figs. 8�e� and 8�f�, we show two snapshots taken at kBT /g
=0.53: the former shows a striped configuration with E=
−0.930, Ohv=−0.993 and it is the prototype of the low tem-
perature phase, and the latter shows a configuration with E
=−0.780, Ohv=0.022 typical of the high temperature tetrag-

onal phase. The structure factors on the right show a 	-like
peak for Q= �0,�� corresponding to the striped phase �1� and
a crown-shaped profile corresponding to the disordered
phase. These two snapshots point out the coexistence of the
striped phase �1� with the tetragonal one at kBT /g=0.53.

The scenario found for J /g=2.5 is enforced by the MC
simulation performed at J /g=2.6, where the low temperature
ordered configuration is the striped phase �2�. As one can see
in Fig. 9, the onset of a first order phase transition between
the striped and tetragonal phases is confirmed. Indeed, the
two-peak structure in both P�E� and P�Ohv� is well estab-
lished at kBT /g=0.66. The single run selected to give P�E�
and P�Ohv� shown in Fig. 9 has a specific heat peak height of
37.6 at kBT /g=0.66. However, we have also evaluated P�E�
and P�Ohv� for other two single run time series: one having a
peak height of 2.30 located at kBT /g=0.67 and the other with
the peak height of 15.5 located at kBT /g=0.66. The scenario
is the same as those illustrated in Figs. 9�c� and 9�d�: A
discontinuous shift in the location of the peak is seen at the
transition. The main difference is that for the run with the
highest specific heat peak, the two-peak structure of P�E� is
more pronounced since the two peaks have comparable in-
tensity. Note that the specific heat peak is twice higher than
that occurring at J /g=2.5, pointing out a stronger first order
character of the transition. The snapshots taken at kBT /g
=0.66 show the coexistence of the striped configuration �2�
and the tetragonal phase which looks like very similar to that
found from the simulation with J /g=2.5 as one can see from
comparing Figs. 8�f� and 9�f�.

(a)

(b)

(c)

(d)

FIG. 4. �Color online� �a� Specific heat and �b� order parameter vs temperature for J /g=0.86 ��1,2� phase�; �c� energy density distribution
P�E� and �d� order parameter density distribution P�Ohv� for selected temperatures.
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The MC simulations around the boundary between the
phases �2� and �3� lead to a different scenario. In Figs. 10 and
11, we show the specific heat, the order parameter, the en-
ergy, and order parameter density distribution together with
two snapshots taken at the transition temperature for J /g
=4.3 �h=2� and J /g=4.4 �h=3�, respectively. For J /g=4.3,
the specific heat shows three peaks: the first at kBT /g
�1.42, the second at kBT /g�1.48, and the third at kBT /g
�1.67, as shown in Fig. 10�a�. In correspondence to these
temperatures, the order parameter shows three downward
steps as shown in Fig. 10�b�. The first two peaks of the
specific heat, as well as the first two steps of the order pa-
rameter, are much more clean in each single run than in the
average shown in Figs. 10�a� and 10�b� since they occur at
slightly different temperatures going from one run to another.
On the contrary, the third peak in the specific heat and the
final fall of the order parameter are not changed passing from
the single runs to the average.

A careful investigation of the structure factor �S�Q��
points out that the first peak in the specific heat and the first
step in the order parameter correspond to a change of the

order wave vector from Q= �0, ±� /2� characterizing the
“commensurate” �C� phase �2� to an “incommensurate” �I�
phase with Q= �0, ±11� /24�. The second peak in the spe-
cific heat and the second step in the order parameter corre-
spond to another change of the order wave vector from the
value characterizing phase I to Q= �0, ±10� /24� character-
izing a new incommensurate phase �I��. The peak intensity
undergoes a discontinuous change from �0.5 �C phase� to
�0.3 �I phase�. No intensity change is observed at the tran-
sition between the two incommensurate phases I and I�,
while a sudden intensity drop to �0.1 is seen at the transition
between the incommensurate I� phase and the tetragonal
phase where the structure factor shows a four-peak pattern in
which the peaks are located at Q= �0, ±10� /24� and Q
= �±10� /24,0�. We call the incommensurate I and I� phases
modulated phases.

The energy and order parameter density distributions
show a single 	-like peak for kBT /g�1.42 corresponding to
the ordered striped configuration �2�, a two-peak structure at
kBT /g=1.42 corresponding to the coexistence of the striped
C and the modulated I phase, and a single-peak structure for
1.42�kBT /g�1.48 corresponding to the I phase. At kBT /g
=1.48, the two-peak structure points out the coexistence of
the I and I� phases. At kBT /g=1.49, the single-peak structure
corresponds to the I� phase. The modulated-tetragonal tran-
sition is characterized by a broadening of the peak in P�E�
and by a two-peak structure in P�Ohv� near kBT /g�1.66.
Looking at the snapshots shown in Figs. 10�e� and 10�f� one
can see that the modulated I phase can be thought as a com-
bination of the phases �2� and �3�, where the phase �2� is
predominant. The modulated I� phase is an analogous com-
bination in which, however, the phase �3� is predominant and
the presence of straits cutting the stripes is also noticed.

A similar scenario is obtained for J /g=4.4 �h=3�, as
shown in Fig. 11. A peak in the specific heat and a small step
in the order parameter are found at kBT /g�1.52. A broad
peak in the specific heat and a drop of the order parameter
are recorded around kBT /g�1.75. This scenario is common
to each single run. At kBT /g�1.52, the structure factor
shows a change from the commensurate C phase �with two
main peaks at Q= �0, ±� /3� and a secondary peak at �0,��
corresponding to the phase �3�� to an incommensurate I
phase with peaks at Q= �0, ±9� /24� corresponding to the
modulated phase. No further change of the order wave vector
was recorded.

A two-peak structure in P�E� is seen only at kBT /g
=1.52, while the peak moves in a continuous way at increas-
ing temperature. No clear two-peak structure is observed at
the modulated-tetragonal transition: Only a broadening of the
energy density distribution is found so that the modulated-
tetragonal transition could be continuous or very weak first
order. A two-peak structure is found at kBT /g=1.69 in
P�Ohv� corresponding to a free rotation of the stripes as it is
expected in the tetragonal phase. From the snapshots, one
can see the change from the striped phase �3�, stable at low
temperature to the modulated phase stable at higher tempera-
ture. This phase is still a mixing of striped configurations �2�
and �3�. The transition to the tetragonal phase characterized
by the appearance of a four-peak structure in �S�Q�� has been
clearly seen at kBT /g=1.72.
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FIG. 5. �Color online� Snapshots and corresponding structure
factors for J /g=0.86 and kBT /g=0.34: Ohv=0.301, E=−0.940 �up-
per panel�; Ohv=0, E=−0.886 �middle panel�; Ohv=−0.303, E=
−0.931 �lower panel�.
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MC simulations around the boundary between the phases
�3� and �4� have also been performed. The results for J /g
=5.6 and 5.7 are shown in Figs. 12 and 13. For J /g=5.6, a
weak peak at kBT /g�2.1 and a broad one at kBT /g�2.42 in
the specific heat are observed. The former is very sharp in
each single run and occurs at temperature between 2.08 and
2.17 with a height varying between 0.54 and 0.89. The latter
is more or less the same for each run. The same occurs for
the order parameter: Each single run shows a step that be-
comes less sharp when the average is performed. The struc-
ture factor changes from the C phase with the main peaks at
Q= �0, ±� /3� to an incommensurate I phase with peaks at
Q= �0, ±7� /24� in correspondence to the first peak of the
specific heat and to the first step of the order parameter. In
correspondence to the second peak of the specific heat, the
structure factor assume a four-peak structure as a conse-
quence of the free rotation of the stripes in the tetragonal
phase.

The coexistence of the striped and modulated phases at
kBT /g=2.10 is confirmed by the double-peak structure of
both the energy and order parameter density distribution �full
�black� circles in Figs. 12�c� and 12�d��. A single-peak struc-
ture in P�E� is seen for kBT /g�2.10 corresponding to the
striped phase �3�. The same occurs for 2.11�kBT /g�2.44,
where the peak moves toward higher energy. A two-peak
structure at kBT /g=2.44 points out the coexistence between
the modulated and the tetragonal phase. A single peak for
kBT /g�2.44 corresponds to the disordered phase. The onset

of the tetragonal phase is confirmed by the shape of the order
parameter density distribution where two peaks are observed
at kBT /g=2.40 ��blue� diamonds of Fig. 12�d��, indicating a
free rotation of the stripes. The snapshots at kBT /g=2.10
show that the modulated phase consists of a mixing of
striped phases �3� and �4�.

MC simulations for J /g=5.7 support the scenario ob-
tained for J /g=5.6 even though a jump in the specific heat
replaces the peak observed for J /g=5.6 and the order param-
eter shows a small step upward instead of downward at the
transition. The modulated phase is due to the coexistence of
striped phases �3� and �4�, as one can see in the snapshots at
kBT /g=2.26. The structure factor shows two main peaks at
Q= �0, ±� /4� characteristic of the striped phase �4� for
kBT /g�2.26 and at Q= �0, ±7� /24� for 2.26�kBT /g
�2.38 �modulated phase�. A four-peak structure occurs for
kBT /g�2.38. The configuration of the modulated phase is
similar to that found for J /g=5.6, so that it is not surprising
that the plateau of Ohv is 0.8 high even for J /g=5.7. The
phase coexistence cannot be detected in P�E� and P�Ohv�
because of the too small differences in energy �E�0.009
and in order parameter �Ohv�0.015 involved.

We have performed MC simulations also for J /g
=6,6.9,7 ,7.5,8.3,8.4. The occurrence of a modulated phase
is expected also near the phase boundary of larger striped
phases, but the “quantization” of the order wave vector in a
finite lattice makes it very difficult to single out such a phase.
For instance, for J /g=6.9 and 7, we find that the structure

(a)

(b)

(c)

(d)

FIG. 6. �Color online� �a� Specific heat and �b� order parameter vs temperature for J /g=0.88 ��1,3� phase�; �c� energy density distribution
P�E� and �d� order parameter density distribution P�Ohv� for selected temperatures.
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factor shows peaks at the incommensurate wave vectors Q
= �0, ±5� /24� until kBT /g�3.3, where the tetragonal phase
intervenes. This incommensurate phase meets the nonperi-
odic phase �4258� �discussed at the beginning of Sec. III�
stable at T=0 for 6.63�J /g�7.23. Between the striped
phase �6� �J /g=8.3� characterized by an order wave vector
Q= �0, ±4� /24� and the striped phase �8� �J /g=8.4� charac-
terized by an order wave vector Q= �0, ±3� /24�, peaks of
the structure factor at an incommensurate wave vector
3� /24�Qy �4� /24 do not exist in a 48�48 lattice so that
the modulated phase is undistinguishable from the commen-
surate �6� or �8� phase except for a reduced peak intensity
owing to the mixing of the two stripe phases. Indeed, for
J /g=8.3, we see a change in the location of the structure
factor peak from Q= �0, ±4� /24� to Q= �0, ±3� /24� at
kBT /g�3.70 and we record the appearance of a four-peak
structure �tetragonal phase� at kBT /g�4. The peak intensity
is about �0.35 until this temperature. On the contrary, for
J /g=8.4, we do not see any change in the order wave vector
until kBT /g�4.13 where the four-peak structure appears and
the peak intensity drops from about 0.35 to about 0.2.

D. Ferromagnetic phase

For J /g�17.27, where the stable phase is the ferromag-
netic one, a strange behavior of the specific heat vs tempera-
ture is found. In Fig. 14, where averages over eight indepen-
dent runs are shown, a two-peak structure is clearly seen for
20�J /g�50: The low temperature peak is very narrow
while the high temperature peak is rather broad. For 60
�J /g�100, only one peak is seen. The shape of the first
peak supports the existence of a first order phase transition
between the ferromagnetic and the paramagnetic phase for
20�J /g�50. For J /g�50, the narrow peak merges in the
broad one. It is worthy of mentioning the features of the
snapshots in the disordered phase for J /g=20 and 50. For
J /g=20, the ferromagnetic order is destroyed at kBT /g�21
via the onset of domains very similar to irregular stripes of
large width h�24. Notice that the regular striped phase
stable at low temperature for J /g�17.27 is just the �24�
phase. For temperatures about the second peak of the specific
heat �kBT /g�30�, the domains become similar to islands of
size decreasing with temperature. For J /g=50, the ferromag-
netic order is destroyed at kBT /g�90 by a chaotic onset of
islands of reversed spins similar to the domains seen in an
Ising model with NN exchange interactions. The MC simu-
lations seem to point out a change of the order of the phase
transition around J /g�50.

We have performed a least squares fit of the tran-
sition temperature vs exchange interaction obtaining kBTc
=2.286J− �24.1±0.3�g. From the finite size correction to
the critical temperature kBTc�L� /J=2.269 185+0.818/L and
to the maximum of the specific heat Cmax�L� / �kBL2�
=0.494 538 6 ln L+0.201 359 as given by Ferdinand and
Fisher12 for a square Ising model with NN exchange inter-
action, one has kBTc�48�=2.286J and Cmax�48� / �kB482�
=2.116. For J /g=100, we find that the specific heat maxi-
mum Cmax=2.11 is undistinguishable from the result of
Ferdinand and Fisher.12 Notice that the reliability of our
MC simulations is confirmed by the finite size scaling an-
alysis for a square NN Ising model �g=0�, which gives
kBTc /J=2.269±0.001+ �0.76±0.04� /L and Cmax / �kBL2�
= �0.493±0.008�ln L+ �0.20±0.03� in very good agreement
with the exact result of Ferdinand and Fisher.

The first order nature of the order-disorder transition may
be supported by a self-consistent Hartree-Fock �SCHF� ap-
proximation applied to the continuous version of the Hamil-
tonian model.2 The SCHF approximation was previously in-
troduced for a model with an excitation energy spectrum
showing a rotonlike minimum13 and subsequently applied to
a three-dimensional �3D� Ising model with ferromagnetic
NN coupling and long range Coulomb interaction.14 How-
ever, this approach is not conclusive because, for the present
model, a first order phase transition is found for any value of
the dipole interaction g, including g=0 as shown in Appen-
dix B. For g=0, the model reduces to the square NN Ising
model for which the transition is continuous. The conclusion
could be that the fluctuations accounted for by the SCHF
approximation always drive the transition to first order.

IV. PHASE DIAGRAM

In Fig. 15, we sketch the phase diagram as obtained from
analytic calculations at T=0 and MC simulations on a 48
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FIG. 7. �Color online� Snapshots and corresponding structure
factors for J /g=0.88 and kBT /g=0.36: Ohv=0.403, E=−0.893 �up-
per panel�; Ohv=0.101, E=−0.862 �middle panel�; Ohv=−0.402, E
=−0.895 �lower panel�.
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�48 lattice at finite temperature. A careful investigation was
focused on values of J /g about the phase boundaries be-
tween the striped configurations �1�− �2�, �2�− �3�, and �3�
− �4�. The transition to the disordered phase is shown by the
continuous �black� line in Fig. 15. As one can see the phase

diagram shows a variety of configurations depending on the
ratio J /g. Indeed, for J=0 �pure dipole interaction�, the
ground state corresponds to an antiferromagnetic Néel �N�
configuration. As the ratio J /g increases, the ground state is
characterized by �1,n� configurations in the narrow range
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FIG. 8. �Color online� The same as Figs. 6 and 7 for J /g=2.5 �h=1�; the snapshots are taken at kBT /g=0.53: Ohv=−0.993, E=
−0.930 �upper panel�; Ohv=0.022, E=−0.780 �lower panel�.
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0.8304–0.8806 and by striped configurations �h� with h
=1,2 ,3 ,4 ,6 ,8 ,12,24 �the last two not shown in the phase
diagram� for 0.8806�J /g�17.27. For 6.63�J /g�7.23, a
nonperiodic spin configuration we call ��5� consisting of
two stripes of width 4 and eight stripes of width 5 is found.

It is clear that this result is an artifact of the finite size of the
lattice �L=48�. Indeed in the thermodynamic limit, only
regular periodic stripe configurations are allowed. Finally,
for J /g�17.27, the ferromagnetic configuration becomes
stable.
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FIG. 9. �Color online� The same as Fig. 8 for J /g=2.6 �h=2�; the snapshots are taken at kBT /g=0.66: Ohv=−0.906, E=−0.993 �upper
panel�; Ohv=0.011, E=−0.815 �lower panel�.
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The phase diagram of Fig. 15 has to be compared with the
phase diagram shown in Fig. 6 of MacIsaac et al.6 Some of
the striped configurations shown in Fig. 15 are missing in
Fig. 6 of MacIsaac et al.6 because of the reduced size of their
lattice �16�16�. An important difference between our phase

diagram and Fig. 6 of MacIsaac et al.6 is the existence of a
modulated phase in the proximity of the phase boundaries
�2�− �3� and �3�− �4�. We confirm the disappearance of the
modulated phase far from the boundaries and near the
boundary �1�− �2�. We confirm the continuous nature of the
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FIG. 10. �Color online� The same as Fig. 8 for J /g=4.3 �h=2�; the snapshots are taken at kBT /g=1.42: Ohv=−0.997, E=−2.713 �upper
panel�; Ohv=−0.952, E=−2.655 �lower panel�.

RASTELLI, REGINA, AND TASSI PHYSICAL REVIEW B 76, 054438 �2007�

054438-14



transition for small J /g where the ground state configuration
is a Néel state. We found4 that for J=0, the critical exponents
are those of the NN Ising model. For 0�J /g�0.8, the spe-
cific heat vs temperature is very similar to that obtained for
J=0. A continuous transition occurs at a temperature de-
creasing linearly from kBT /g=2.38 to 0.36 as J /g goes from

0 to 0.8. On the contrary, in the narrow region 0.83�J /g
�0.88, the specific heat shows a sharp peak typical of a first
order phase transition so that a tricritical point is expected to
occur. The transition to the disordered phase appears to be
first order for the striped phases �h� with h�1. Around the
boundaries between the striped configurations �2�− �3� and
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FIG. 11. �Color online� The same as Fig. 8 for J /g=4.4 �h=3�; the snapshots are taken at kBT /g=1.52: Ohv=−0.935, E=−2.783 �upper
panel�; Ohv=−0.845, E=−2.701 �lower panel�.
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�3�− �4�, a modulated phase characterized by a Q wave vec-
tor incommensurate with the underlying lattice occurs be-
tween the striped phase and the paramagnetic one. The tran-
sition between the striped and modulated phases is
represented by a continuous red �gray� line in Fig. 15. The
phase diagram of Fig. 15 is similar to that shown in Fig. 2 of

Grousson et al.15 who studied a three-dimensional Ising
model with nearest neighbor ferromagnetic exchange inter-
action J and long range Coulomb interaction Q by MC simu-
lations on cubic lattices of sides between L=4 and L=16.

In summary, continuous order-disorder phase transition is
confirmed for the N phase. A first order phase transition
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FIG. 12. �Color online� The same as Fig. 8 for J /g=5.6 �h=3�; the snapshots are taken at kBT /g=2.10: Ohv=−0.964, E=−4.391 �upper
panel�; Ohv=0.888, E=−4.325 �lower panel�.
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seems to occur for �1,n� phases. As for the �1� phase, the
order-disorder phase transition appears to be first order near
the boundaries with the �1,n� and the �2� phases, while for
J /g=1.7, the phase transition seems to be continuous with
nonuniversal critical exponents.4 A clear first order transition
was found between the striped phase �2� �Refs. 2 and 4� and

the tetragonal phase, while for the striped phase �3�, the tran-
sition appears to be weakly first order. For h=4, any conclu-
sion about the nature of the transition is hard since the simu-
lations are compatible with a continuous transition, but a
very weak first order transition cannot be ruled out. To get
reliable information for larger striped phases, larger lattice
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FIG. 13. �Color online� The same as Fig. 8 for J /g=5.7 �h=4�; the snapshots are taken at kBT /g=2.26: Ohv=−0.829, E=−4.443 �upper
panel�; Ohv=−0.844, E=−4.434 �lower panel�.

PHASE DIAGRAM OF A SQUARE ISING MODEL WITH… PHYSICAL REVIEW B 76, 054438 �2007�

054438-17



sizes should have to be investigated, but the computer time
increases as L4, where L is the lattice side owing to the long
range nature of the dipole interaction.

V. CONCLUSIONS

The Ising model with NN ferromagnetic exchange and
dipole interaction provides a comprehensive survey of pos-
sible behaviors in the phase transitions. Indeed, first order
and continuous transitions, tricritical points, and modulated
phases between striped �smectic� and paramagnetic �tetrago-
nal� phases are found by MC simulation at finite tempera-
ture. A very rich phase diagram �J /g ,kBT /g� is shown in Fig.
15. At T=0, an analytic calculation led to the discovery of
another class of checkerboard configurations �1,n� in a
narrow region of J /g located between the Néel �N� and the
columnar phase. MC simulations at finite T confirm the ex-
istence of these checkerboard phases. The model studied
here shows a phase diagram even richer than that found for
the well known and widely studied ANNNI model.9 Like the
ANNNI model, the present model shows a “multiphase
point” at J /g=0.88, T=0. Moreover, at low temperature, a
sequence of striped phases is found increasing J /g, while the
ordered phases of the ANNNI model were restricted to the
ferromagnetic �F� and the �2� phase �antiphase�. At interme-
diate temperature, the present model supports the existence
of a modulated phase restricted to the region between the
striped phases with h=2,3 ,4. This phase is like the floating
phase of the ANNNI model. Like the ANNNI model,16

where the Lifshitz point on the ferromagnetic side of the

phase diagram is seen to disappear as the size increases, in
the present model, the location of the multicritical point in
the ferromagnetic region could be affected by the finite size
even though its occurrence is certain.

APPENDIX A: Šh1 ,h2‹ PHASES

Assume a double periodic spin configuration with period
p1=2h1 along the x axis and p2=2h2 along the y axis of a
square lattice of size L, with L supposed to be an even num-
ber. Label each lattice site by a couple of integer numbers
n ,m with n ,m=1, . . . ,L. The periodicity implies that the spin
at site �m ,n� �m,n is the same as the spin at site m+s1p1 ,n
+s2p2, with s1=0 ,1 , . . . ,L / p1−1 and s2=0 ,1 , . . . ,L / p2−1.
The finite Fourier transform of the spin is

�Q =
1

L
�
m=1

L

�
n=1

L

�m,ne−i�2�/L�q1me−i�2�/L�q2n

=
1

L
�
m=1

p1

�
n=1

p2

�m,ne−i�2�/L�q1me−i�2�/L�q2n �
s1=0

L/p1−1

�
s2=1

L/p2−1

�e−i�2�/L�s1p1e−i�2�/L�s2p2. �A1�

Using the relationship

�
s1=0

L/p1−1

e−i�2�/L�s1p1 =
L

p1
g1	�q1,

L

p1
g1� , �A2�

where g1=0 ,1 , . . . , p1−1, one obtains

�Q =
L

p1p2
	�q1,

L

p1
g1�	�q2,

L

p2
g2��

m=1

p1

�
n=1

p2

�m,ne−i�2�/L�q1me−i�2�/L�q2n = �1 − e−i�2�/L�q1h1��1

− e−i�2�/L�q2h2��
m=1

h1

e−i�2�/L�q1m�
n=1

h2

e−i�2�/L�q2n. �A3�

From the identity

FIG. 15. �Color online� Phase diagram of a square lattice with
L=48. The region between the red �gray� and black line is the
region where the modulated phase is expected to occur.

FIG. 14. �Color online� Specific heat vs temperature for several
J /g. From left to right, J /g=20,30,40,50,60,70,80,90,100.
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�1 − e−i�2�/L�q1h1��
m=1

h1

e−i�2�/L�q1m = 2e−i��/h1��2s1+1� 1 − e−i��2s1+1�

1 − e−i��/h1��2s1+1� , �A4�

with s1=0 ,1 , . . . ,h1−1, one obtains

�Q =
L

h1h2
	�q1

L
,
s1 + 1

2

h1
�	�q2

L
,
s2 + 1

2

h2
��1 − e−i��2s1+1���1 − e−i��2s2+1��

e−i��/h1��2s1+1�

1 − e−i��/h1��2s1+1�
e−i��/h2��2s2+1�

1 − e−i��/h2��2s2+1� , �A5�

with s1=1 ,2 , . . . ,h1−1 and s2=1 ,1 ,2 , . . . ,h2. It is easy to obtain


�Q
2 = L2	�q1

L
,
s1 + 1

2

h1
�	�q2

L
,
s2 + 1

2

h2
� 1

h1
2h2

2 sin2� �

h1
�s1 + 1

2�	sin2� �

h2
�s2 + 1

2�	 . �A6�

The zero temperature energy becomes

E�h1,h2� = �
Q
�− J�cos

2�

L
q1 + cos

2�

L
q2� + gDzz�2�

L
q1,

2�

L
q2�	
�Q
2 =

L2

h1
2h2

2 �
s1=0

h1−1

�
s2=0

h2−1 �− J�cos
2�

h1
�s1 +

1

2
�

+ cos
2�

h2
�s2 +

1

2
�	 + gDzz�2�

h1
�s1 +

1

2
�,

2�

h1
�s2 +

1

2
�	� 1

sin2� �

h1
�s1 + 1

2�	sin2� �

h2
�s2 + 1

2�	 , �A7�

where

Dzz�Q� = �
r�0

eiQ·r

r3 . �A8�

From the equations

�
s=0

h−1
1

h2 sin2��

h
�s + 1

2�	 = 1, �A9�

�
s=0

h−1 cos��

h
�2s + 1�	

h2 sin2��

h
�s + 1

2�	 = 1 −
2

h
, �A10�

we have

E�h1,h2�

gL2 = − 2
J

g
�1 −

1

h1
−

1

h2
�

+ �
s1=0

h1−1

�
s2=0

h2−1 Dzz�2�

h1
�s1 + 1

2�,
2�

h2
�s2 + 1

2�	
h1

2h2
2 sin2� �

h1
�s1 + 1

2�	sin2� �

h2
�s2 + 1

2�	 .

�A11�

The zero temperature energy of the striped configurations
�h ,�� �vertical stripes� or �� ,h� �horizontal stripes� becomes

E�h�

gL2 = − 2
J

g
�1 −

1

h
� +

1

h2 �
s=0

h−1 Dzz�2�

h
�s + 1

2�,0	
sin2��

h
�s + 1

2�	 .

�A12�

Finally, the zero temperature energy of the ferromagnetic
configuration is given by

EF

gL2 = − 2
J

g
+ Dzz�0,0� , �A13�

where Dzz�0,0�=9.033 621 683 1. Because of the symmetry
of the Fourier transform of the dipolar interaction Dzz�Q ,0�
=Dzz�2�−Q ,0�, the sum in Eq. �A12� can be restricted to
�h−1� /2 subtracting the term Dzz�� ,0� /h2 with Dzz�� ,0�=
−0.935 462 154 6 when h is odd, to avoid a double counting
of that term. For stripes of large width �h→��, one can
expand Dzz�Q ,0� for Q→0 retaining only linear and qua-
dratic terms in the wave vector,

Dzz�Q,0� = 9.033 621 683 1 − 2�Q + 0.975 066 230 0Q2.

�A14�

Replacing expansion �A14� into Eq. �A12�, one obtains

E�h��h → ��

gL2 = − 2
J

g
�1 −

1

h
� + 9.033 621 683 −

8

h
ln h

−
9.143 325 854

h
+ O� 1

h2� , �A15�

where use of the following relationships has been done:
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2

h2 �
s=0

�h−1�/2
1

sin2��

h
�s + 1

2�	 = 1, �A16�

4�

h3 �
s=0

�h−1�/2 �s + 1
2�

sin2��

h
�s + 1

2�	 =
4

�h
ln h +

2.315 742 797

h

+ O� 1

h2� , �A17�

8�2

h4 �
s=0

�h−1�/2 �s + 1
2�2

sin2��

h
�s + 1

2�	 =
5.545 177 445

h
+ O� 1

h2� .

�A18�

Equation �A16� is exact, while Eqs. �A17� and �A18� are
obtained by an expansion in 1/h retaining only terms pro-
portional to 1/h. These expansions are in good agreement
with those reported by MacIsaac et al.6 The small differences
between our coefficients of the terms proportional to 1/h and
those of MacIsaac et al.6 come from their treatment of the
sum over k in Eqs. �B37� and �B39� where terms of order
1 /h have been neglected.

The zero temperature energy of the �1,n� phases is given
by

E�1,n�

gL2 =
2

n

J

g
+

1

n2 �
s=0

n−1 Dzz��,
2�

n
�s + 1

2�	
sin2��

n
�s + 1

2�	 . �A19�

For n→�, one can expand Dzz�� ,Q� for Q→0 retaining
only quadratic terms in Q,

Dzz��,Q� = − 0.935 462 154 6 − 0.317 618 140Q2.

�A20�

At variance with the expansion around Q= �0,0�, the expan-
sion around Q= �� ,0� does not contain linear terms. This
implies that the energy of the �1,n� phase does not contain
logarithmic terms. Indeed, one has

E�1,n��n → ��

gL2 =
2

n

J

g
− 0.935 462 154 6

−
1.761 248 944

n
+ O� 1

n2� , �A21�

where use of Eqs. �A16� and �A18� has been done.

APPENDIX B: SELF-CONSISTENT HARTREE
APPROXIMATION

The field theoretical version of the two-dimensional Ising
model with exchange and dipole interaction corresponds to
the Hamiltonian2

H���k�� =
1

2�
k

A�k��k�−k +
1

4
u �

k1,k2,k3

�k1
�k2

�k3
�−k1−k2−k3

,

�B1�

where �assuming the exchange integral to be J=1�

A�k� = r0 + k2 + 2g�− 2�k + 0.975 066k2�

= r0� + �1 + 1.950 13g��k − k0�2 � r0 + �k − k0�2,

�B2�

with r0�=r0− �2�g�2 / �1+1.950 13g��r0��T−TMF�, where
TMF=4 is the critical temperature �in units of J /kB� of the
mean field approximation and k0= �2�g� / �1+1.950 13g�
�2�g. We assume that g1 where the long wavelength
limit holds. Equation �B2� is obtained from the small-k ex-
pansion of both the exchange and dipole interaction �see Eq.
�A14��. Analogous equations were obtained by Grousson et
al.14 for a 3D Ising model with Coulomb interaction and by
Cannas et al.2 for the present model. The spectrum of Eq.
�B2� may also be compared to the rotonlike excitation spec-
trum of the model studied by Brazovskii.13 According to
Grousson et al.,14 we assume the field �k to be the sum of an
average component mk= ��k� such that mk=m�	k,k0

+	k,−k0
�

and a fluctuation �k=�k−mk. The field Hamiltonian �Eq.
�B1�� reduces to

H���k�,m� = r0m2 +
3

2
um4 +

1

2�
k

�A�k� + 6um2��k�−k

+
1

4
u �

k1,k2,k3

�k1
�k2

�k3
�−k1−k2−k3

. �B3�

The Peierls’ variational theorem states

F � F0 + �H − H0�0, �B4�

where F is the free energy of the model, F0 is the free
energy of an arbitrary trial Hamiltonian, and the average
�¯�0 means the average over the density matrix of the trial
Hamiltonian. We choose as trial Hamiltonian

H0 =
1

2�
k

�k�k�−k, �B5�

so that the average ��k�−k�0 is easily performed leading to

��k�−k�0 =
T

�k
. �B6�

Minimization of Eq. �B4� with respect to the variational pa-
rameter �k leads to the self-consistent equation

�k = A�k� + 6um2 + 3uT�
k

1

�k
. �B7�

Putting �k=r+ �k−k0�2, a self-consistent equation for r is ob-
tained,
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r = r0 + 3uT�
k

1

r + �k − k0�2 . �B8�

Minimization of Eq. �B4� with respect to the other varia-
tional parameter m leads to the equation

m�r0 + 3um2 + 3uT�
k

1

�k
� = 0. �B9�

Note that Eqs. �B8� and �B9� coincide with those found by
Brazovskii,13 Grousson et al.,14 and Cannas et al.2 The solu-
tions of these equations are

m = 0, r = r0 + 3uT�
k

1

r + �k − k0�2 ,

Fdis = −
1

2
T ln T +

1

2�
k

ln�r + �k − k0�2� −
1

12

�r − r0�2

u
,

�B10�

for the disordered phase, and

m =� r

3u
, r = − r0 − 3uT�

k

1

r + �k − k0�2 ,

Ford = −
1

2
T ln T +

1

2�
k

ln�r + �k − k0�2� −
1

12

�r + r0�2

u

+
1

6

r�r + 2r0�
u

, �B11�

for the ordered phase. Now, we evaluate the sums in Eqs.
�B10� and �B11� assuming the cutoff wave vector to be 1.
Then,

�
k

1

r + �k − k0�2 �
1

�2���0

1

kdk
1

r + �k − k0�2

=
1

�4���ln
r + �1 − k0�2

r + k0
2 +

2k0

�r

��arctan
1 − k0

�r
+ arctan

k0

�r
�	 ,

�B12�

�
k

ln�r + �k − k0�2� �
1

�2���0

1

kdk ln�r + �k − k0�2�

=
1

�4���r ln
r + �1 − k0�2

r + k0
2

+ 2k0
�r�arctan

1 − k0

�r
+ arctan

k0

�r
�

+ �1 − k0�ln�r + �1 − k0�2� + 1 − 4k0� .

�B13�

The value of these integrals differs from that obtained by

Brazovskii13 because of two reasons: a different space di-
mensionality �2 in the present case, 3 in the model studied by
Brazovskii� and a different assumption about the value of k0
�the rotonlike model of Brazovskii assumes that k0�1,
whereas we assume k01 since we look at the limit g1�.
Assuming k0�1, our results reduce to those of Brazovskii.
On the contrary, if we assume k01, the logarithmic terms
of Eqs. �B12� and �B13�, neglected by Brazovskii, become
crucial. Notice that in the limit k0→0 �two-dimensional NN
exchange Ising model�, one obtains for the disordered phase

m = 0, r = r0 + ln
r + 1

r
,

6uFdis = f + ln�1 + r� +
1

2
�r2 − r0

2� , �B14�

where f is a free energy contribution independent of r. We
have assumed for simplicity that 3uT / �4��=1. The self-
consistent equation for r has one solution for any r0. For the
ordered phase, one has

m =� r

3u
, r = − r0 − ln

r + 1

r
,

6uFord = f + ln�1 + r� −
1

2
�r2 + r0

2� . �B15�

The self-consistent equation for r has two solutions r1 ,r2
only for r0�r0

*=−1.5804. The two solutions meet for r0=r0
*

�r1=r2=0.618� and disappear for r0�r0
*. One can see that for

r1�r2, the corresponding free energies are Ford�r1�
�Ford�r2�, so that the solution corresponding to r1 is always
unstable. Comparing the free energy of the ordered phase
Ford�r2� with that of the disordered phase Fdis�r�, one finds
that for r0

*�r0�r0
t =−1.7054, the stable phase is the disor-

dered one, whereas for r0�r0
t , the stable phase is the ordered

one. At the transition r0
t , corresponding to Tt=2.2945, the

order parameter jumps from mt=�r2 / �3u� with r2=1.023 to
zero leading to a first order phase transition driven by fluc-
tuations. This is clearly a drawback of the theory. For k0
�0 �two-dimensional Ising model with dipolar interaction�,
the scenario is the same as that illustrated for k0=0. For k0
=0.05,0.1,0.15,0.2 �J /g�126,63,42,31�, one finds r0

t =
−1.7095,−1.7177,−1.7335,−1.7633, and r2
=0.973,0.915,0.848,0.780, respectively. The transition tem-
perature obtained by this calculation is well described by the
equation Tt= �2.295±0.001�− �1.41±0.05�k0

2. The quadratic
dependence of the first order transition temperature on g
�Tt=2.295−55.7g2� does not agree with the linear depen-
dence obtained by the MC simulations �see Sec. III�.

It is worthwhile to remember that the self-consistent
�renormalized� Hartree-Fock approximation was extensively
applied to magnetic �boson� Hamiltonians starting from the
Heisenberg Hamiltonian in three dimensions.17 The spin
wave interaction taken into account by a variational ap-
proach leads to a first order phase transition. A self-
consistent equation for the renormalization factor is found.
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Two solutions exists for T�T*, where the smaller one is
always unstable with respect to the greater one. Comparing
the free energy corresponding to the greater solution with the
free energy of the disordered phase obtained from the con-
straint that the magnetization is zero, one finds that the tran-
sition temperature Tt is in good agreement with those esti-
mated for the 3D isotropic Heisenberg cubic models for

several spin S. Also in this case, however, the drawback is
that at Tt, the magnetization jumps from a finite value to zero
in a discontinuous way pointing out a first order phase tran-
sition at variance with the continuous phase transition of the
3D Heisenberg model. In conclusion, the first order phase
transition driven by fluctuations seems to be an artifact of the
Hartree self-consistent approach.

*Also at Istituto IMEM, CNR, Parco Area delle Scienze, 43100
Parma, Italy; rastelli@fis.unipr.it
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