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The symmetry conditions for the development of a macroscopic electrical polarization as a secondary order
parameter to a magnetic ordering transition and the constraints on the direction of the polarization vector are
determined by a nonconventional application of the theory of irreducible corepresentations. In our approach,
which is suitable for both magnetic and structural modulations, antiunitary operators are employed to describe
symmetry operations that exchange the propagation vector k with −k, rather than operations combined with
time reversal as in classical corepresentation analysis. Unlike the conventional irreducible representations,
corepresentations can capture the full symmetry properties of the system even if the propagation vector is in the
interior of the Brillouin zone. It is shown that ferroelectricity can develop even for a completely collinear
structure, and that helical and cycloidal magnetic structures are not always polar. In some cases, symmetry
allows the development of polarization parallel to the magnetic propagation vector. Our analysis also highlights
the unique importance of magnetic commensurability, enabling one to derive the different symmetry properties
of equivalent commensurate and incommensurate phases even for a completely generic propagation vector.
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I. INTRODUCTION

There has been a recent surge of interest for improper
ferroelectric transition-metal compounds, where the onset of
electrical polarization is induced by a transition to a complex
magnetic state.1 Much of the discussion in the literature has
focused on establishing the microscopic mechanism that
couples the magnetic moments with lattice displacements:
symmetric superexchange �sometimes referred to as “super-
exchange striction”� and antisymmetric exchange �the so-
called Dzyaloshinskii-Moriya contribution� have both been
discussed, often in the context of the same materials,2,3 and
shown in many cases to describe the details of the coupled
magnetoelectric transitions, including the change in sign or
direction of the polarization in an applied magnetic field. The
study of the crystal and magnetic symmetry of these systems
represents an integral part of this work. Establishing the
symmetry constraints upon the polarization vector for a
given magnetic structure, regardless of the microscopic
mechanism of magnetoelastic coupling, is extremely valu-
able. For example, if it is established that for a given mag-
netic structure the polarization vector P lies by symmetry
along a particular crystallographic direction, the experimen-
tal determination of the direction of P can be used to cor-
roborate or falsify the magnetic structure model. Conversely,
the exact direction of P must be predictable from the micro-
scopic coupling mechanism when symmetry allows P to lie
in a plane or in a general direction. More generally, and in
analogy with the well-known case of magnetostriction, if the
broken symmetry allows the development of a macroscopic
polar vector, one would always expect to observe ferroelec-
tricity, provided that the measurement has sufficiently high
sensitivity. The class of multiferroic materials we are dis-
cussing is, in fact, characterized by very small values of �P�.
However, the magnitude of P must be predictable from mi-
croscopic models based on the specific observed spin ar-
rangement, out of the many that are usually consistent with
each symmetry class.

A number of techniques exist to predict possible symme-
tries derived from a given parent structure through a given
order parameter—a subject that was thoroughly developed
in the 1980s.4 When the propagation vector of the structural
or magnetic modulation lies in a high-symmetry point of
the Brillouin zone, one can use standard small irreducible
representations5–8 �irreps� to generate the so-called image of
the high-symmetry group—the finite set of matrices repre-
senting the group elements in the order parameter space for a
given irrep. By analyzing the image, one can determine the
form of the Landau free energy as a function of both primary
and secondary order parameters, enumerate the possible in-
variance groups of the low-symmetry phase, and establish
compliance with the so-called Landau criterion for continu-
ous phase transitions.4 When dealing with magnetic transi-
tions, some of the early work employed irreducible corepre-
sentations �coreps� instead of irreps. In this approach, first
discussed by Wigner,9 the time reversal operator in the black-
and-white symmetry groups is antiunitary, as applied to the
Schrödinger wave function describing the magnetic ground
state. However, it was later noted �see, for example, Ref. 10�
that the use of antiunitary operators is not actually necessary
when dealing with classical spin systems, for which time
reversal is represented by a simple sign change, and the use
of coreps has been all but abandoned as a consequence.

When the propagation vector of a magnetic or modulated
crystal structure is not a high-symmetry point of the Bril-
louin zone, the situation is considerably more complex. First
of all, the “mathematical” or “physical” representations are,
in this case, always obtained by combining at least two little-
group irreps with opposite propagation vectors �+k and −k�.
Secondly, the image of this representation can have an infi-
nite number of elements if the propagation vector is incom-
mensurate with the crystal lattice. Thirdly, and perhaps more
importantly, the symmetry properties of the modulated struc-
ture upon application of operators that exchange +k with −k,
such as the inversion, do not emerge clearly, since these op-
erators do not have an image matrix in either of the irreps.

PHYSICAL REVIEW B 76, 054428 �2007�

1098-0121/2007/76�5�/054428�11� ©2007 The American Physical Society054428-1

http://dx.doi.org/10.1103/PhysRevB.76.054428


For these reasons, image analysis is not ordinarily applied to
these problems. Instead, one usually resort to constructing
Landau free energies containing mixed terms in the +k and
−k order parameters and examining the symmetry of the so-
lutions. Harris and co-workers have extensively employed
this approach to study in some detail the specific case of
incommensurate magnetic multiferroics.11–16 In particular,
they have specifically pointed out the importance of inver-
sion symmetry, the globally invariant forms of the Landau
free energy, and the situations where this symmetry is spon-
taneously broken, giving rise to a net polarization.

In this paper, we follow a different approach to the prob-
lem of determining the point-group symmetry of a modu-
lated magnetic structure and of defining the symmetry con-
ditions imposed on the development of a macroscopic polar
vector upon magnetic ordering with an arbitrary propagation
vector k. In our analysis, we employ the mathematical tool
of irreducible corepresentations, but its significance is radi-
cally different from that of the “standard” corep analysis of
magnetic structures. This difference is apparent when one
considers the role of antiunitary operators, which are conven-
tionally employed to represent “black” elements of the
groups inverting the direction of time. Here, we use antiuni-
tary elements to describe operators that exchange +k with
−k, as explained below. This approach enables one to em-
ploy a single corep and propagation vector instead of two
irreps. Time reversal is not an essential ingredient of this
method, which can be equally well employed to study in-
commensurate structural modulations �for magnetic struc-
tures, we treat time reversal classically, as explained below�.
Crucially, all the symmetry properties emerge naturally from
this analysis, since the “little group” of the propagation vec-
tor is extended to include the inversion and all other opera-
tors exchanging +k with −k. This approach is not particu-
larly new—it is implicit in the treatment of coreps described
in the classic book by Kovalev17 and its significance has
been recently reemphasized by Schweizer.18 However, we do
not believe that these techniques have been hitherto em-
ployed to determine crystallographic point groups and mac-
roscopic observables, as we do herein. With respect to the
approach followed by Harris and co-workers, the main dif-
ference is that we perform our analysis directly on the im-
ages, as in the case of high-symmetry k vectors. Knowledge
of the Landau free energy form is, therefore, not required,
making this method easier to implement in an automated and
tabulated form, as appropriate for nonspecialists. We, none-
theless, stress that the Landau analysis provides much more
information than the point group of the low-symmetry phase
and is, therefore, the tool of choice for specialist theoreti-
cians. Furthermore, our method is completely general—
inversion symmetry is treated on an equal footing with other
operators exchanging +k with −k. Our only restriction is that
the magnetic structure be described by a single k, although
the extension of our analysis to multi-k structures is quite
straightforward.

We show that ferroelectricity can develop even when the
magnetic structure is described by a single order parameter
and that P �k is allowed by symmetry in some cases. Further-
more, our analysis evidences the crucial difference between
incommensurate and commensurate magnetic structures even

for propagation vectors inside the Brillouin zone, and, for the
latter, shows that the global phase has an influence on sym-
metry. This is particularly counterintuitive, since the global
phase affects neither the magnetic energy nor the intensity of
the magnetic Bragg peaks in �unpolarized� neutron diffrac-
tion. In fact, the observation of a nonzero electrical polariza-
tion can be used to discriminate between otherwise indistin-
guishable magnetic structures.

The paper is organized as follows: In Sec. II, we describe
the use of corep to determine the point-group symmetry of a
magnetically modulated system �the extension to lattice
modulations is straightforward and will be described else-
where�. In Sec. III, we describe in detail the application of
this method to a number of topical multiferroic systems with
commensurate or incommensurate magnetic structures. Sec-
tion IV contains the summary and discussion of the results.
For completeness, in the Appendix we provide a brief over-
view of the theory of irreducible corepresentations.

II. THEORY

As for all macroscopic observables that are even by time
reversal, the existence of an electrical polarization and the
restrictions on its direction are defined by the structural point
group S of the magnetically ordered structure m. If we write
a generic element of the paramagnetic space group G in the
form g= �r �w� �Seitz notation�, where r is a proper or im-
proper rotation belonging to the paramagnetic point group
and w is a translation, then r�S if and only if there is an
element g�G for which gm= ±m. If we only consider the
representative elements of the group, g0= �r �v�, where v is a
non-Bravais translation and rotations appear only once in the
representative set, then

r � S ↔ �r�v�m = ± �E�t�m , �1�

where t is a Bravais translation and E is the identity. In other
words, the corresponding representative element must be
equivalent to � a lattice translation. Here, we deal with the
time reversal symmetry by considering both positive and
negative eigenvalues, rather than combining time reversal
and complex conjugation as it is often done.9,19 It can be
shown that the two approaches are completely equivalent.10

It is important at this point to recognize that the magnetic
structure m is real, i.e., it is not a generic element of the
linear space V defined over the complex field as a collection
of axial vectors associated with atomic positions in the crys-
tal. If m is described by a single propagation vector k, we
can always write m=e+ik·t�+e−ik·t�*, where e+ik·t� is a ge-
neric element of the complex-valued subspace of V associ-
ated with the “arm” k. In the most general case, e+ik·t� and
e−ik·t�* transform with distinct �albeit complex conjugate�
representations of G, and, in fact, may not even belong to the
same star. Conventional analysis using the irreps of the little
group Gk �i.e., of the group of operators leaving the propa-
gation vector invariant� deals with the two Fourier compo-
nents separately, combining them later in a single “physically
irreducible” representation of higher dimension. As we shall
see, this method is unable to capture the full symmetry prop-
erties of m. In our specific case, this means, for example, that
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m can be centrosymmetric even when the inversion operator
I does not belong to the magnetic little cogroup, as is always
the case if k is a non-Lifshitz vector �2k�L*, L* being the
reciprocal lattice�. On the other hand, working with m �i.e.,
the two representations simultaneously� is extremely incon-
venient, since, unlike e+ik·t�, m is not an eigenvector of the
pure translations. With this in mind, it is useful to reformu-
late Eq. �1� as a condition on e+ik·t� rather than on m:

r � S ↔ �r�v�e+ik·t� = ± � e−ik·t0e+ik·t�

or

e+ik·t0e−ik·t�*.
� �2�

Equation �2� can be further simplified by introducing the
operator of complex conjugation K:

r � S ↔ � �r�v�e+ik·t� = ± e−ik·t0e+ik·t�

or

K�r�v�e+ik·t� = ± e−ik·t0e+ik·t� .
� �3�

In other words, e+ik·t� must be an eigenvector of the operator
�r �v� or of the operator K�r �v� �or of both�, with eigenvalues
corresponding to � Bravais translations. It is worth pointing
out already at this stage the crucial difference between in-
commensurate and commensurate propagation vectors. In the
former case, any eigenvalue will do, since a suitable transla-
tion can always be found to equate any phase in the expo-
nential. On the contrary, only a finite number of phases are
available in the commensurate case. Based on Eq. �3�, it
becomes natural to consider the mapping not of the group G
but of the direct product group �E ,K� � G. Here, the subtlety
is that the images of elements of the form Kg must be anti-
linear and antiunitary operators.20 It is noteworthy that the
usefulness of this approach is by no means limited to mag-
netic structures, and is equally applicable to structural modu-
lations, provided that we consider only the “�” sign in Eqs.
�1�–�3�. Homomorphisms of �E ,K� � G are known as coreps
of G, and their theory has been extensively developed17,19

�see the Appendix for a summary of this theory�. In essence,
the corep analysis consists of three steps:

�1� Determination of the subset Mk of �E ,K� � G that
leaves k invariant, the equivalent of the little group Gk. Mk

contains all the operators of the conventional little group plus
operators of the form Kg, where K is the complex conjuga-
tion and g�G exchanges +k with −k. Consequently, KI
�Mk if I�G.

�2� Determination of the coreps and their image matrices.
The complete analysis has been done by Kovalev17 for all
space groups and k vectors, and all that is required is to refer
to the tabulated values therein.

�3� Determination of the characteristic �basis� vectors for
each corep. This can be done directly by applying a projec-
tion method similar to the standard irreps or, perhaps more
easily, by symmetrizing the irrep basis vectors, as explained
in Ref. 17. One must keep in mind that, unlike the case of
irrep basis vectors, corep vectors cannot be multiplied by an
arbitrary complex constant because of the antiunitary char-
acter of the associated operators �see below�. Once this
analysis is done, the symmetry condition in Eq. �3� can be

thoroughly explored by determining the spectra of the uni-
tary and antiunitary operators �images� associated with the
various coreps. Crucially, operators such as the inversion I
that exchange +k with −k �not included in the conventional
irrep analysis� will now be represented by their antiunitary
counterparts �e.g., KI�, which do possess an image. Spectra
and eigenvectors for the unitary operators are found in the
usual way by diagonalizing the corresponding matrices. The
method to determine the “characteristic vectors” of an anti-
unitary operator A is described by Wigner.20 In particular, it
is shown how to construct a full set of orthonormal vectors
v1 . . .vn that are invariant to both A and the unitary operator
A2, by linear combinations of the the eigenvectors of A2 with
eigenvalue= +1. Linear combinations of the v j’s with real
coefficients are also invariant by A. Multiplication of v j �or
of a real-coefficient linear combination thereof� by a phase
factor ei� results in an eigenvector of A with eigenvalue �
=e−2i�. Linear combinations of eigenvectors with complex
coefficients are generally not eigenvectors. A full spectral
analysis of each operator is often not necessary, particularly
when the aim is to establish the symmetry of an experimen-
tally determined magnetic structure �see examples below�.

III. EXAMPLES

In this section, we will analyze the symmetry properties
of some magnetic improper ferroelectrics from recent litera-
ture using the corepresentation approach we described in the
previous section. In each case, we will determine the matrix
representatives �images� for the relevant propagation vectors
and/or corepresentations and the associated basis vectors for
the magnetic sites. We will also determine the point-group
structural symmetry for particular ordering patterns.

A. Multiferroic behavior in REMnO3

The space group is Pnma �No. 62 in the International
Tables;21 we adopt the standard setting as opposed to the
Pbnm setting used in some papers� and the propagation vec-
tor is ��,0,0�, with � incommensurate or commensurate but
generally in the interior of the Brillouin zone. This propaga-
tion vector is labeled as k7 in Ref. 17 We will employ the
standard International Tables setting rather than the “old
Kovalev” setting �both are reported in Ref. 17�. The small
irreps for this space group and propagation vectors are all
one dimensional, and their matrices �complex numbers in
this case� are reported in Table I.

All the coreps correspond to “case �a�” described in the
Appendix; in other words, each irrep generates a single
corep. In addition, the coreps can be set in diagonal form, as
explained in the Appendix. The matrices of the antiunitary
operators are equal to those of corresponding unitary opera-
tors, as shown in Table I. The symmetry properties of each
corep or combination thereof are now clear by inspection of
Table I, while remembering that the antiunitary operators
complex-conjugate all mode coefficients. In particular:

�1� Linear combination of corep modes with purely real or
purely imaginary coefficients are always centric or anticen-
tric and cannot support ferroelectricity.
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�2� Multiplication of a centric or anticentric mode by a
phase factor ei� is always equivalent to a translation for an
incommensurate propagation vector but not necessarily so in
the commensurate case. For incommensurate propagation
vectors, this analysis confirms that ferroelectricity cannot
arise from a single magnetic order parameter.15 As we shall
see in the remainder, however, this is only true, in general,
for one-dimensional corepresentations.

�3� Linear combination of two corep modes with arbitrary
complex coefficients, in general, violates all the antiunitary
operators and those unitary operators with different matrices
for the two coreps. In general, this will lead to the polariza-
tion vector being allowed in a plane containing the propaga-
tion vector.

�4� Cycloidal structures are the most important case, be-
cause they correspond to the magnetic structures proposed in
the literature for the ferroelectric phases. When two compo-
nents are summed in quadrature, they do not always violate
all the antiunitary operators. All linear combinations of this
kind, with the associated structural point groups and allowed
directions of the electrical polarization, are listed in Table II.

From Table II, we can see that the magnetic structure
proposed by Kenzelmann et al.,11 corresponding to the ad-
mixture D2+ iD3, only allows a polarization in the y direction
�z direction in the Pbnm setting proposed in Ref. 11�, as
observed experimentally. The proposed magnetic structure is,
therefore, consistent with the electrical properties, but no
specific magnetoelectric mechanism can be inferred from the
observation. It is noteworthy that some combination of irreps
induce noncentric, nonpolar point groups �222 in this case�.

The absence of a center of symmetry should not, therefore,
lead to the conclusion that ferroelectricity is allowed in some
direction, nor should the observation of a cycloidal structure
lead to the conclusion that ferroelectricity is allowed.

�5� From this analysis, it is apparent that commensurate
structures will, in general, have lower symmetry with respect
to corresponding incommensurate ones—a well-known gen-
eral result.4 Here, the obvious reason is that phase factors are
not necessarily equivalent to translations. However, the sym-
metry may be higher for particular choices of the overall
phase factor. An interesting example, which includes the
magnetic structure proposed by Aliouane et al., is described
by the admixture

� = ei��aD1 + ibD3� , �4�

where a and b are real coefficients. This structure is always
invariant by application of the mirror plane �b �h27�. Appli-
cation of the two antiunitary operators Kh4 and Kh26 yields
�Table I�

Kh26� = Kh4� = �e−i��aD1 + ibD3� = e−i�2�+	��� . �5�

Therefore the corresponding rotations belong to the struc-
tural point group only if the phase factor corresponds to � a
lattice translation, i.e., if

� =
1

2
�	n + 2	m , �6�

where n and m are arbitrary integers. If � is incommensu-
rate, Eq. �6� can always be satisfied to an arbitrary approxi-
mation. In this case, the structural point group is S=mm2,
and the polarization is along the z axis. If � is commensu-
rate, only a restricted number of phases are available, and
Eq. �6� may be far from being satisfied. In this case, S= .m.,
and the polarization is in the x-z plane. The constant-moment
“Aliouane” structure corresponds to this case with the par-
ticular choices �= 1

4 , a= �2+	2�1/2, b= �2−	2�1/2, and �=
− 	

8 , for which Eq. �6� is satisfied. Consequently, S=mm2 and
the polarization must be directed along the z axis. This is
also the direction of the polarization found experimentally
for the high-field phase of TbMnO3.22 The microscopic
model proposed by Aliouane et al., based on exchange stric-
tion, does, in fact, produce a z axis polarization, as required
by symmetry.

In REMnO3 �RE=rare earth�, the Mn atoms are on centers
of symmetry, and the application of the antiunitary operators
does not generate more sites than those generated by the
little group Gk. Consequently, each instance of an irrep basis
vector generates a single instance of the associated corep,
spanning exactly the same subspace. Table III lists the corep
modes obtained by symmetrizing the conventional irrep
modes, following the procedure described in Eq. �A3�. It can
be easily verified that the two modes generated by Eq. �A3�
are linearly dependent via a single real coefficient. The mag-
netic structure proposed by Kenzelmann et al.11 corresponds
to mx�D3�+ imy�D2�, which, as already remarked, only allows
the polarization to be along the y axis. A cycloidal structure
of the same type but with spins in the x-z plane would be
described as mx�D3�+ imz�D1�, which, according to Table II,

TABLE I. Small irreps �
� and coreps �D� of space group Pnma
for propagation vector k7= �� ,0 ,0�. The symmetry operators are in
the Kovalev notation and correspond to the International Tables
symbols: h1
1 0,0 ,0; h2
2� 1

2 ,0 ,0�x , 1
4 , 1

4 ; h3
2�0, 1
2 ,0�0,y ,0;

h4
2�0,0 , 1
2

� 1
4 ,0 ,z; h25
 1̄ 0 ,0 ,0; h26=n�0, 1

2 , 1
2

� 1
4 ,y ,z; h27

=m x , 1
4 ,z; h28=a x ,y , 1

4 ; and �=e+i	�.

h1

Kh25

h2

Kh26

h27

Kh3

h28

Kh4


1 /D1 1 � 1 �


2 /D2 1 � −1 −�


3 /D3 1 −� 1 −�


4 /D4 1 −� −1 �

TABLE II. Structural point groups for cycloidal structures of
general formula aD�+ ibD� �a and b are real coefficients�. The
allowed direction of P is indicated in parentheses. A dot �.� means
that the point group is nonpolar and no ferroelectric polarization can
develop.

D1 D2 D3 D4

iD1 2mm�x� 222�.� mm2�z� m2m�y�
iD2 222�.� 2mm�x� m2m�y� mm2�z�
iD3 mm2�z� m2m�y� 2mm�x� 222�.�
iD4 m2m�y� mm2�z� 222�.� 2mm�x�
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yields a polarization along the z direction �x direction in
Pbnm�. This is consistent with the Ginzburg-Landau analysis
performed by Mostovoy23 for the specific case of cycloidal
structures. It is important to remark that the direction of P as
established by symmetry does not depend specifically on the
direction of the magnetic moments or the type of magnetic
structure �cycloidal, helical, etc.� For example, a helical
structure of the type mz�D3�+ imy�D2� and even some com-
plex collinear structures �e.g., my�D3�+ imy�D2�� have exactly
the same symmetry as the structure of Kenzelmann et al.11.
Naturally, magnetic measurements and neutron diffraction
can all be used to distinguish between these possibilities and
to guide the analysis toward a microscopic model.

The case of the RE sites is more interesting, because the
atoms do not sit on a center of symmetry, and they are,
therefore, split into orbits by the little group Gk. The appli-
cation of the antiunitary operators mixes the two orbits, so
that the corep modes are combination of irrep modes on the
two orbits. In this case, the two modes generated by Eq. �A3�
are linearly independent. Table IV lists the corep modes ob-
tained by symmetrizing the conventional irrep modes, fol-
lowing the procedure described in Eq. �A3�.

BiMn2O5 and DyMn2O5

The space group is Pbam �No. 55 in the International
Tables21�, with three relevant Wyckoff sites: 4f�0, 1

2 ,z� with
z
 1

4 for the Mn4+ sites, 4h�x ,y , 1
2

� for the Mn3+, and
4g�x ,y ,0� for the RE sites. 4h and 4g have the same sym-
metry and can be treated in a completely analogous way. The
propagation vector is � 1

2 ,0 ,0�, k20 in Kovalev notation, for
the low-temperature phase of Dy �Ref. 25� �the minority
component � 1

2 ,0 ,�� will be dealt with in the next section�

and � 1
2 ,0 , 1

2
�, k24, for Bi.26 Both propagation vectors are spe-

cial points of the Brillouin zone for which k
−k, and have
identical irrep and/or coreps. Moreover, as explained in Sec.
II, the inversion operator I�Gk, and there is no need to
introduce antiunitary operators. The analysis is, therefore,
very similar to the one performed by Munoz et al.26 for the
Bi case. It is convenient to perform a unitary transformation
of the Kovalev matrix representatives and associated modes
through the unitary matrix

U =
1 + i

2
� i 1

1 i
� . �7�

With this transformation, the resulting matrices �Table V�
become real. For site 4f , the modes �Table VI� can also be
made real by multiplication of each subspace basis set by an
appropriate coefficient. For site 4h, a bit more care is re-
quired, since each of the two irreps appears twice for every
spin direction, so there is a degree of arbitrariness in the
definition of the invariant subspaces. Here, we have chosen
the definition so that the basis vectors have constant mo-
ments on all sites, but other choices are possible. Physically,
this means that the magnetic moments are related in pairs
�S1 is related to S2 and S3 to S4�, but the pairs are allowed,
in principle, to have different moments within the same irrep.

The key aspect in assessing the symmetry of the possible
magnetic structures is the fact that both irreps are two-
dimensional. Therefore, in contrast with the REMnO3 ex-
ample, it is possible to obtain noncentrosymmetric and polar
structures even for a single order parameter, provided that
certain special directions in the two-dimensional space are
avoided. The magnetic basis vectors for the propagation vec-
tor k24= � 1

2 ,0 , 1
2

� are reported in Tables VI and VII for the two

TABLE III. Magnetic �axial vector� corep modes for the perovskite B site �Mn in the case of REMnO3�
associated with the four type-a irreducible corepresentations for space group Pnma and propagation vector
k7= �� ,0 ,0�. Note the similarity of these modes with those listed in Ref. 24 �Table III� and references cited
therein. However, through corep analysis, we have specifically enforced invariance by application of the
antiunitary operator KI, where I is the inversion at the origin of the coordinate system and K is the complex
conjugation. This invariance can only be accidental in irrep analysis. The matrix elements for unitary and
antiunitary operators can be found in Table I. �=e+i	� and �* is its complex conjugate.

Mn�1�= 1
2 ,0 ,0 Mn�2�=0, 1

2 , 1
2 Mn�3�= 1

2 , 1
2 ,0 Mn�4�=0,0 , 1

2

D1 mx �* 1 −�* −1

my �* −1 �* −1

mz �* −1 −�* 1

D2 mx �* 1 �* 1

my �* −1 −�* 1

mz �* −1 �* −1

D3 mx �* −1 −�* 1

my �* 1 �* 1

mz �* 1 −�* −1

D4 mx �* −1 �* −1

my �* 1 −�* −1

mz �* 1 �* 1
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sites. Modes for k20= � 1
2 ,0 ,0� are slightly different using our

atom conventions, but can be obtained in the same straight-
forward way �see table captions�.

The experimentally determined magnetic structure be-
longs to the 
1 irrep, and is a combination of mx and my
modes for the 4f sites and m1x and m2y modes for the 4h
sites. The important point is that only one unprimed basis
vector of each subspace is employed in each instance, so that
all the components transform in the same way:

��Mn4+� = c1mx + c2my� = c1�mx,mx�� · �1

0
�

+ c2�my,my�� · �1

0
� ,

��Mn3+� = c3m1x + c4m2y = c3�m1x,m1x�� · �1

0
�

+ c4�m2y,m2y�� · �1

0
� . �8�

The matrices are applied precisely to the column vectors
in Eq. �8�. With this notation, the symmetry can be read
straightforwardly from the irrep matrices in Table V. It is
clear that only diagonal matrices �h3 ,h26,h28� survive be-
cause off-diagonal matrices transform unprimed into primed
modes. The structural point-group symmetry in the magneti-
cally ordered phase is, therefore, m2m, which allows polar-
ization only along the b axis, as found experimentally.

C. TbMn2O5 Commensurate phase

TbMn2O5 is isostructural to the previous compounds, but
orders magnetically with different propagation vectors.28,29

Here, we will only consider the commensurate, high-
temperature phase, with � 1

2 ,0 , 1
4

�, k16 in Kovalev notation, but
the same analysis would apply to an incommensurate phase
of the type � 1

2 ,0 ,��, also labeled k16. There are only three
elements in the irrep little group: a twofold axis � to z �h4�
and two glide planes � x�h26� and y�h27�. There is a single
two-dimensional irrep. The � matrix is the identity, so the
matrices for the antiunitary operators Kh25, Kh2, Kh3, and

TABLE V. Matrix representatives of the irreducible representations of the little group Gk for the space
group G= Pbam and k20= � 1

2 ,0 ,0�, or k24= � 1
2 ,0 , 1

2
�. The matrices reported herein are the same as in Ref. 26,

and are related to the Kovalev matrices by the unitary transformation UMU−1, where U is given in Eq. �7�.

Irreps h1 h2 h3 h4 h25 h26 h27 h28


1 �1 0

0 1 � � 0 1

−1 0 � �1 0

0 −1 � �0 1

1 0 � �0 1

1 0 � �1 0

0 −1 � � 0 1

−1 0 � �1 0

0 1 �

2 �1 0

0 1 � � 0 1

−1 0 � �1 0

0 −1 � �0 1

1 0 � � 0 −1

−1 0 � �−1 0

0 1 � �0 −1

1 0 � �−1 0

0 −1 �

TABLE IV. Magnetic �axial vector� corep modes for the perovskite A site �RE in the case of REMnO3�
associated with the four type-a irreducible corepresentations for space group Pnma and propagation vector
k7= �� ,0 ,0�. By construction, these modes are invariant by application of the antiunitary operator KI, where
I is the inversion at the origin of the coordinate system and K is the complex conjugation. The matrix
elements for unitary and antiunitary operators can be found in Table I. �=e+i	� and �* is its complex
conjugate.

RE�1�=x , 1
4 ,z RE�2�=x+ 1

2 , 1
4 ,−z+ 1

2 RE�3�=−x+ 1
2 , 3

4 ,z− 1
2 RE�4�=−x+1,− 1

4 ,−z+1

D1 my 1 �* 1 �*

my� 1 �* −i −i�*

D2 mx 1 −�* −1 �*

mx� 1 −�* i −i�*

mz 1 �* 1 �*

mz� 1 �* −i −i�*

D3 mx 1 �* 1 �*

mx� 1 �* −i −i�*

mz 1 −�* −1 �*

mz� 1 −�* i −i�*

D4 my 1 −�* −1 �*

my� 1 −�* i −i�*
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Kh28 are the same as those for h1 �the identity�, h26, h27, and
h4, respectively. The basis vectors can be constructed using
Eq. �A3�, and are obviously invariant by inversion. The
4f�0, 1

2 , 1
4

��Mn4+� sites are split by the irreps into two orbits,
which are recombined to obtain the basis functions for the
coreps, whereas site 4h�x ,y , 1

2
� remains as a single orbit and

Eq. �A3� produces sets of degenerate vectors. At this stage, it
is useful to perform a unitary transformation using the matrix

U = �1 0

0 i
� , �9�

which makes all the matrices real. Note the special form of
the unitary transformations for antiunitary operators �Eq.
�A2��. The resulting corep matrices are reported in Table
VIII. The basis vectors can be derived in the same way, by
applying the inverse unitary transformation to the corep basis

TABLE VI. Magnetic �axial vector� irrep modes for the 4f�0, 1
2 ,z� sites �Mn4+ in REMn2O5� of space

group G= Pbam and k24= � 1
2 ,0 , 1

2
�. The basis vectors reported herein are related to the Kovalev basis vectors

�obtained by the projection method with the help of the program SARAH �Ref. 27�� by the unitary transfor-
mation vU−1, where U is given in Eq. �7�. The matrix elements can be found in Table V. Primed and
unprimed modes �e.g., mx and mx�� belong to the same invariant subspace and have been both multiplied by
the same coefficient, so that the unprimed mode is always 1 on atom 1.

Mn4+�1�=0, 1
2 , 1

4 Mn4+�2�= 1
2 ,0 , 3

4 Mn4+�3�=0, 1
2 , 3

4 Mn4+�4�= 1
2 ,0 , 1

4


1 mx 1 −1 −1 1

mx� −1 −1 1 1

my 1 1 −1 −1

my� −1 1 1 −1

mz 1 −1 1 −1

mz� 1 1 1 1


2 mx 1 −1 1 −1

mx� −1 −1 −1 −1

my 1 1 1 1

my� −1 1 −1 1

mz 1 −1 −1 1

mz� 1 1 −1 −1

TABLE VII. Magnetic �axial vector� irrep modes for the 4h�x ,y , 1
2

� Mn3+ sites �x�0.1, y�0.85� of space
group G= Pbam and k24= � 1

2 ,0 , 1
2

�. The RE atoms are on site 4g with the same site symmetry, and their modes
can be deduced in a completely analogous way. The basis vectors reported herein are related to the Kovalev
basis vectors �obtained by the projection method with the help of the program SARAH �Ref. 27�� by the unitary
transformation vU−1, where U is given in Eq. �7�. The SARAH modes were preliminarily recombined across
invariant subspaces so as to have constant moments on all sites. The matrix elements can be found in Table
V. Primed and unprimed modes �e.g., m1x and m1x�� belong to the same invariant subspace and have been
both multiplied by the same coefficient, so that the unprimed mode is always 1 on atom 1.

Mn3+�1�=x ,y , 1
2 Mn3+�2�=1−x ,y− 1

2 , 1
2 Mn3+�3�= 1

2 −x ,y− 1
2 , 1

2 Mn3+�4�= 1
2 +x , 3

2 −y , 1
2


1 m1x 1 1 1 −1

m1x� 1 −1 −1 −1

m2x 1 1 −1 1

m2x� −1 1 −1 −1

m1y 1 −1 −1 −1

m1y� 1 1 1 −1

m2y 1 1 −1 1

m2y� −1 1 −1 −1


2 m1z 1 −1 1 1

m1z� 1 1 −1 1

m2z 1 1 1 −1

m2z� −1 1 1 1
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from Eq. �A3�, and are reported in Tables IX and X.
It is easy to show that the constant-moment experimental

solution28–30 involves mixing modes spanning the same sub-
space with equal or opposite coefficients. Only the m1x /m1x�
and, to a lesser extent, the m1y /m1y� components are relevant
on both sites, so that, for example, the x components �x of
sites Mn4+ and Mn3+ are

�x�Mn4+� = �*�m1x + m1x�� = �*�m1x,m1x�� · �1

1
� ,

�x�Mn3+� = �m1x + m1x�� = �m1x,m1x�� · �1

1
� , �10�

where �= �1+ i� /	2. Once again, the matrices are applied
precisely to the column vectors in Eq. �10�. With this nota-
tion, the symmetry can be read off directly from Table VIII.
Note that the phase factor �* in Eq. �10� does not reduce the
symmetry even in the commensurate case because �2 is a
lattice translation. The surviving operators h26, Kh3, and Kh28
define the structural point-group symmetry m2m�C2v�, indi-
cating that b is the only polar direction, as observed experi-
mentally. Note that the conclusion is identical to the
BiMn2O5 case, in spite of the fact that we have adopted
different basis conventions for the invariant subspaces. This
is a direct confirmation of our conjecture29 that the c-axis
component of the propagation vector does not affect the

symmetry properties of the system, provided that the in-
plane magnetic structure is the same.

D. HgCr2S4

Recently, attention has been drawn to chalcogenide chro-

mium spinels �cubic, space group Fd3̄m� of the type ACr2X4
�A=Cd,Hg; X=S,Se�, which are weakly ferroelectric in
their magnetically ordered state and have been classified as
multiferroic materials.31–33 HgCr2S4 is particularly interest-
ing because it has a complex magnetic structure, whereas all
the other chalcogenide spinels are ferromagnetic. Very
recently,34 we have studied the HgCr2S4 magnetic structure
using high-resolution neutron powder diffraction. Long-
range incommensurate magnetic order sets in at TN�22 K
with propagation vector k= �0,0 , �0.18�. On cooling below
TN, the propagation vector increases and saturates at the
commensurate value k= �0,0 ,0.25�. The magnetic structure
below TN consists of ferromagnetic layers in the ab plane,
stacked in a helical arrangement along the c axis. We also
performed a full symmetry analysis using corepresentations,
determining the matrices and modes for the relevant corep,
which is derived from the 
5 irrep as explained above. We
will not repeat the detailed analysis, referring instead to our
previous paper,34 of which we summarize the salient point
herein. There are four corep basis vectors, corresponding to
pairs of ferromagnetic and antiferromagnetic helices, all with

TABLE VIII. Matrix representatives of the irreducible corepresentation for the space group G= Pbam and
k16= � 1

2 ,0 ,�� ��= 1
4 for the commensurate phase of TbMn2O5�. The Kovalev matrices �the same for pairs of

unitary and antiunitary operators, as explained in the text� were transformed using the unitary matrix from
Eq. �9�.

Coreps h1 h4 h26 h27 Kh25 Kh2 Kh3 Kh28

D1 �1 0

0 1 � �1 0

0 −1 � �0 1

1 0 � �0 −1

1 0 � �1 0

0 −1 � � 0 1

−1 0 � � 0 −1

−1 0 � �1 0

0 1 �

TABLE IX. Magnetic �axial vector� corep modes for the 4f�0, 1
2 ,z� sites �Mn4+ in REMn2O5� of space

group G= Pbam and k16= � 1
2 ,0 , 1

4
�. Primed and unprimed modes �e.g., m1x and m1x�� belong to the same

invariant subspace.

Mn4+�1�=0, 1
2 , 1

4 Mn4+�2�= 1
2 ,0 , 3

4 Mn4+�3�=0, 1
2 , 3

4 Mn4+�4�= 1
2 ,0 , 1

4

m1x 0 −1 0 i

m1x� i 0 −1 0

m2x 0 i 0 −1

m2x� −1 0 i 0

m1y 0 −1 0 i

m1y� −i 0 1 0

m2y 0 i 0 −1

m2y� 1 0 −i 0

m1z 1 0 i 0

m1z� 0 −i 0 −1

m2z i 0 1 0

m2z� 0 −1 0 −i
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the moments in the x-y plane. Pairs of basis vectors defining
invariant subspaces correspond to left- and right-handed he-
lices. The experimental solution is one of the helices with
in-plane ferromagnetic arrangement. As in the previous case,
the symmetry for an incommensurate propagation vector can
be read off the matrices in Ref. 34 �Table II�, considering that
only those in diagonal form �h1, h4, h14, h15, Kh2, Kh3, Kh13,
and Kh16� survive below the ordering temperature. These op-
erators define the structural point group 422, which is non-
polar in spite of being noncentrosymmetric. We therefore
conclude that ferroelectricity cannot arise from the magnetic
transition at TN�22 K to an incommensurate phase, al-
though the observed polarization can very well have other
causes. The low-temperature phase is close to being perfectly
commensurate with k= �0,0 ,0.25�, and the assessment of its
symmetry requires additional care, since, as already illus-
trated, it depends on the overall phase factor of the magnetic
structure. As a preliminary observation, we remark that the
lattice is F centered, so lattice translations have eigenvalues
that are multiples of ei	/4. The fourfold rotations h14 and h15
are always lost because i�=ei�3/8�	 is not a lattice translation.
The symmetry is always lowest for a generic phase factor,
for which only h4 survives �point group 2�. However, pairs of
orthogonal twofold axes survive for a global phase of
0 mod 	

8 �Kh13 and Kh16� or 	
16 mod 	

8 �Kh2 and Kh3�, so that
the point-group symmetry is 222 in both cases.

IV. DISCUSSION AND CONCLUSIONS

We have presented a general method, based on a noncon-
ventional application of corepresentation analysis, to deter-
mine the point-group symmetry below a magnetic ordering
transition for a crystal that is centrosymmetric in the para-
magnetic phase, regardless of the direction and magnitude of
the magnetic propagation vector. This method was employed
to determine the constraints on the development of electrical
polarization in a different class of “magnetic improper” mul-

tiferroics. This approach can be readily extended, with essen-
tially no modifications, to paramagnetic crystals with nonpo-
lar, noncentrosymmetric groups. It is also noteworthy that
the point group we derived can be employed to set con-
straints on other vector or tensor quantities in the magneti-
cally ordered phase. Pragmatically, we found the process of
deriving corep matrices to be straightforward when one has
become familiar with the Kovalev tables.17 The only caveat
is that one should be careful in dealing with Eq. �A4�, since
the operator a0ga0

−1 may be related to g by a translation,
entailing an additional phase factor in the matrices. We found
that the most effective way of deriving corep basis vectors is
to transform the irrep basis vectors as in Eq. �A5�. The irrep
basis vectors can be obtained directly by projection or with
the assistance of one of several dedicated programs such as
FULLPROF, MODY, or SARAH.27,35,36 Whatever the method em-
ployed, it is useful to check the symmetry of the basis vec-
tors against the corep matrices. This is best done graphically
by superimposing the basis vector pattern, with the appropri-
ate phase factors indicated, onto a diagram of the symmetry
elements as in the International Tables.21 With a savvy choice
of the basis vectors, the structural point-group symmetry of
the magnetically ordered phase can often be deduced by in-
spection for a variety of physically relevant magnetic
structures.21

APPENDIX: AN OVERVIEW OF COREPRESENTATION
THEORY

Coreps are constructed in a very similar way to irreps, on
the basis of the subset Mk of �E ,K� � G that leaves k invari-
ant, the equivalent of the “little group” Gk. It is important to
stress that, by its very construction, Mk �like Gk� never
mixes the +k and −k Fourier components, so the basis func-
tions obtained through corep analysis are trivial eigenvalues
of the pure translations. We can, therefore, drop the prefix
eik·t in Eq. �3� and limit our analysis to the representative

TABLE X. Magnetic �axial vector� corep modes for the 4h�x ,y , 1
2

� Mn3+ sites �x�0.1, y�0.85� of space
group G= Pbam and k16= � 1

2 ,0 , 1
4

�. The RE atoms are on site 4g with the same site symmetry, and their modes
can be deduced in a completely analogous way. Primed and unprimed modes �e.g., m1x and m1x�� belong to
the same invariant subspace. �= �1+ i� /	2, and �* is its complex conjugate.

Mn3+�1�=x ,y , 1
2 Mn3+�2�=1−x ,y− 1

2 , 1
2 Mn3+�3�= 1

2 −x ,y− 1
2 , 1

2 Mn3+�4�= 1
2 +x , 3

2 −y , 1
2

m1x �* �* 0 0

m1x� 0 0 �* −�*

m2x 0 0 �* �*

m2x� �* −�* 0 0

m1y �* �* 0 0

m1y� 0 0 −�* �*

m2y 0 0 �* �*

m2y� −�* �* 0 0

m1z 0 0 � −�

m1z� −� −� 0 0

m2z � −� 0 0

m2z� 0 0 −� −�
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elements of Mk such as for usual irreps. This accomplishes
our goal of capturing the full symmetry properties of m while
conveniently working with Fourier components. We can dis-
tinguish three cases:

�1� Mk=Gk. This occurs when −k is not in the irrep star
of k, which is the case only for certain noncentrosymmetric
space groups. By their very definition, the magnetic im-
proper multiferroic materials we deal with here are always
centrosymmetric in the paramagnetic phase, and this case is,
therefore, never relevant.

�2� Mk=Gk+KGk. Since Kk=−k and KE�Mk, k and −k
must be equivalent, i.e., k must be a Lifshits vector. The use
of coreps resolves the difficulty with inequivalent complex-
conjugate representations, which in the conventional irrep
analysis are somewhat artificially combined in physical ir-
reps. However, coreps do not add much in terms of symme-
try analysis, since all the relevant proper and improper rota-
tions are already contained in Gk.

�3� Mk=Gk+a0Gk, where a0=Kh and h� �G−Gk�. Once
again, the very nature of our problem dictates that the inver-
sion I�G, so we can always choose a0=KI. In this case, it is
clear that Mk contains more rotations than Gk, and coreps
should always be used.

The small coreps of Mk are built out of pairs of small

irreps of Gk, 
�g� and 
̄�g�=
�a0
−1ga0�* and their corre-

sponding basis vectors � and �=a0�. Note that � and � may
be linearly dependent, but are always independent if the

magnetic atom is split into orbits or if 
�g� and 
̄�g� are not
equivalent. Using the compound basis �� ,��, the derived
corep is always of diagonal form for g�Gk and of off-
diagonal form for a0g� �Mk−Gk�:

D�g� = �
�g� 0

0 
̄�g�
� ,

D�a0g� = � 0 
�a0ga0�

�g�* 0

� . �A1�

The matrices in Eq. �A1� may be reducible to a simpler
form by a change of basis through a unitary operator U. Note
that the similarity transformation has a different form for
antiunitary operators:

D��g� = UD�g�U−1 ∀ g � Gk,

D��a0g� = U*D�a0g�U−1 ∀ a0g � �Mk − Gk� . �A2�

We can distinguish three further cases:

�a� 
�g� and 
̄�g� are equivalent through a unitary matrix

N, so that 
�g�=N
̄�g�N−1 and NN*= +
�a0
2�. In this case,

Eq. �A1� can be reduced to block diagonal form for both
unitary and antiunitary operators. A significant simplification
occurs if N is the identity matrix. This is always the case, for
example, when there is at least one g�Gk that commutes
with a0 and has a real matrix representative. With the new
basis system:

�� = � + �, �� = i�� − �� �A3�

the corep decomposes into two identical coreps:

g�� = 
�g���, a0g�� = 
�a0ga0
−1���,

g�� = 
�g���, a0g�� = 
�a0ga0
−1���. �A4�

The second corep is often made antisymmetric with respect
to the antiunitary operators by omitting the imaginary unity
in the construction of ��. Clearly, the two resulting coreps
D+ and D− remain identical. If N is not the identity, Eq. �A3�
must be generalized to

�� = � + N*�, �� = i�� − N*�� . �A5�

All the examples in Sec. III belong to this “case �a�.”
�b� 
�g�=N
̄�g�N−1 but NN*=−
�a0

2�. In this case, which
is comparatively rare for centrosymmetric groups, Eq. �A1�
cannot be reduced to a diagonal form. Instead, an appropriate
transformation is applied to convert the matrix representa-
tives of antiunitary operators into a block-antisymmetric ma-
trix.

�c� 
�g� and 
̄�g� are not equivalent. In this case, we
retain the form of Eq. �A1� with the same basis. Note that


̄�g� must necessarily be equivalent to one of the other irreps

in the list, say, 
̄�g�=N
��g�N−1.
Complete tables of the coreps for all crystallographic

space groups, as well as of the “auxiliary matrices” N
�therein called ��, are contained in Ref. 17. From these
tables, one can readily construct the corep matrices and the
new basis vectors.
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