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Dipole-exchange propagating spin-wave modes in metallic ferromagnetic stripes
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Results from Brillouin light scattering experiments on guided spin waves propagating along metallic mag-
netic stripes are presented and analyzed. The spin waves propagate along the stripe axis and form mode
families due to geometrical confinement in the stripe geometry. In consequence, the allowed wave vectors are
quantized in the transverse directions by stripe width and height. We show that each standing spin-wave
resonance across the stripe width is associated with a particular guided mode. In the case of stripes magnetized
along their length, the group velocity of the guided modes is negative and all modes have a volume character.
When the stripes are magnetized along their width, the modes are characterized by a positive group velocity,
and the spectrum consists of a series of volume and localized modes.
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I. INTRODUCTION

The fundamental magnetic excitations in metallic ferro-
magnets typically have frequencies in the microwave region.
The associated wavelengths are long, and the excitations can
be thought of as classical spin waves. Spin waves are char-
acterized by a variety of features that can be tuned through
sample geometry, propagation direction, and applied mag-
netic fields. These characteristics make spin waves particu-
larly useful for applications to spin-wave logic,"? microwave
frequency interferometry, and microwave signal processing
technologies.> Moreover, spin waves are also excited during
the switching of magnetic memory elements* and contribute
significantly to noise associated with high-frequency appli-
cations. From the point of view of applications, one of the
most interesting geometries is the magnetic stripe, defined as
a very long magnetic rod with rectangular cross section.

Brillouin light scattering (BLS) technique experiments
have, to date, probed only spin-wave resonances with the
plane of incidence of light always perpendicular to the
stripes.”~!? These resonances exist as standing waves across
the stripe width and are referred to here as WSSWR modes.
The internal static magnetic field H; and the equilibrium
magnetization M, are spatially homogeneous when the mag-
netization is along the stripe axis, as shown in Fig. 1(a). This
alignment is the magnetic easy direction for soft magnets. In
this geometry the magnetostatic surface wave will be quan-
tized to form a WSSWR family.°

When the external field is applied transverse to the stripe
axis in the direction of the stripe width and parallel to the
incidence plane of light, as shown in Fig. 1(b), the H; and
M, fields are inhomogeneous due to the stripe edges. This
results in a very different spectrum of modes, consisting of a
set of standing wave resonances and a limited number of
localized modes.” The localized modes are excitations with
magnetostatic energies due primarily to inhomogeneous
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fields existing near the stripe lateral edges. The resonances
are formed by width quantization of Damon and Eshbach
volume modes.'? This mode is termed the “backward volume
magnetostatic mode” because of its negative group velocity.
In thin metallic films the spectrum of this mode is signifi-
cantly affected by the exchange interaction. In particular, the
dispersion of this type of mode is nonmonotonic.'?

In addition to standing spin-wave resonances, propagating
modes have been studied as collective excitations of densely
packed periodic arrays of elements.'*'® The collective
modes are formed from WSSWRs in individual stripes
coupled by long ranged dipole fields. These excitations exist
for in-plane propagation perpendicular to the stripe axes. In
what follows we term this the “transverse direction.”

In the present paper we demonstrate that a type of propa-
gating mode can exist in individual stripes and stripe arrays
that is very different from the above transverse direction
WSSWRs. Here we report BLS measurements made with the
incidence plane, and consequently the spin-wave propagation
direction, parallel to the stripe axes. We show that WSSWRs
observed for this geometry are the long wavelength limit of a
general class of guided spin wave modes that are distinct
from the transverse WSSWR.
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FIG. 1. Geometry of the sample: (a) longitudinal magnetization
and (b) transverse magnetization.
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The remainder of the paper is organized as follows. A
description of the experimental results is given in the next
section. Theoretical considerations are outlined in Sec. II
with mathematical details contained in the Appendix. The
paper concludes with a discussion in Sec. III and a short
summary conclusion in Sec. IV.

II. EXPERIMENT

The excitations described above were studied experimen-
tally with an applied static field H aligned along y for a
“longitudinal magnetization,” [as depicted in Fig. 1(a)] and
for the field along x for a “transverse magnetization” [as
depicted in Fig. 1(b)].

Permalloy (Nig,Fe o) stripes having thickness L=30 nm
and width w=600 nm were prepared on thermally oxidized
Si substrates by means of e-beam lithography, electron-gun
deposition, and lift-off process. The stripes were arranged in
a 1 X1 mm? array with edge-to-edge spacing of 500 nm. For
this spacing the elements can be considered noninteracting.

Brillouin light scattering measurements were carried out
at the GHOST laboratory (University of Perugia). Mono-
chromatic P-polarized light from a solid state laser (A
=532 nm) with a power of about 200 mW was focused on
the patterned area using a camera objective of f-2 and focal
length 50 mm. Cross-polarized, backscattered light was ana-
lyzed using a Sandercock type (3+3)-pass tandem Fabry-
Pérot interferometer.!’

In order to probe spin waves having a nonvanishing
wave-vector component along the stripe length, the yz plane
(see Fig. 1) was chosen as the plane of incidence of light.
BLS spectra were recorded by varying 6, the incidence angle
of the laser with respect to the sample normal, in the range
0=8°-70°. This corresponds to changing the spin-wave
wave-number component k,=(47/N)sin 6 parallel to the
stripe  longitudinal axis y from 0.33X10° to 2.22
% 103 rad/cm. Important for this geometry is uncertainty in
the value of the spatial Fourier component of dynamic mag-
netization along the x direction because of the stripe confine-
ment in the “transverse” direction.® This uncertainty results
in a considerable BLS cross section, especially at small in-
cidence angles, from a number of guided modes with nonva-
nishing transverse wave numbers k,.

Values for the saturation magnetization 47Mg (9500 G)
and the gyromagnetic ratio y/(27) (2.82 MHz/Oe) were de-
rived from fits to measured Damon-Eshbach mode frequen-
cies as a function of spin-wave wave number in the unpat-
terned part of the film.'? These values are assumed to apply
also for the patterned regions.

Example BLS spectra for the case of longitudinal magne-
tization, with H=1 kOe along the y axis, are shown in Fig.
2(a). At any incidence angle one can observe several distinct
peaks in the BLS spectra. Three frequencies decrease on in-
creasing k,, as shown in Fig. 3, upper panel. Note that the
lowest-frequency peak has the largest BLS intensity, regard-
less of the angle of incidence.

The BLS spectra for the transverse stripe magnetization,
with H along the x axis, are shown in Fig. 2(b). In this case
a strong static field of 2.9 kOe was applied in order to ensure
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FIG. 2. Sequence of measured Brillouin scattering spectra. (a)
Geometry of Fig. 1(a) and (b) geometry of Fig. 1(b). Spectra are
recorded for different values of the transferred in-plane wave num-
ber (k,) expressed in 10> cm™!. An enlarged portion of the spectra
showihg the doublet is also shown.

that most of the stripe volume was magnetized to saturation.
Two families of modes are clearly seen in the figure. One set
of modes corresponds to intensity peaks at frequencies above
10 GHz. The maximum BLS intensity in this family corre-
sponds to the peak with the highest frequency. Modes of a
second type exist at lower frequencies, where two overlap-
ping sets of intensities can be detected. Note that with the
scale of Fig. 2(b) it is difficult to see that the broad response
at 6—8 GHz actually consists of two peak intensities. At an
incidence angle of 10°, the higher frequency peak at 8 GHz
has a larger BLS intensity than the peak at 16 GHz. As can
be seen in the upper panel of Fig. 4, the frequencies of all
peaks grow when the incidence angle 6 is increased.

One can also see a significant asymmetry in Stokes and
anti-Stokes peaks for this configuration: the negative fre-
quency instensities shown in Fig. 2(b) are considerably
larger than the positive frequency intensities. The asymmetry
increases with k,. On the contrary, in Fig. 2(a) one sees that
the asymmetry is noticeably smaller, and seems to decrease
with increasing k.

III. THEORY

Early calculations for magnetostatic spin-wave propaga-
tion were made for insulating monocrystalline yttrium iron
garnet ferrite films (see Ref. 18 and references therein). Spin-
wave frequency dispersions in lengthwise magnetized metal-
lic stripes were later calculated in Ref. 19 neglecting the
inhomogeneous exchange interaction, and in Ref. 20 with
account taken of dipolar and exchange contributions. It was
shown that spin waves propagating along a metallic mag-
netic stripe appear as a set of guided width modes with dis-
crete values of transverse wave numbers.

In the present work we use an approach valid for small
stripe aspect ratios p=L/w. For p<<1 it is natural to divide
the set of width modes into families which differ by the
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FIG. 3. Upper panel: frequency dispersion of guided spin-wave
modes of a longitudinally magnetized Permalloy stripe [geometry in
Fig. 1(a)]. Dots: experimental points. Thick lines: solution of Eq.
(3), thin lines: two lowest modes from Eq. (13) in Ref. 11 with EBC
from Ref. 25. Parameters of calculation: w=600 v m, L=30 nm,
47mM¢=9500 G, A=107° erg/cm, external field is 1000 Oe. Lower
panels: modal distributions of dynamic magnetization for two low-
est modes n=0 and n=1. Solid line: k_v=0, dashed line: ky=1
X 10° rad/cm, and dash-dotted line: k,=2 107 rad/cm. The thin
solid line: EBC from Ref. 25. (Practically not seen, since very close
to k,=2X 103 rad/cm curve.) The value of the effective pinning
parameter Ref. 25 calculated with the parameters of experimental
sample (above) d=14.9. The surface anisotropy constant entering
the expression for d was assumed to be zero. The error bars show
the experimental error margins: +200 MHz.

number of nodes of the standing wave across the smallest
cross-sectional dimension. In our case the smallest stripe di-
mension is the film thickness. Depending on the magnetiza-
tion direction, the lowest frequency family of width modes is
formed by quantization of the Damon-Eshbach surface wave
in the x direction in our geometry, with the applied field H
directed along the x axis. For the applied field aligned along
the y axis, the lowest frequency backward volume wave and
high-order “standing spin waves” (SSWs) are quantized by
the stripe width. The latter represent higher-order “thickness”
modes for in-plane continuous metallic films, in the sense
that they have nodes along the z axis.

In a continuous metallic film with thickness L lower than
40 nm, as in the present case, the frequency of the first SSW
is usually shifted by the exchange interaction upwards, far
away from the frequency range of the magnetostatic surface
wave. The frequency of the first SSW is also shifted out of
the range of frequencies of the lowest backward volume
wave in the case of transverse magnetization. Consequently
there are no degeneracies, leading to repulsions, of width
modes in the lowest family with the width modes of the
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FIG. 4. (Color online) Upper panel: frequency dispersion of
width modes of a transversely magnetized magnetic stripe [geom-
etry in Fig. 1(b)]. External magnetic field is 2900 Oe. Other param-
eters are as in Fig. 3. Symbols (triangles, squares, circlces, etc.):
experiment. Solid lines: calculation. The five lowest modes are
edge-localized modes and the higher frequency modes span across
the stripe width. Lower panels: modal distributions of dynamic
magnetization for the points A, B, C, E, and F in the upper panel.
The vertical size of the symbols shows the experimental error mar-
gins: £200 MHz.

higher-order families. This is in contrast to observations
made for modes in YIG films.?!

In the calculations which follow, we make a simplifying
assumption. For stripes patterned from thin metallic films, it
is possible to accurately describe the spectrum of the lowest
frequency modes by including exchange and neglecting the
dipolar coupling to higher frequency families of high-order
modes. This approximation is valid for the majority of stripe
geometries of interest experimentally. Unless the stripe as-
pect ratio p is of order unity, exchange is the main contribu-
tion to the high-frequency families of modes. The exchange
interaction eliminates hybridization between mode families
by separating families in frequency due to the high-energy
associated with the exchange stiffness for high-order mode
families. This separation in frequency makes dipolar cou-
pling of families nonresonant and inefficient.

In our mode family decoupling approximation, we aver-
age the dipole fields associated with spin waves across the
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film thickness. This procedure makes contributions from the
high-order families to the dynamic dipole fields of low fre-
quency modes negligible. This method was first developed
for unpatterned films where it was termed the “diagonal ap-
proximation,” and was put on mathematically rigorous
grounds in Ref. 22.

The averaging produced a simple one-dimensional
Green’s function describing the dipole field for WSSWRs.
The validity of the approach for stripes was shown in®
through a comparison with results obtained from an exact
two-dimensional numerical calculation. This approximation
slightly underestimates the frequencies of the lowest mode
family. This error is negligible because the exact mode pro-
files in the z direction for the lowest family are very uniform
across the film thickness. Note that in our approach, ex-
change energy contributions to the in-plane propagation are
properly taken into account. Lastly, we note that our theory is
applicable to a longitudinally or transversely magnetized
stripe. Although not shown explicitly below, uniaxial magne-
tocrystalline anisotropy is also allowed in our numerical
implementation.

We begin with an equation of motion for the magnetiza-
tion based on the Landau-Lifschitz equation

omldt = — [ y{[Mo(x,2) + m(x,y,z,0)] X [H;(x,2) + hy(x,y,z,1)
+hey (x,y,2,0)]}, (1)

where M, is the equilibrium magnetization, H; is the static
internal field, m is the dynamic magnetization, h, is the dy-
namic dipole field induced by the dynamic magnetization,
h,,. is the effective dynamic exchange field associated with
spatially inhomogeneous motion of magnetization, and 7 is
the gyromagnetic ratio. In a continuum approximation,

hexc(x’y’zst) = avzm(x»)’»z,f)» (2)

where a=A/ 27TM§, A is the exchange stiffness, and My is
the value of saturation magnetization of the sample.
Following the method in Ref. 23 we derive an approxi-
mate Green’s function describing the dipole field produced
by the time varying components of the magnetization. The
Green’s function is valid in the limit p<<1. We assume that
the dynamic magnetization and the dipole field represent a
traveling wave along the y axis with negligible variation of
dynamic magnetization and its dipole field along z, i.e.,

m(x,y,z,1) = my(x)expli(k,y — wt)],

hd(x’)ﬁz,t) = hdk(-x)exp[i(kyy - a)t)] (3)

The dynamic demagnetizing field is

wi2

hy(x) =4 f Gilx = x")m,(x")dx’, (4)

-w/2

where
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In the above expressions, b:\s“m,azv'b2+L2, and &(s) is
the Dirac delta function. Derivation and the properties of the
Green’s function (5) are given in the Appendix.

We linearize Eq. (1) using the conditions |m|<€|M,|
=My, |h,+h.|<|H;|=H; and use Egs. (2), (4), and (5). In
the case of Fig. 1(b) H; and M, are spatially inhomogeneous.
We neglect their variation across the film thickness which is
reasonable for p<<1.!'' We arrive at an integrodifferential
equation for the dynamic magnetization my(x),

- i%mk(x) = my (x) X H,(x) + 47M,,(x)

X [ a(P/ox* - k) my(x)

wi2
+ f Gilx = x")my(x")dx' |. (6)

-w/2

One sees from Eq. (6) that the factor —iw/ vy plays the role of
an eigenvalue of the tensorial integrodifferential operator on
the right-hand side of Eq. (6).

IV. DISCUSSION

The system of equations described by Eq. (6) were solved
numerically in order to determine the frequency dispersion
o(k,). Results are shown by solid lines in the upper panel of
Fig. 3 for guided modes with the external static magnetic
field applied along the y axis. There is a good agreement
with the measured experimental points. First one notices that
with the increase in the longuitudinal wave number k, the
eigenfrequency decreases, as expected for this family of
modes which are based upon magnetostatic backward vol-
ume modes. Similar features were found in the earlier
exchange-free calculation.!” Indeed the closed form for G..;
obtained in Ref. 24 shows that the out-of-plane component
of the dipole field decreases with k,. Our analysis shows that
the same is valid for G,,; (see Appendix), therefore the di-
pole energy of guided waves for longitudinally magnetized
stripes decreases with k.

In the lower panels of Fig. 3 we show mode amplitude
profiles calculated from the eigenfunctions satisfying Egs.
(6). The profiles are shown at example k, values, calculated
as eigenfunctions of the integro differential operator. The
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profiles are represented by the m,, amplitude plotted as a
function of x. It is interesting to compare this numerical re-
sult with the approximate analytical method of effective
boundary conditions (EBC) at the stripe edges x=0,w sug-
gested by Guslienko ef al.> From the lower panels in Fig. 3
one sees that the magnetization profiles do not vary much
with longitudinal wave number. One also sees that the mode
profile is not strongly affected by k, at large mode numbers.
The profile should be harmonic and satisfy EBC at the stripe
edges for k,=0 according to the EBC theory. Such a profile
is shown by a thin solid line in the panels, and is very similar
to the numerically found profiles obtained from Egs. (6).
This justifies use of the effective boundary conditions® for
arbitrary values of k,. We note that this approximation was
also made in Ref. 11 for spin waves on magnetic elements
with a finite length in the y direction.

The thin solid lines in the upper panel show the dispersion
of two lowest guided modes calculated using an analytical
approximation wherein one quantizes the modes as described
by Eq. (13) from Ref. 11. One sees a considerable discrep-
ancy between the numerical results obtained from the present
theory, as well as the experimental results, for the lowest
frequency mode and at small values of wave number. Finally,
it is also worth noting that the use of effective boundary
conditions at the stripe edges in the form of the entirely
pinned spins?! results in a still larger discrepancy.

Figure 4 contains the results of the numerical solution of
Eq. (6) with the external static field aligned transversely
along the stripe width in the x direction. To treat the inho-
mogeneity of H;, an approximation originally due to Schlo-
mann was used [Eq. (21) in Ref. 11]. Note that the Schlo-
mann’s formula is the limiting case k,=0 of the integral (4)
involving the Green’s function (5) and a special shape of
magnetization profile m;(x)=e,, where e, is a unit vector
along x.

The frequency spectrum in this transverse field case dis-
plays a rich and complex structure. First we note that the
group velocity of the modes is positive. This can be under-
stood as follows. Suppose that the magnetization were com-
pletely uniform, and define an in-plane wave vector k;,
=k,e,+k.e,. The orientation of k;, rotates from parallel to
perpendicular to H,(x) as k, is increased. This rotation in-
creases the mode frequency in the same manner that the
Damon-Eschbach surface mode frequency increases with
change in propagation direction due to magnetostatic
energies.!

Note that H,(x) is not uniform because of edge effects,
and this results in the appearance of new low-frequency
modes localized at the stripe edges. In Fig. 4 we see that the
frequencies of the localized modes with k,=0 coincide with
the frequencies of localized WSSWRs found in Refs. 7 and
11. In this regard, the frequencies for the second type of
intensites discussed earlier in reference to Fig. 2(b) are lo-
cated close to the calculated frequencies for these localized
modes. There is considerable discrepancy between measured
and calculated frequencies because of our assumption of uni-
form static magnetization and local internal fields in the
stripes. The exact distribution of magnetization and local
fields will be strongly affected by edge morphology, defects,
and history of magnetization.
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The dense band of modes extending to higher frequencies
in Fig. 4 consists of volume modes which represent WSS-
WRs of volume magnetostatic waves for k,=0.'? In the ex-
ternal field range 0—3 kOe, the magnetostatic volume waves
for thin films have a much weaker dispersion than the mag-
netostatic surface wave. In the stripe geometry, quantization
of the modes occurs due to confinement and results in a
dense spectrum of WSSWRs and guided modes. The effect
of the dipole interaction on the dispersion is small, and the
influence of the exchange interaction is more pronounced
than what one finds for a magnetostatic surface wave propa-
gating on an unstructured film. The dipole energy decreases
with increasing wave number, whereas the exchange contri-
bution to the magnetic energy increases.'* In unpatterned
films this competition results in a minimum in the dispersion
for volume modes. Such a dispersion quantized by confine-
ment results in an entangled set of WSSWRs, in which the
frequencies of the lowest volume resonances are situated be-
tween, and separated by, much higher volume WSSWRs.”!!
Rotation of k;, from parallel to perpendicular to the static
increases the frequency of spin waves in an unpatterned film.
One can therefore expect crossing and repulsion of width
mode frequencies in the patterned, confined geometry as
mode degeneracies are encountered. Mode repulsion will be
in fact accentuated by the confined geometry since the inter-
nal static field is inhomogeneous, leading to stronger hybrid-
ization.

One sees that experimental data shown in Fig. 4 fall along
calculated frequencies where the group velocity is largest.
The agreement between experiment and theory is best for the
two high-frequency sets of experimental points (down tri-
angles and squares). The next lowest frequency set of experi-
mental points (circles) is offset by more than the experimen-
tal error (200 MHz) from the theoretical curves.
Regardless, one can clearly see that the experimental data
follow nearby theoretical curves. As discussed above, this is
probably due to assumptions in the model concerning static
internal fields and magnetization.

Schlomann’s static internal field model [Eq. (21) in Ref.
11], in combination with the magnetic parameters obtained
from fitting the spin dispersion law measured on the unpat-
terned part of the sample, is in good agreement with the
measured data for the high frequency intensity peaks. A de-
tailed model for the static local fields and magnetization
would be required in order to describe accurately frequencies
of all volume modes.

Our calculation shows that mode hybridization is small in
regions where the group velocity is largest. Consequently the
profiles of dynamic magnetization are not strongly affected
in these regions. Furthermore, we have verified that only
modes with symmetric profiles contribute to measurable
peaks in BLS spectra, and modes with antisymmetric profiles
do not give a noticeable BLS signal (for example, see profile
D in the lower panel of Fig. 4). For instance, the maximum
BLS cross section in Fig. 2(b), indicated by triangles, is as-
sociated with the lowest symmetric mode corresponding to
profile B in the lower panel of Fig. 4. The next strongest
response (indicated by squares) is associated with a two node
symmetric mode (profile F in Fig. 4). One would expect that
the next contribution to the BLS signal should be from the
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symmetric mode having four nodes in the dynamic magneti-
zation profile. Indeed, from the upper panel in Fig. 4 we see
that most of the data are sandwiched between two bounds:
the upper bound corresponding to the antisymmetric mode
with three nodes, and the lower bound corresponding to the
symmetric mode with four nodes.

The maximum intensity for the lowest-frequency peak in
the case of the longitudinal wire magnetization [shown in
Fig. 2(a)] may be understood similarly, because this mode is
the lowest-frequency mode with even symmetry.

We now turn to the observed asymmetry of the Stokes and
the anti-Stokes peaks in Fig. 2(b). In this experimental con-
figuration k;, points along the x direction for small incidence
angles. This orientation corresponds to a geometry in which
the backward volume magnetostatic wave is characterized by
symmetrical Stokes—anti-Stokes BLS intensities. When the
incidence angle is increased, k;, rotates toward the y axis,
and one has the case of a Damon-Eshbach surface wave. The
surface wave is characterized by a high Stokes—anti-Stokes
asymmetry associated with the nonreciprocal propagation of
these excitations.!?

V. CONCLUSION

We have examined experimentally and theoretically fami-
lies of propagating guided modes which exist in metallic
magnetic stripes. The modes have continuous wave numbers
along the direction of propagation and are quantized in both
transverse directions due to confinement.

Experimentally we have shown that these modes can be
easily observed using Brillouin light scattering. The theory is
an extension of previous work to compute all components of
the Green’s function of dipole field induced by the dynamic
magnetization of the guided modes. We showed how contri-
butions from the total dipole field associated with the guided
modes can be identified through analysis of experimental
data. Dispersion relations for the cases of longitudinal and
transverse magnetization were calculated and features spe-
cific to longitudinal guided modes in the long wavelength
limit were identified.
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APPENDIX: DERIVATION AND PROPERTIES OF THE
GREEN’S FUNCTION

We start with the Green’s function of the dipole field in-
duced by an arbitrary three-dimensional profile of magneti-
zation m(p)

h,(p) = f Gy(p-p")m(p)av, (A1)
1%

where
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G ( /)_ii 1
Vaa'\P = P _&Olf?a/, |p_p,|

(A2)

[see Eq. (5.98) in Ref. 26], p=(x,y,z), a=x, y, or z, and V is
the sample volume. We specify the shape of the sample as
being a rectangle of the infinite length along y having the
width w along x and the thickness L along z, such that p
=L/w<1. We neglect variation of magnetization m along z
and calculate the dipole field associated with wave traveling
along y [Eq. 3)].

We substitute the first of Egs. (3) into Eq. (A1) and inte-
grate over the volume of the rectangle. Finally we average
the z-profile of the obtained dipole field inside the stripe over
the film thickness. This gives the dependence between my(x)
and h(x) from Egs. (3) in the form of Eq. (4). The kernel

ék(x—x’) in Eq. (4) is

i 1 (” L2 L2 i
Gk(x—x’)=—f dtf dzf dz'Gylx—x",t,z—7")
Ll Jun Joun

Xexp(— ikyt). (A3)
By calculating the integrals over z and z' analytically one
obtains Eq. (5).

We note that the out-of-plane diagonal component G
was derived in Ref. 24. It can be expressed in terms of modi-
fied Bessel functions, as shown:

G.u(s) = (L) Ko(k\'s® + L?) = Kok Js])].  (A4)
Some parts of the other components can also be presented in
terms of modified Bessel functions.

In the limit k,=0 the Green’s function (5) reduces to the
Green’s function for WSSWRs from Ref. 23. In particular,
one gets ngk(s)=(1/ 27L)In[s?/(s*>+L?)]. The other impor-
tant component G, in the limit k,=0 reduces to G(s)
=—5(s)—ngk(s) and G,y vanishes. In the limit of plane
waves in an unconfined film, w— o, the components of ék
lose their dependence on x and x’, and -G, becomes
the so-called “dipole matrix element” Py=1-[1
—exp(—k,L)]/(k,L)*"** which describes the dipole field of
the lowest-order thickness mode in the “diagonal approxima-
tion” and has a sense of an effective wave-number-dependent
demagnetizing factor for a ferromagnetic film. In this limit
the component G,,; vanishes. In the limit of a bulk sample
L,w— 0, the only nonvanishing component is G,;. This
term is responsible for the only component of dipole field in
a spin wave which is along the wave propagation direction. It
is this component which gives rise to the dependence of bulk
spin wave frequency on the propagation angle with respect to
the static field (see, e.g., Ref. 28). In the limit of the uncon-
fined film w—o0 this component describes the increase in
frequency of the Damon-Eshbach magnetostatic surface
wave with wave number.

The components (5) are singular on the diagonal x=x'.
However, the integrals of the components over x’ are finite.
Therefore the functions
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wi2

R, gi(x) = 1/wJ G opi(x,x")dx' (A5)

-w/2

can be used to quantitatively compare the components of ék.
One can also use the integrals (A5) for estimation of ampli-
tudes of components of the spin-wave dipole field. The latter
is possible since R,g(x) represents the profile of the a com-
ponent of the dipole field induced by a homogenous profile
of magnetization pointing along the S direction. Further-
more, we note that the profile my(x) of the lowest guided
mode is quasihomogeneous (see Fig. 4, lower panel, n=0).
We also note that for p<<1 the function R, (x) does not
noticeably differ from a constant unless in the areas of length
of order L at the stripe edges. (This reflects the fact that the
dipole field profile of a homogeneous magnetization is quasi-
homogeneous.) Then an estimate of the dispersion law for
the lowest guided mode can be obtained from Eq. (6) setting
m(x)=m,(0) and replacing the integrals by
R ,0i(0)m;,(0), where x=0 corresponds to the middle of the
stripe width. This transforms the system of integrodifferen-
tial equations (6) into an algebraic equation. For instance, for
the geometry of Fig. 1(a) one gets

w*(k) ={V'H; = 47M [ R_4(0) + R, 4(0)]

+ (47M )R 4 (0)R 4 (0)}. (A6)

Figure 5 shows the dependencies —1+R,;(0) and R_;(0)
on k,. One sees that for p<1 |R_,] is larger and has a stron-
ger dependence on k, than |R.]. This is not unexpected,
since G, does not vanish only due to confinement in the
transverse direction. It gradually decreases with a decrease in
p. Provided p<<1, the transverse confinement is not impor-
tant for large longuitudinal wave numbers k,> 7/w, there-
fore in this limit R, is vanishing. On the other hand, as long
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FIG. 5. Components of the tensorial Green’s function (3) inte-
grated over the stripe width [Eq. (A6) in the Appendix]. Dashed
lines are for p=0.1 and dashed-dotted lines are for p=0.01. Lines
with a positive slope: the zz component, lines with a negative slope:
the xx component. Values for R, are the difference between the
lines for —1+R, and R_;.

as k, is not much larger than 1/L the components R_; and
R, remain k, dependent, as in this limit they tend to —P
and —1+ P, respectively.

The relation |R,;| > |R,/| results in a negative dispersion
of guided modes [Eq. (A5)] in the geometry of Fig. 1(a),
since this case only involves G, and Gy, and as |R_
decreases with increasing k. The numerical calculation in
Fig. 3 is in agreement with this conclusion. In the case of
Fig. 1(b), the two components G, and G, are involved and
each has a similar dependence on k,. However, the slope of
G with respect to k, is negative and the slope of G,y with
respect to k, is positive. This results in a competition of
dipole energies associated with these components and the
dispersion of guided modes in this case is more complicated
(see Fig. 4).
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