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The superexchange interaction in transition-metal oxides, proposed by Anderson in 1950, is treated using
contemporary tight-binding theory and existing parameters. We find also a direct exchange for nearest-neighbor
metal ions, larger by a factor of order 5 than the superexchange. This direct exchange arises from Vddm

coupling, rather than overlap of atomic charge densities, a small overlap exchange contribution that we also
estimate. For FeO and CoO there is also a negative “double-exchange” contribution, related to Stoner ferro-
magnetism, from the partially filled minority-spin band that broadens when ionic spins are aligned. The
corresponding contributions to the J1 and J2 parameters are calculated for MnO, FeO, CoO, and NiO. They
give good accounts of the Néel and Curie-Weiss temperatures, show appropriate trends, and give a reasonable
account of their volume dependences. For MnO the predicted value for the magnetic susceptibility at the Néel
temperature and the crystal distortion arising from the antiferromagnetic transition were reasonably well given.
Application to CuO2 planes in the cuprates gives J=1220 K, compared to an experimental 1500 K, and for
LiCrO2 gives J1=450 K, compared to an experimental 230 K.
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I. INTRODUCTION

The interaction between electron magnetic moments on
neighboring ions in solids is usually written in terms of
Heisenberg exchange 2JSi ·S j for the coupling between two
spins, with angular momentum Si and S j in units of � �e. g.,
Kittel,1 p. 462, but here with positive J for antiferromag-
netism; the factor of 2 is because the total is written as
J�i,iSi ·S j and each pair enters as ij and ji.�. The parameter J
is generally taken from experiment but Anderson2 long ago
proposed a superexchange mechanism for such coupling in
ionic solids containing transition metals, based upon a cou-
pling between the d states on a magnetic ions and orbitals on
the neighboring anions, p states on oxygen in particular. The
successive coupling of these oxygen orbitals with d states on
a neighboring magnetic ion produced a coupling between
magnetic moments of fourth order in this pd coupling. He
sought to estimate the magnitudes of the coupling3 using
rather crude estimates for the quantities which enter. More
recently we4 have given values for all of the parameters
which enter this superexchange mechanism, based upon el-
ementary descriptions of the electronic structure and aimed
at other bonding and dielectric properties of these solids. In
the present analysis we use these newer parameters to esti-
mate the magnitude and find the detailed form of Anderson’s
superexchange interaction.

There have of course been many developments in this
subject in the intervening 48 years. Some were refining and
generalizing Anderson’s first formulation, and some were
seeking a much more accurate computational approach. For
refining and generalizing, it has been realized that different
things can be meant by “local” d orbitals in the solid, which
are coupled. Atomic d orbitals come first to mind, but they
might be deformed by the crystalline environment or could
even be Wannier functions based upon the p-d bands, an
approach which was taken for example by Girard, Journeaux,
and Kahn.5 In this context the superexchange through the
oxygen p states becomes a direct coupling between d Wan-

nier functions. Tight-binding theory, as in Ref. 4, makes an-
other choice, in which the d orbitals are considered orthogo-
nal to each other �as are Wannier functions� with any effect
of nonorthogonality treated separately. Girard et al. have also
shown explicitly the difference in results depending on
whether the orbitals are orthogonal or not. In tight-binding
theory the oxygen p orbitals are included separately, more as
in Anderson’s formulation,2,3 but all of the energies and cou-
plings of these d and p orbitals derive from various energy-
band approaches, as described in Ref. 4.

Computational approaches have also been developed. We
regard both the tight-binding and computational approaches
as ab initio, differing in the extent to which simplifying ap-
proximations are made. Liechtenstein et al.,6 for example,
used a Korringa-Kohn-Rostoker �KKR� Green’s function
method based upon a local spin-density approximation to
estimate the energy change when there were small rotations
of the spin polarization in neighboring atomic spheres, an
approach directed at metals and a situation much different
from the ionic crystals which we consider here. Illas et al.7

sought to treat the magnetic properties of an ionic crystal
�KNiF3�, treating small clusters with two or four nickel ions,
expanding the local orbitals in Gaussians. This is closer to
the framework of the tight-binding approach, but with pa-
rameters evaluated microscopically for the cluster. Their aim
was understanding the different contributions in the context
of their calculations, delocalization and charge transfer, etc.,
rather than the influence of specific neighbors as we shall do.
Liechtenstein, Anisimov, and Zaanen8 treated a similar com-
pound �KCuF3� using local-density theory with explicit Cou-
lomb repulsions �LDA+U� much closer to the method of
Ref. 6. They used muffin-tin orbitals, rather than Gaussians,
to expand the states. Again the effort was directed at compu-
tational methods, but for this compound they did find a J
=20.7 meV exchange interaction for copper neighbors along
the chain, in good agreement with the experimental
17.5 meV.

A more recent analysis by Anisimov et al.9 used Wannier
functions obtained from an LDA description, but for use in
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the construction of fully correlated states. This scheme is
perhaps closest in concept to our tight-binding approach, but
probably also the most intricate refinement. However, in
their final application to SrVO3 and V2O3, they focused on
the spectral functions relevant to the optical properties. If it
were applied to Heisenberg exchange, as in Ref. 8, one could
expect it to be intrinsically more accurate than the tight-
binding approach.

The parameters entering the tight-binding theory of Ref. 4
include the coupling between d states and oxygen p states
upon which superexchange is based, but also include a direct
coupling between d states on neighboring magnetic atoms,
which gives rise to an additional coupling between moments.
We include this coupling also, calling it a direct exchange. It
is of a different physical origin than the “true direct ex-
change” introduced by Anderson,3 which was based upon
Hartree-Fock exchange in the overlapping electron densities
from the two magnetic ions, which we prefer to call overlap
exchange. We estimate this contribution also and find that it
is indeed small, as Anderson indicated. We shall find, how-
ever, that our direct exchange is considerably larger than
superexchange.

The terminology is unfortunate because exchange has a
clear meaning in Hartree-Fock theory and band theory: it is
the lowering Ux of the repulsive Coulomb interaction be-
tween two electrons of the same spin on an atom because of
the antisymmetry of their spatial wave function with respect
to interchange, keeping electrons of the same spin from be-
ing close to each other. It is the origin of Hund’s rule that the
energy for an atom is lower if the spins of its electrons are
aligned. The relative alignment of these total spins on neigh-
boring atoms is quite a separate question. The strength of the
superexchange, and our direct exchange, for the coupling
between moments on different atoms would not be greatly
changed �only through the relative lowering of the minority-
spin d states� if the Hartree-Fock Ux were taken to zero. Of
the four contributions to the Heisenberg J we shall study,
only the overlap exchange arises from this Hund’s-rule ex-
change.

We shall proceed in Sec. II by giving the parameters for
the MnO electronic structure, the simplest case. We then pro-
ceed, treating the coupling between neighboring orbitals in
perturbation theory, to calculate the total energy difference
�E depending upon whether an Mn neighbor to a particular
Mn ion has parallel rather than antiparallel spin alignment.
This includes nearest-neighbor, J1, superexchange and
second-neighbor, J2, superexchange and direct and overlap
exchange J1 between nearest neighbors. In Sec. III we give
also the parameters for FeO, CoO, and NiO and indicate the
needed changes in the calculation and in Sec. IV predict
various magnetic properties and compare with experimental
values where available.

II. COUPLING BETWEEN MOMENTS IN MNO

MnO, with all majority-spin states occupied and all
minority-spin states empty, has the simplest electronic struc-
ture of the magnetic monoxides. The important states on the
anion, oxygen, are the valence p states, having energies

given by the Hartree-Fock term value10 −16.77 eV, approxi-
mately the removal energy of the corresponding electron
from that atom �Appendix B�. In the crystal the two s elec-
trons from the Mn atom have been transferred to these states
so that all six states are occupied, as indicated in Fig. 1�a�.
The Coulomb repulsion of these added electrons would raise
this level, but that rise is approximately canceled by the
Madelung potential �as in the alkali halides4� so we do not
change it.

The important states for the manganese ions are the 3d
states, with Hartree-Fock term value −15.27 eV given in Ref.
4, but this value applies to a d5 configuration with equal
numbers of up- and down-spin d electrons. The exchange
interaction Ux=0.78 eV obtained from atomic spectra of
manganese was listed in Ref. 4 �p. 589�, so shifting 2.5 elec-
trons to the majority spin leads to a term value for the ma-
jority spin of �d

−=−17.22 eV, approximately equal to the re-
moval energy for these electrons, appropriate for spins fully
aligned, and indicated in Fig. 1�a�. Adding 2.5Ux to the
Hartree-Fock term value gives �d

min=−13.32 eV which would
be approximately the level to which a majority electron
would need to be raised to flip its spin. That energy will not
be of interest for MnO, where we will only partially populate
these states from the neighboring Mn atoms. For that we
must add to �d

min the Coulomb repulsion of the majority elec-
tron which was not removed if we simply flipped the spin.
We take that repulsion to be the Ud=5.6 eV �from Ref. 4, p.
645�, leading to the �d

+=−7.72 eV shown in Fig. 1�a�. The
relevance of this choice of Ud is discussed in Appendix B,
and in Appendix A we look carefully at the correlation of
electrons in multiple bonds to see that �d

+ obtained with this
Ud can be used directly in perturbation theory. These values
will change when we go to FeO, CoO, and NiO, and at each
step we add an additional minority electron at �d

min.
We next add the coupling between orbitals on neighboring

ions, the largest being the coupling between the Mn d states
and the O p states. For states with no angular momentum
around the internuclear axis it is given by �Ref. 4, p. 643�
Vpd�=−�3�15/2���2�rd

3rp�1/2 /md4, and for one unit of angu-
lar momentum Vpd�=−Vpd� /�3. In Ref. 4, Table 15-1, two
sets of values for the rd were listed: one obtained from
muffin-tin orbital �MTO� calculations by Andersen and

�d+

�p
�d-

(a) (b)

Mn0 Mn2

Mn1

�dmin

FIG. 1. In �a� are shown the essential energy levels in MnO,
with five electrons per MnO in the Mn �d

− state, six in the oxygen
�p. The energy at which an electron could be added from another
Mn is �d

+. The energy to flip the spin of a majority electron is
�d

min−�d
−. In �b� is a segment of the lattice, showing a d state xy on

an atom Mn0, a d state 3z2−r2 on a nearest-neighbor Mn1, and an
xy on a second-neighbor Mn2. Also shown are oxygen p states on
two of the oxygen neighbors to Mn0. The signs for the wave func-
tions are for antibonding states.
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Jepsen,11 and the other calculated directly and simply by
Straub and Harrision12 from the atomic Hartree-Fock wave
functions10 using the atomic surface method �ASM�. We in-
dicated in Table 15-1 that the MTO values were to be pre-
ferred, because the calculations made fewer approximations,
but listed the ASM values in the solid state table and have
used them often since, perhaps because then all parameters
were obtainable simply from free-atom states. The values
generally differed by only a few percent, but for the elements
of interest here �Mn, Fe, Co, and Ni�, the MTO values are
larger by about 16% and we discovered during the present
study that they account much better for the magnetic prop-
erties �they enter to the sixth power, as we shall see�. We
therefore shall use the MTO values and also check �at the
end of the paper� the change which this would make in other
recent calculations we have made for transition-metal sys-
tems. With rd=0.925 Å for Mn �Ref. 4, p. 539� and rp
=4.41 Å for O �Ref. 4, p. 644; a more complete set for
anions is given in Ref. 13� and a spacing of d=2.22 Å, this
gives Vpd�=−1.084 eV and Vpd�=0.626 eV.

The couplings between Mn d states, second neighbors at a
distance r=�2d=3.14 Å, are much smaller. We use4 Vdd�

=−45�2rd
3 / ��md5� for nearest-neighbor interactions, which

would give −0.283 eV if we simply replaced d by the larger
r. However, here nearest neighbors are oxygen and we cer-
tainly expect exponential variation at such large metal-metal
spacings. It is preferable to fit this nearest-neighbor result to
an exponential, giving a value smaller by a factor 0.71
( equal to exp�−5�r−d� /d� / �d /r�5), Vdd�=−0.202 eV. Then
Vdd�=−2Vdd� /3 and Vdd�=Vdd� /6. These will enter our di-
rect exchange interaction. These couplings broaden the levels
into narrow bands, but with a wide gap between the occupied
and empty states so that the system is insulating, and we will
not need to be concerned with the structure of the bands.
When we turn to FeO and CoO the minority-spin states will
be partially occupied and we will need to consider them
more carefully. Of more importance for MnO, the coupling
will affect the relative energy of antiferromagnetic and fer-
romagnetic spin alignments, which is our concern here.

The total energy differences, in the context of self-
consistent-field theory, can be taken as the difference in the
sum of occupied-state eigenvalues, as long as the atomic
charges are held constant. �e. g., Ref. 4, p. 15.� If we imagine
a Hamiltonian matrix with the levels shown in Fig. 1�a� on
the diagonal, the addition of coupling in the off-diagonal
elements does not change the sum of all eigenvalues and it
will be simplest to calculate only the shift of the few empty
levels, knowing that the total shift in occupied values will be
equal and opposite.

We note also that the energy difference between these
empty levels and the occupied ones is so large that perturba-
tion theory should be adequate. That conjecture was con-
firmed, again in the context of self-consistent-field theory, by
going beyond perturbation theory using the method applied
earlier to dielectric properties of insulators.13 In this ap-
proach, as would be appropriate here, three-by-three Hamil-
tonian matrices were obtained, based upon states at �d

+, �d
−,

and �p, which if evaluated to fourth order in the couplings
would be equivalent to perturbation theory. We also solved
the three-by-three matrices for MnO exactly and found that

this reduced the shifts in the empty levels, and therefore the
Heisenberg J’s, by only 10%. We further solved for the states
themselves and calculated the self-consistent shifts in the di-
agonal elements, which reduced the estimated shifts and J’s
by another 10%, principally from the upward shift of �d

+ due
to charge transfer from the p states to the empty d states. We
considered these shifts small enough that we did not compli-
cate the analysis by including them. A more complete ac-
count of this approach, an Appendix C, is available from the
author on request �walt@stanford.edu�, but is not included
here.

In the analysis here it will actually be important to go
beyond self-consistent-field theory. In Appendix A we dis-
cuss a simplified problem with a single pair of identical
states, coupled by a single V and containing two electrons,
with an extra energy U if both electrons are on the same
atom. This problem is so limited, with only six two-electron
states, that it can be solved exactly. It is seen that when U is
large, the effect on the total energy of V is to lower the
energy by −4V2 /U, while in self-consistent-field theory
�LDA or unrestricted Hartree-Fock, for example� the lower-
ing in energy is only −2V2 /U. One way of intuitively ex-
plaining the difference is to say that in the LDA an electron
localized on one atom can jump to the other at higher energy
by U and return, contributing −V2 /U to the energy. In the full
solution an additional, equal, contribution comes from one
electron jumping to the other atom, but then the other elec-
tron jumps to the first atom. Adding the contributions from
both electrons leads to the −4V2 /U.

Our use of perturbation theory will reduce the problem to
the effects of coupling between specific pairs of electronic
states, and for each such pair we shall use the −4V2 /U con-
tribution rather than the −2V2 /U, which would be obtained
in self-consistent-field theory. Also by adding the effects of
orbitals on specific pairs of neighbors, the resulting change
in energy can be represented by a Heisenberg parameter J.
Thus in detail we shall calculate the shift in the empty �mi-
nority� d states due to interactions involving a particular
neighboring magnetic ion, obtaining �E, the energy for the
pair of ions if their spins are parallel minus the energy if they
are antiparallel. Since our calculation of energies corre-
sponds to taking these spins as aligned or antialigned along
some axis �S1 ·S2= ± �5/2�2 for Mn�, the corresponding J is
given by

J = �E/4S2. �1�

If �E is in eV, we may multiply by 1/kB=11604 K/eV to
obtain traditional units of K. �This energy difference 4JS2

=25J is not far from the 30J which would be obtained from
a full quantum treatment of the added angular momenta for
an isolated pair of ions. Then one writes the total spin for the
pair as Sp=S1+S2 so S1 ·S2= �Sp

2 −S1
2−S2

2� /2. With Sp
2

=Sp�Sp+1�, etc., the difference in energy between parallel
spin, Sp=5, and antiparallel spin, Sp=0, is 5�6J. We shall
use this full quantum form when calculating magnetic prop-
erties from our estimated J’s.�

We may see how this energy calculation proceeds for su-
perexchange by considering a single empty d state on a Mn
ion such as the xy orbital shown on Mn0 in Fig. 1�b� and
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considering the influence of the orbitals of the nearest-
neighbor Mn1. This xy orbital is coupled to p states on four
of its neighboring oxygens by Vpd� so that in perturbation
theory this xy orbital contains terms Vpd��p� / ��d

+−�p� from
each of the two p states shown. Of the orbitals xy, yz, zx,
x2−y2, and 3z2−r2 on the Mn1 ion, only the 3z2−r2 orbital
shown is coupled to the combination of the two, to each by
−Vpd� /2. The terms from the two p states add to give a
second-order coupling V=Vpd�Vpd� / ��d

+−�p� between the d
states on the two ions. The same coupling applies to the
3z2−r2 orbital on Mn0, coupled to an xy orbital on Mn1.
Similarly, the xz orbital on Mn0 is coupled to a yz orbital on
Mn1 by V=Vpd�

2 / ��d
+−�p�, as is the yz orbital on Mn0 to the

xz orbital on Mn1. The x2−y2 orbital is coupled to p states on
both of these oxygens, but the combination is not coupled to
any d state on Mn1.

Now if the spin on Mn1 is opposite to that on Mn0, the
minority-spin states on Mn0 are coupled to majority-spin
states on Mn1 and the sum of the energy shifts upward of the
empty minority d states added for the two ions is

�E1 = 4 � V2

U
= 4

2Vpd�
2 Vpd�

2 + 2Vpd�
4

��d
+ − �p�2��d

+ − �d
−�

�superexchange, MnO� , �2�

where the subscript 1 indicates nearest-neighbor Mn. On the
other hand, if the spins on the Mn1 states are parallel to those
on Mn0, it is only coupling between empty states and there is
no net shift in energy of the empty �or of the filled� states
from these fourth-order terms, and the second-order terms
are the same for both parallel and antiparallel cases. Thus
this �E1 is exactly the �E determining the J in Eq. �1�.

The shift in the energy for superexchange coupling with
second neighbors, between M0 and Mn2 in Fig. 1�b�, is still
simpler. The xy states on Mn0 are coupled only to xy states
on Mn2 and the zx states on Mn0 only to zx states on Mn2,
and both matrix elements are Vpd�. The 3x2−r2 states on the
two ions are coupled with both matrix elements Vpd�, and the
yz and y2−z2 states are not coupled, to give the energy for
this coupled pair of

�E2 = 4
2Vpd�

4 + 2Vpd�
4

��d
+ − �p�2��d

+ − �d
−�

�superexchange, MnO� .

�3�

It may be interesting that we could similarly calculate the
energy difference for an isolated set, Mn-O-Mn, as a function
of the angle � between the axes to obtain a J���. It would
correspond to Eq. �2� for �=� /2, and we could double it to
include the effect of both oxygens, but it would still differ in
the term in Vpd�

2 Vpd�
2 because of the interference between

matrix elements for the two oxygens in the crystal �perhaps
analogous to the adding which doubled the coupling in cor-
related pairs in Appendix A�. It is better to define the J’s in
terms of the full crystal structure, as in Eqs. �2� and �3�.

Noting Vpd�
2 =Vpd�

2 /3 we may obtain the ratio J2 /J1
=�E2 /�E1=11/8=1.38 for superexchange. Substituting the
values given above gives �E1=6.32 meV and �E2
=8.68 meV, corresponding to �Eq. �1�� J1=2.94 K and J2

=4.04 K. These are much smaller than values derived by
Lines and Jones14 from experiment.

We noted above, however, that there is also a direct cou-
pling between d states on neighboring ions, corresponding to
Vdd�, Vdd�, and Vdd�. These apply to nearest-neighbor Mn
ions and give quite directly

�E1 = 4
Vdd�

2 + 2Vdd�
2 + 2Vdd�

2

�d
+ − �d

− �direct exchange, MnO� ,

�4�

corresponding to �E1=33.4 meV or 15.6 K, raising J1 to
18.4 K.

We may also estimate the overlap exchange, mentioned at
the beginning. The normalized probability density for the
atomic d states is approximately 	�r�= �
3 /��exp�−2
r�,
with �2
2 /2m=−�d. �See, e.g., Ref. 4, p. 355. We use the
Hartree-Fock term value10 �d. Note also that orthogonalizing
a d state on one atom to that on another, �d1�→ �d1�
− �d2�	d2 �d1� adds −	d2 �d1�2Ux for the second atom, but sub-
tracts it from the first, making no additional change in en-
ergy.� We let the nuclei be separated by a distance s, equal to
d�2 here. We may calculate the overlap numerically as

O =
 	�r − s/2�	�r + s/2�d3r�
 	�r�3d3r , �5�

with the scale factor chosen such that O=1 for s=0. �It
turned out to be approximately O�1.66�
s�2exp�−2
s� in
the range of interest.� For each of the oxides we consider,
with a total of Zd d electrons per metal ion, there are five
majority-spin electrons and Zd−5 minority-spin electrons.
The exchange energy for parallel spin on the two neighbor-
ing ions is 52+ �Zd−5�2 times −UxO and for antiparallel ion
spins 2�5�Zd−5� times −UxO. The difference gives

�E1 = − �10 − Zd�2UxO �overlap exchange� �6�

��10−Zd�2 would be replaced by Zd
2 if Zd were less than 5�.

For Mn we find 
s=
d�2=6.28 and the overlap O
=0.232�10−3, giving an overlap exchange favoring parallel
spin for a pair of neighboring Mn ions with �E1
=−4.5 meV. It may be surprising that this is nearly as large
as the superexchange �E1, but this will not be true for the
other oxides. The direct exchange is dominant in any case,
and the total J1 becomes 16.4 K.

These values are then in moderate accordance on average
with the values estimated by Lines and Jones,14 J1=10 K and
J2=11 K, though our ratio is much smaller. On the other
hand, Bloch and Maury15 found J2 /J1=0.47, closer to our
0.28. We shall return to the magnetic properties after we
make evaluations of J1 and J2 for the other oxides.

III. OTHER MONOXIDES

We may obtain values for the principal parameters for
FeO, CoO, and NiO, exactly as we found them for MnO, and
they are listed in Table I. There are also differences in the
analysis because of the additional Zd−5 electrons in
minority-spin states. These have an energy �d

min=�d
−+ �10
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−Zd�Ux because the occupation of parallel-spin states is less
by 10−Zd than for majority-spin electrons. Similarly, the en-
ergy at which minority electron density is introduced from
neighbors is higher at �d

+=�d
min+Ud as in MnO. Again in

obtaining the total energy we add shifts only for empty
states, eliminating those minority states occupied. For this
series only tg minority states are occupied since the three per
ion are raised by only 4Vpd�

2 / ��d
+−�p� �in second-order per-

turbation theory� from interaction with the four oxygen p
states to which they are coupled, while the two eg states are
raised by 3Vpd�

2 / ��d
+−�p� by the corresponding coupling.

There is a difficulty in that if we eliminate a particular tg
state it will affect �E1 differently for different neighbors. We
should subtract an average contribution for each tg dropped,
equal to �Vpd�

2 Vpd�
2 +2Vpd�

4 � /3 in the numerator of Eq. �2� for

�E1 and to 2Vpd�
4 /3 in the numerator of Eq. �3� for �E2.

The situation is a little more complicated for the direct
exchange of Eq. �5�. A tg state xy is coupled by �3Vdd�

+Vdd�� /4 to an xy state on an ion in a �110� direction �from
the Slater-Koster tables16� which means such a state is �3/2
times a �-oriented state plus 1/2 times a �-oriented state.
That means that the sum of the squared coupling to all states
on that ion is �3Vdd�

2 +Vdd�
2 � /4 and there are four such neigh-

bors. Similarly there are eight neighbors for which the sum
of squared couplings is �Vdd�

2 +Vdd�
2 � /2 and the average of

the squared coupling for each neighbor is Vdd�
2 /4+Vdd�

2 /3
+5Vdd�

2 /12=0.410Vdd�
2 to be subtracted from the numerator

in Eq. �4� once for FeO, twice for CoO, and three times for
NiO.

There is an additional effect of these occupied minority
states which is often called “double exchange,” related to
Stoner band ferromagnetism. The coupling between these

minority-spin states will broaden them into bands, of width
W, which we determine in Appendix A in terms of the sec-
ond moment M2 of the bands. That M2 is obtained directly
from the coupling assuming all ionic moments, and therefore
minority spins, are parallel. With partial occupation of the
bands only the lower states will be occupied, lowering the
energy of the system. If the spins on some fraction of neigh-
bors are not parallel, W is reduced and the energy rises. This
can be interpreted as a negative contribution to J1, which we
find in Appendix A to be given by

�E1 = − W2/�54Ud� �minority band, FeO, CoO� . �7�

For MnO the bands are empty and for NiO they are full, and
the contribution vanishes.

All of these contributions to J1 and J2 are listed in Table I.
The general rapid growth to the right of the table arises from
the factor 1 /S2 in Eq. �1�, with S dropping from 5/2 to 2 to
3/2 to 1 through the series. The �E1 and �E2 are relatively
constant, as would be expected from the slow variation of the
other parameters which enter, seen in Table I. The values for
overlap exchange use the O from Eq. �5� based upon the
d-state term value10 for the metal in question.

IV. EXPERIMENTAL CONSEQUENCES

Knowing the origin and value of the various J’s in Table I,
we can learn something about the properties which can be
described in terms of them. White17 �also Ref. 1, p. 479� has
indicated that all four compounds have type-II ordering of
spins in the antiferromagnetic structure. Then �111� planes of
the face-centered-cubic metal-ion lattice have parallel spin,
but alternate spin from plane to plane. Thus each Mn has six
nearest neighbors �in plane� parallel and six �out-of-plane�
antiparallel and all six second neighbors antiparallel. The
energy for parallel spin minus that for this antiferromagnetic
structure is 6J1+6J2. In the type-I antiferromagnetic
structure17 alternate ions in �100� planes are of opposite spin,
giving eight nearest neighbors of each ion of opposite spin,
four of the same spin, and all second neighbors of parallel
spin for an energy difference of 8J1, which would be more
stable unless J2 /J1�1/3. Our value for MnO from Table I,
J2 /J1=0.28, is close to that condition and we shall see that
lattice distortions makes up some of the difference of 6J2
−2J1=−8.5 meV per ion. For the other three, we we find
type-II much lower in energy, in agreement with experiment.

We look next at the Néel temperature, the mean-field
value of which is given for type-II ordering by �Ref. 15, Eq.
�6��

kBTN = 4S�S + 1�J2. �8�

It depends only upon J2 since half the nearest neighbors are
antiparallel in both the ordered type-II and in the random
arrangements. Values for TN were obtained for all four com-
pounds using Eq. �8� and the J2 in Table I and are listed in
Table II. These are remarkably close to the experimental val-
ues given by Kittel,1 except for NiO, and the trend is correct.
They are really closer than we could hope for in view of the
simplicity of the theory, the 10% corrections to perturbation

TABLE I. Parameters for the monoxides, obtained as for MnO
in Sec. II. Zd is the number of d electrons per metal ion. �d

+=�d

+ �5−Zd /2�Ux+Ud is the energy at which electrons are added to the
d shell from other ions; the oxygen p-state energy is �Ref. 10�.
−16.77 eV in comparison. J1 is the predicted contribution for the
nearest neighbor. J2 is the second-neighbor value.

MnO FeO CoO NiO

Zd 5 6 7 8

d �Å�a 2.22 2.16 2.12 2.08

Vpd� �eV�a −1.084 −1.092 −1.076 −1.062

Vdd��d�2� �eV�a 0.202 0.189 0.173 0.159

Ux �eV�a 0.78 0.76 1.02 1.60

Ud �eV�a 5.6 5.9 6.3 6.5

�d
+ �eV� −7.72 −9.12 −9.94 −10.87

J1 �K�superexchange 2.94° 5.56° 8.22° 14.58°

J1 �K�direct 15.52° 17.80° 18.56° 21.62°

J1 �K�overlap −2.10° −1.76° −1.95° −2.64°

J1 �K�minority band 0° −4.28° −5.98° 0°

Totals

J1 �K�total 16.36° 17.32° 18.85° 33.56°

J2 �K�superexchange 4.04° 9.06° 16.96° 43.72°

aFrom Ref. 4.
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theory and for self-consistent shifts of the levels, and the
uncertainty of the parameters used. Again use of the coupling
based upon the atomic surface method of Straub and
Harrison12 would have reduced our estimates to 40% �both
the direct and superexchange terms vary as rd

6�, far from
experiment. It is interesting that reevaluating TN for type-I
ordering �replacing J2 by 2J1 /3−J2� predicts 241 K for
MnO, 94 K for FeO, and negative values for the other com-
pounds, supporting the assertion17 that these are all type-II
ordering. This value of TN higher for type-I than type-II
MnO reflects our slight overestimate of J1 /J2.

The Néel temperature depended only upon superexchange
�J2�, proportional to Vpdm

4 and is expected to vary as 1/d16.
Thus through Eq. �8� we would expect that �d /TN��TN /�d
=−16. Bloch and Maury15 have suggested that experiment is
closer to −10 but the value is not well established, and they
indicate a �d /J1��J1 /�d=−25, of much greater magnitude
than the −14 we shall see is expected for J1.

We look next at the Curie-Weiss temperature, which de-
termines the susceptibility above the Néel temperature �Ref.
1, p. 479�, �=2C / �T+��. An expression for the Curie-Weiss
temperature for face-centered-cubic lattices was given in
Ref. 14, Eq. �2.3�,

kB� = �12J1 + 6J2�S�S + 1�/3. �9�

Substituting our values from Table I gives �=643° for MnO,
larger than the experimental value of 540° which was ob-
tained by Lines and Jones14 with a fit to the temperature
dependence of the magnetic susceptibility at high tempera-
tures; Kittel1 gives 610 K. The corresponding values for the
other oxides are listed in Table II. Without the minority-band
contribution they would show a steady increase with increas-
ing Zd, as did TN. Note that this minority-band coupling does
not enter the Néel temperature, which depended only upon
J2. As with TN, our estimates are surprisingly good, except
for NiO and show essentially correct trends.

Since the Curie-Weiss temperature is dominated by direct
exchange and Vddm varies as 1 /d5 �also W in the minority-
spin-band term�, we would at first expect �d /���� /�d to be
−10. However, our replacement by an exponential would
give �d /���� /�d=−10�2=−14 at this second-neighbor spac-
ing. Again, the superexchange contribution is expected to
vary as �d /J��J /�d=−16. We did not find experimental val-
ues for the pressure dependence of the Curie-Weiss tempera-
ture.

Another property which depends directly on the J1 and J2
is the magnetic susceptibility at the Néel temperature, ��TN�,
given by Eq. �2.4� in Ref. 14, and proportional to 1/ �J1

+J2�. With parameters from Table I it is 87 emu/g for MnO,
again dominated by direct exchange and very close to the
experimental14 80 emu/g.

For the type-II antiferromagnetic arrangement in MnO,
with parallel �111� planes of alternate spin,17 there is an at-
traction between adjacent planes and a repulsion within the
planes relative to the randomized spins. Thus the lattice will
contract along this �111� axis by some factor 1−� and ex-
pand in the lateral directions by a factor 1+� /2. There will
be an additional isotropic thermal contraction of the lattice of
less interest. The dominant term causing the shear distortion
is the direct exchange between nearest neighbors for which
the distance to nearest neighbors in adjacent planes changes
by �r /r=−� /2 and within the planes by �r /r=� /2. Second-
neighbor distances do not change to first order in this strain.
In the antiferromagnetic state, as opposed to the nonmagnetic
state, all six out-of-plane neighbors, rather than three, are
antiparallel and no in-plane neighbors, rather than three, are
antiparallel, so three nearest neighbors change from parallel
to antiparallel in becoming antiferromagnetic. The change in
the direct exchange interaction energy for each neighbor pair
is 10�2�E1�r /r, half associated with each ion, if it is anti-
parallel rather than parallel, so the energy per ion changes by
−10�2�E1�3� /4� per ion if the crystal becomes antiferro-
magnetically ordered. There is also elastic energy for the
three shears, e4=e5=e6=�, of �3/2�c44�

22d3 per ion with15

c44=0.57 mbar=0.36 eV/Å3. We may minimize the total to
obtain the fractional reduction in length along the �111� di-
rection of

� = 10�2�E1/8c44d
3 = 0.015 �10�

due to direct exchange. The corresponding contribution from
superexchange and overlap exchange increases this to a total
fractional length change along �111� of �L /L=−�=−0.0167
and expansion in the lateral directions of 0.0083. These are
in rough accordance with the −0.013 and 0.004 obtained
from experiment by Bloch and Maury �Ref. 15, Fig. 5�.

Our estimate corresponds to a change in energy for the
crystal of −3.3 meV per ion, favoring this type-II planar spin
arrangement over the type-I cubic alternative which has no
corresponding shear relaxation. This makes up only part of
the difference of 6J2−2J1=−8.5 meV which we found at the
beginning of this section. These distortions are additionally
important since, as pointed out by Bloch and Maury,15 they
make the antiferromagnetic transition first order. We would
seem to have all the parameters needed for a mean-field
theory of the �L /L as a function of temperature and its dis-
continuity at TN, but we have not carried it out.

CuO does not form in the rocksalt structure, but it is
straightforward to evaluate the nearest-neighbor J for CuO2
planes in the cuprates using parameters obtained exactly as
for the other compounds. The Cu-O-Cu lie in a straight line
as for J2 in the rocksalt structure. A single x2−y2 is empty on
each Cu ion, coupled to O neighbors by16 �3Vpd� /2 �Vpd�

=−1.35 eV�, slightly larger than given in Ref. 18 because of

TABLE II. Predicted and experimental Néel temperature TN and
Curie-Weiss temperature � based upon mean-field theory and the
data in Table I.

MnO FeO CoO NiO

TN �Eq. �8� �K�� 142 218 254 350

TN �Expt. �K��a �116� �198� �291� �525�
� �Eq. �9� �K�� 643 525 410 443

� �Expt. �K��a �610� �570� �330� ��2000�
aRef. 1, p. 481.
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the use of MTO rd values�, giving a coupling to a neighbor-
ing Cu as

�E1 = 4
9Vpd�

4

16��d
+ − �p�2��d

+ − �d
−�

�cuprate� . �11�

This corresponds to a J=1220 K to be compared with the
experimental19 1500 K.

Another magnetic copper compound is SrCu2�BO3�2, with
a structure given by Smith and Keszler.20 Nearest-neighbor
copper ions separated by 2.91 Å give a direct exchange of
�E1=4� 3

4Vdd�+ 1
4Vdd��2 /Ud=7.1 meV, or J1=83 K, and the

superexchange contribution is negligible. For second neigh-
bors, the molecular orbitals of an intervening BO3

�3−� molecu-
lar ion play the role of the oxygen p states in the systems we
considered here. It turns out that only one set of bonding and
antibonding molecular orbitals is coupled to both singly oc-
cupied second-neighbor copper d orbitals and both molecular
orbitals have very small coupling to one copper d state �the
indirect couplings through the two molecular orbitals add
before squaring�, leading to a J2 three orders of magnitude
smaller than J1.

Similarly, CrO seems not to form in the rocksalt structure,
but we consider the compound LiCrO2 discussed by
Mazin.21 The structure is similar to that for MnO but with
alternate �111� metal-ion planes replaced by a sprinkling of
Li ions. With three electrons in d states it has a filled major-
ity tg shell and other states empty. In the distorted structure,
with a distance between Cr ions of a=2.90 Å, Vdd�

=0.472 eV. Direct exchange gives a �E1=0.272 eV from
Eq. �4�, corresponding to a J1 of 30 meV, and superexchange
�d=1.97 Å�, minus a small overlap exchange, would raise it
9 meV. The total is somewhat above the experimental value
listed by Mazin21 of 20 meV. The J2 of MnO does not arise
in this structure.

The predictions have generally been close enough to ex-
periment to suggest that the theory is essentially correct and
the discrepancies, where they exist, could come from using
the simplest theory of the properties. The analysis has given
a clear picture of the various contributions, and their relative
magnitudes, which seems not to have previously available.
There is uncertainty in the choice of parameters, particularly
for rd and this study strongly supports use of the MTO val-
ues. This had not been so clear in earlier studies. We recal-
culated the dielectric susceptibilities and transverse charges
from Ref. 13 using these MTO values. These properties are
essentially proportional to Vpdm

2 , rather than Vpdm
4 , so the

changes are much smaller, and the differences were half as
large for 4d and 5d rows as for 3d systems. For the alkali
halides, where we added contributions from alkali-metal d
states with parameters extrapolated from the transition met-
als, the scaling up of the rd values improved agreement for
the susceptibilities but changes were mixed for the effective
transverse charges. Corrections for the alkaline earths were
also mixed. For the one transition-metal system treated,
SrTiO3, use of the MTO values improved agreement in more
cases than not, but not enough to make a convincing case for
MTO values. There is also limited meaning to use of a single
value for Ud, as seen in Appendix B.
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APPENDIX A: CORRELATED ELECTRONS

Our starting states for the analysis in this paper—
electrons localized on individual ions—depends directly on
electron correlations. These can be considered more closely
by examining a single pair of electrons in single coupled
orbitals, treated, for example, in Ref. 4, p. 593ff. Two orbit-
als of energy �s are coupled by a V, which could be a direct
coupling like our Vddm or a second-order coupling such as
our V=Vpdm

2 / ��d
+−�p� for superexchange. There is an extra

energy U if both electrons are on the same atom, as in Ap-
pendix B. Of the six two-electron states �e.g., c1+

† c2−
† �0� with

the numbers labeling atoms and the 
 indicating spin� only
four have antiparallel spin and, with orbitals of the same
energy, two symmetric combinations, giving a quadratic
equation for the ground-state energy. It yields an exact en-
ergy for the two-electron state,

Etot = 2�s + U/2 − ��U/2�2 + �2V�2�1/2. �A1�

For small U it gives two electrons in bonds at �s− �V� plus
U /2 for the 50% chance the two electrons are on the same
site. For large U the energy is 2�s−4V2 /U, while in a one-
electron theory the shift would have been only −2V2 /U for
the two electrons. This feature results from each of the two
terms in the symmetrized combinations of two-electron
states being coupled to both of the terms in the second sym-
metrized combination. The fully symmetrized ground state
has lower energy than the sum of the two one-electron states
obtained in perturbation theory. This smaller value was also
found �Ref. 4, p. 495� by adding a U to a one-electron cal-
culation, allowing the two states to disproportionate, a kind
of LDA plus U. It seemed clear that we should use the larger
energy shift in the analysis here.

We may also reexamine the extension we made �Ref. 4, p.
598ff� of Eq. �A1� to d- and f-shell metals. There we were
interested in other properties, but here we use it to calculate
double exchange, the Stoner-like effects of the minority-spin
bands in FeO and CoO. In Ref. 4 we replaced the band
density of states by a constant �10/W per atom for d bands�
over a width W. One readily finds that such a density of
states has a second moment of M2=W2 /12, allowing us to
determine W directly from the Hamiltonian matrix from
which the bands would be calculated. We also readily find
that occupying such a density of states with Zd electrons per
atom gains an energy −Zd�1−Zd /10�W /2 per atom. In Ref. 4
we generalized Eq. �A1� to the gain in energy per atom due
to coupling as

Etot = −
Zd�1 − Zd/10�

2
��W2 + �2Ud

2 − �Ud� , �A2�

with �=1. This gives the appropriate result for Ud=0, for all
�, and we may now choose � such that it gives the correct
result for large Ud. That result for Zd occupied states per
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atom coupled to 10−Zd empty states on each nearest neigh-
bor is −2Zd�1−Zd /10�M2 /Ud since M2 is the sum of squared
couplings of all states on an atom to all of the states to which
they are coupled, divided by the number of states per atom,
here reduced by the fraction of neighboring states empty. The
leading factor of 2 corresponds to the use of −4V2 /U rather
than −2V2 /U as just discussed. Expanding the square root in
Eq. �A2� and equating it to this perturbation-theory gain,
using M2=W2 /12, we see that �=3/2. In Ref. 4 we assumed
�=1.

For our treatment of the minority tg band with Z electrons
in three, rather than ten, states we have the energy per metal
ion of

Etot = −
Z�1 − Z/3�

2 ��W2 +
9Ud

2

4
−

3Ud

2 � . �A3�

The leading factor is −1/3 for FeO and CoO and zero for
MnO and NiO. To second order in W this becomes −W2 /9Ud
for FeO and CoO.

The second moment of the band, M2, may be obtained
from the 3N�3N Hamiltonian matrix for N metallic atoms
�e.g., Ref. 4, p. 560� or the corresponding 3�3 matrix. The
squared couplings for tg orbitals are closely related to the
squared couplings we obtained for direct exchange in Sec.
III, where we noted that a tg state xy is coupled by �3Vdd�

+Vdd�� /4 to an xy state on a neighbor in the �110� direction.
However, it is not coupled to the other tg states on that atom,
so the squared coupling is �3Vdd�+Vdd��2 /16, to be added for
four atoms, quite a bit smaller than the sum of squared cou-
pling to all orbitals on the second atom. On the other hand,
for the other eight neighbors, all states coupled to the xy
state are tg states, so the sum of the squared couplings is the
same. The final sum of squared tg couplings per neighbor is
0.366Vdd�

2 , rather than the 0.410Vdd�
2 we had before. For 12

neighbors we would obtain W2=52.70Vdd�
2 if all of the

neighboring tg orbitals were of the same spin as the one
under consideration �and therefore coupled�, half of that if
half were of the same spin.

We see that the lowering of energy in Eq. �A3� favors
parallel spins, a negative contribution to J1. For a fraction f
of the neighboring spins parallel we have an energy per ion
to second order of −W2f /9Ud, which we may equate to an
energy 4S2J112f /2, from Eq. �1�, for 12 neighbors, counting
half for each shared ion:

J1 = − W2/�216S2Ud� . �A4�

We may evaluate this immediately from Table I and obtain a
J1�FeO�=−4.28 K and J1�CoO�=−5.98 K, which are listed
also in Table I. These give corrections to the � of Table II of
−103° for FeO and −90° for CoO, both of the right general
magnitude and included in Table II.

The actinides which were treated this way in Ref. 22 were
electrically conducting, but they would have been conduct-
ing due to the s and d bands even without the highly corre-
lated f levels. In Ref. 22 we assumed a density of electronic
states at the Fermi energy based upon an f-band width
W2 / �W2+�2Ud

2�1/2 with �=1 to estimate the electronic spe-
cific heat and Pauli susceptibility and in Ref. 23 did the same

for transition metals. It would seem that the �=3/2 we used
here for the total energy should apply also to the density of
states �using the form with the square root for the bandwidth
since in these systems W was not small compared to Ud and
predicted densities of states were increased by around 30%�.
Using it for the transition metals generally improved the es-
timates, but the large fluctuations of the density of states, not
present in the assumed constant density of states, made it
difficult to compare. Using �=3/2 for the actinides would
have improved predictions for the susceptibility but not for
the specific heat. Couplings for these analyses were based
upon rf values4 from MTO theory.

For FeO and CoO it would not be surprising if the
minority-spin electrons had been conducting, but neither is it
surprising that they were not. The coupling between neigh-
boring levels, if the spins are aligned, gives shifts of the
order of the coupling and electrons in the lower levels may
or may not find empty levels close enough in energy and
position to allow them to flow. Our summing of occupied
levels over a distribution of width W of about 1 eV �for half
alignment� does not require metallic conductivity, though
one usually associates Stoner corrections with metals.

APPENDIX B: THE COULOMB UD

There is uncertainty in just what values are appropriate
for Ud. The values we use were obtained by Straub �Ref. 4,
p. 561� from Hartree-Fock calculations on the free atom to
obtain the shift in a d-state energy when a second electron
was transferred from an s state to a d state. This could alter-
natively be obtained from Moore’s spectroscopic tables.24

We can, for example, compare the energy in going from the
doubly ionized to triply ionized Mn as d5 to d4 and as d4s to
d3s, the former taking less energy by Ud. From the tables we
learn, by subtracting the term value for d5 from that for d4s
in the doubly ionized atom, that the second starting state is
higher by 7.81 eV. �There was some spread of values which
could be chosen depending upon the total angular quantum
number J of the states in question but not on the scale of eV
as long as the total spin S was the same.� We similarly learn
that the second final state is higher than the first by 13.88 eV,
which gives us Ud=6.07 eV, the difference. We could in-
stead go from triply to quadruply ionized states, comparing
d4 to d3 with d3s to d2s yielding Ud=22.06−13.88 eV
=8.18 eV. We could not go from singly ionized to doubly
ionized states since no term value was available for a d3s2

state. The difference between 6.07 and 8.18 eV indicates that
the spectra are not describable by a single Ud and our
Hartree-Fock value of 5.6 eV in Table I is not unreasonable

Using this Ud in this paper as the energy shift when an
electron is transferred from a neighboring ion assumes that
the average distance of an atomic s electron from the nucleus
is equal to the distance to the neighbors, an approximation
which has often worked well.4 As a check on the use of this
Ud for our calculations we again use Moore’s tables24 to
obtain the energy required to transfer a d electron from a d
state on one Mn ion to a d state on a neighboring Mn, pro-
ceeding step by step. We first obtain the value of U for
widely separated ions, using two Mn ions �singly ionized� in
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the starting configuration d6, one going to d5 and the other to
d7. Indeed this energy is higher by the Coulomb repulsion U
between two d electrons, but by putting the two minority
electrons on the same ion we also gain an exchange energy
Ux=0.78 eV, which we had earlier4 obtained from the atomic
spectra, so the energy change in going d6, d6 to d5, d7 is
Ud−Ux.

In the first step both ions go from d6 to the ground state of
the singly ionized Mn, d5s, the energy dropping by −1.78 eV
for each ion. Removing an s electron from one Mn then takes
the ionization potential of the Mn+ equal to 15.64 eV �leav-
ing it as d5�. Adding it to the other gains back the ionization
energy of Mn0, 7.43 eV �leaving it as d5s2�. Another 6.40 eV
is required, obtained by subtracting term values for the Mn0,
to take the d5s2 ion to d7, for a total cost of Ud−Ux
=11.05 eV for the widely separated pair, two d6 ions to a d5

and a d7.
If these ions were a distance r apart, this energy would be

reduced by −e2 /r. On the other hand, in the solid it would
seem appropriate to use the Madelung potential in a crystal
with electrons shifted between all �111� planes as in the an-
tiferromagnetic arrangement of MnO. That Madelung con-
stant seemed not to be known, but we calculated it using the
simple procedure described in Ref. 25. �Note in the case of

�111� planes, the sum over one-eighth of space for x, y, and
z all greater than zero or for all less than zero �each giving
0.351e2 /d� was much greater than for each of the other six-
eighths where only one coordinate, or two coordinates, was
less than zero �each giving 0.0282e2 /d�.� The net result was
0.871e2 /d, with d the Mn-O nearest-neighbor distance. Note
that adding the positive charge of +2 on each Mn and −2 on
each O does not affect this value. With d=2.22 Å, this re-
duces the Ud−Ux by 5.65 eV to 5.40 eV, giving Ud
=6.18 eV, between the two intra-atomic Ud values we ob-
tained from the spectra and close enough to the 5.6 eV we
used as not to significantly affect the comparison with ex-
periment.

Note that the 5.6 eV came from a Hartree-Fock calcula-
tion and the 6.18 eV from experimental spectra. There are
similar differences between the magnitude of the Hartree-
Fock term values10 ��s=−6.84 eV for Mn� and experimental
ionization energies24 �7.43 eV for Mn�. There would be simi-
lar differences with values obtained with local-density
theory, or LDA plus U. The atoms in the bulk antiferromag-
netic crystal do not of course have these shifted charges, just
majority spins in opposite directions. The Madelung constant
enters the calculation because the excited state which enters
the perturbation theory is an added minority-electron state.
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