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Enhanced magnetocaloric effect in frustrated magnetic molecules with icosahedral symmetry
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We investigate the magnetocaloric properties of certain antiferromagnetic spin systems that have already
been or very likely can be synthesized as magnetic molecules. It turns out that the special geometric frustration
which is present in antiferromagnets that consist of corner-sharing triangles leads to an enhanced magnetoca-
loric effect with high cooling rates in the vicinity of the saturation field. These findings are compared with the
behavior of a simple unfrustrated spin ring as well as with the properties of the icosahedron. To our surprise,
also for the icosahedron large cooling rates can be achieved but due to a different kind of geometric frustration.
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I. INTRODUCTION

Antiferromagnetic finite-size spin systems with icosahe-
dral symmetry constitute very interesting frustrated materials
with rather unusual magnetic properties. Among such prop-
erties are jumps to the saturation magnetization in the cub-
octahedron and the icosidodecahedron'? as well as meta-
magnetic phase transitions at zero temperature, for instance,
in the icosahedron and dodecahedron.’-® Some of these prop-
erties, for instance, the large magnetization jump to satura-
tion, are as well present in the Kagome or other lattice
antiferromagnets.7 The finite-size systems, nevertheless, have
the advantage that due to their smallness many properties can
be investigated (numerically) exactly with possible benefits
for our knowledge about infinitely extended frustrated spin
systems. In this paper, we investigate the magnetocaloric
properties of certain spin clusters with icosahedral symmetry
that turn out to be interesting as well.

Magnetocalorics has a long tradition especially in connec-
tion with cooling by adiabatic demagnetization. The first suc-
cessful attempts to reach the sub-Kelvin region date back
more than 70 years.® It is equally well possible to extend
such an adiabatic process to a full Carnot cycle and thus use
the magnetization work for magnetic refrigeration.” In the
past, paramagnetic salts have been the working medium in
both cases which limits the cooling rate to be not more than
2 K/T. Nowadays, gadolinium compounds such as
GdsGas0,, or GdsSi,Ge, are known to be very efficient re-
frigerant materials.!%!!

A unified explanation of a magnetocaloric effect that is
enhanced compared to a paramagnet is provided by the ob-
servation that the cooling rate assumes extreme values close
to configurations with a large excess entropy. This can hap-
pen at certain phase transitions such as the first order
[ferromagnetic(I) < ferromagnetic(IT)] phase transition ob-
served in GdsSi,Ge, compounds,'® at magnetic field driven
transitions across a quantum critical point,'>!3 or at special
values of the magnetic field where many ground-state Zee-
man levels are degenerate.'31

In this paper, we demonstrate that an enhanced magneto-
caloric effect should be observable in certain highly frus-
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trated magnetic molecules of icosahedral symmetry. We dis-
cuss the cuboctahedron'® and the icosidodecahedron'” which
are already synthesized Archimedian solids as well as the
icosahedron which in its full symmetry could not yet be
achieved chemically.'®!8!° For the structures of these bodies,
we refer to the Appendix.

Some of the aspects of our investigation have been previ-
ously discussed in connection with the classical'! as well as
in the quantum version' of the Kagome lattice antiferromag-
net and some one-dimensional antiferromagnets.'>*’ We also
like to mention that magnetocaloric studies have been carried
out in the field of molecular magnetism recently, but were
mainly focused on low-field behavior.>!~28

This paper is organized as follows. In Sec. II, we discuss
the basics of magnetocalometry, whereas in Sec. III, we
present the magnetocaloric properties of icosahedral bodies
and compare them with those of a nonfrustrated spin ring of
the same size. This paper closes with a summary.

II. BASIC THERMODYNAMICS
A. Heisenberg model

The spin systems discussed in this paper are modeled by
an isotropic Heisenberg Hamiltonian augmented with a Zee-
man term, i.e.,

H==217,5) 50)+gusBS.. (1)

u,v

s(u) are the individual spin operators at sites u, S=2,5(u) is
the total spin operator, and §, its z component along the
homogeneous magnetic field. J,, are the matrix elements of
the symmetric coupling matrix. A negative value of J,, cor-
responds to antiferromagnetic coupling. For the symmetric
polytopes discussed in the following, an antiferromagnetic
nearest-neighbor exchange of constant size J is assumed.
Since the Hamiltonian commutes with §,, we can find a
common eigenbasis {|¥)} of both operators and denote the
eigenvalues of H by E, and of §, by M, respectively. Due to
the Zeeman term in Eq. (1), the energy eigenvalues E,
=E,(B) depend on the external magnetic field B. The field at
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FIG. 1. (Color online) The curves show isentropes of the anti-
ferromagnetically coupled dimer of two spins with s=1/2. The
straight lines represent isentropes of a paramagnet. Compared to a
paramagnet, the cooling rate of the antiferromagnetic dimer can be
smaller (a), about the same (b), much bigger (c), or even negative

(d).

which at T=0 the magnetization reaches its maximal value of
M =Ns is called saturation field By,

B. Magnetocaloric effect

The magnetocaloric effect consists in cooling or heating
of a magnetic system in a varying magnetic field. Some basic
thermodynamics yields the adiabatic (i.e., isentropic, S
=const) temperature change as a function of temperature and
applied magnetic field,

Dl o
oB)g  C(T.B)\oB);
This rate is also called cooling rate. C(T,B) is the

temperature- and field-dependent heat capacity of the sys-
tem. For a paramagnet, this rate is simply!!

or\P* T
(5) =5 ®)

This situation changes completely for an interacting spin sys-
tem. Depending on the interactions, the adiabatic cooling
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FIG. 2. (Color online) Low-lying energy levels E,(B) of the
cuboctahedron with s=1/2 (dashes) and s=1 (X symbols) at the
saturation field B=B, versus total magnetic quantum number M.
The attached numbers give the multiplicities d,, of the lowest M
levels. The energy scale (y axis) is organized in such a way that at
B=B, the lowest, i.e., ground-state levels are at zero and all other
levels above.

rate % can be smaller or bigger than the paramagnetic one

and even change sign, i.e., one would observe heating during
demagnetization and cooling during magnetization.'>*® For
the purpose of clarity, this will be shortly illuminated with
the help of an antiferromagnetically coupled dimer of two
spins with s=1/2, where a singlet constitutes the ground
state and a triplet the excited state. Following Eq. (2), one
notices that in the vicinity of the magnetic field B,., where the
lowest triplet level crosses the singlet, the entropy changes
drastically at low temperatures due to the fact that at the
crossing field the ground state is degenerate whereas else-
where it is not. This behavior is displayed in Fig. 1, where
below and above the crossing field the cooling rate, i.e., the
slope of the isentropes, assumes large values.

III. MAGNETOCALORIC EFFECT
IN MAGNETIC MOLECULES

Regarding the use as a magnetic refrigerant material,
magnetic molecules possess several advantageous properties.
They can be synthesized in a great variety of structures and

FIG. 3. (Color online) Isentropes of the cub-
octahedron with s=1/2 and s=1. The entropies
here and in the following are given in units
of Boltzmann’s constant kp; from the upper
left to the lower right the values of S/kp are 0.01,
1.01, 2.01, 3.01, and 4.01, respectively. By,
=(12s[J))/ (g up)-
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FIG. 4. (Color online) Isentropes of a bipar-
tite, i.e., nonfrustrated spin ring with N=12 spins
s=1/2 and s=1. By=(8s|J|)/ (gup).
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they can host various paramagnetic ions. Very often, they
also do not interact magnetically with each other in a bulk
sample due to large distances between the magnetic centers
of different molecules that are provided by extended ligands,
which means that the magnetic properties of a single mol-
ecule can be assigned to the macroscopic sample. If it would
be possible to obtain structures which exhibit extraordinarily
large ground-state degeneracies at certain magnetic fields,
one could exploit these materials for very efficient magneti-
zation cooling.

Every antiferromagnetically coupled spin system exhibits
ground-state level crossings, such as the aforementioned spin
dimer. The cooling rate at such a crossing can assume large
values, but it turns out that it is possible to even increase the
rate in a special class of highly frustrated magnetic mol-
ecules of icosahedral symmetry. This will be discussed for
the cuboctahedron, which is chemically realized as a
{Cu,,Lag} molecule,'® and for the icosidodecahedron, which
is chemically realized as a {Moy,Fe;,} molecule!” and a
{Mo7,V,} molecule® as well as for the not yet synthesized
icosahedron. The behavior of these frustrated spin systems is
compared with the behavior of an antiferromagnetic, but not
frustrated spin ring with N=12 sites. All results are obtained
by means of numerical diagonalization.

The geometric structures of the discussed bodies are
shown in the Appendix as well as, for instance, at Refs. 1, 2,
and 30.

The cuboctahedron is one of the smallest antiferromag-
netic spin systems that can host independent localized
magnons. >’ These localized states are intimately connected

with an enhanced degeneracy of energy levels and—in
extended spin systems such as the Kagome lattice
antiferromagnet—with the appearance of flatbands. In addi-
tion, the possibility to arrange several independent magnons
on the (finite) spin lattice results in a linear dependence of
the minimal energy E,;,(M) on the total magnetic quantum
number M. Therefore, at the saturation field B,, a massive
degeneracy of ground-state levels can be achieved.

Figure 2 shows that even in a system as small as the
cuboctahedron the multiplicity of the ground state at the
saturation field can reach a rather large value. As can be
inferred from the numbers attached to the lowest levels in
Fig. 2, the level with M=-NS is nondegenerate, the lowest
level with M=—NS+1 is fivefold degenerate, and the lowest
level with M=-NS+2 is threefold degenerate. At B, they
are all energetically degenerate and constitute the ground-
state manifold which altogether is then ninefold degenerate.
This property is independent of spin quantum number, i.e., it
holds for s=1/2,1,3/2,....1% Thus, the entropy assumes a
nonzero value at zero temperature of Sy=S(T=0,B=B,)
=kg In(9). All isentropes with S<S, therefore arrive at the
phase space point (T=0,B=B,).

Figure 3 displays various isentropes of the cuboctahedron
both for s=1/2 [left-hand side (lhs)] as well as for s=1
[right-hand side (rhs)]. Both temperature and magnetic field
are normalized to the saturation field here and in the follow-
ing. One clearly sees that the low-entropy curves, S<S,,
approach the B axes, i.e., T=0, in a rather universal way
independent of the magnitude of the spin s. Close to the
saturation field, the slope of the isentropes, i.e., the cooling

| icosahedron, s=1/2 | icosahedron, s=1
—0.

---=1.0 '/-

— 0.0

1+ -

015

FIG. 5. (Color online) Isentropes of the ico-
sahedron with s=1/2 and s=1. By
=(14.472sJ))/ (g up)-
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FIG. 6. Low-lying energy levels of the icosahedron with s
=1/2. The attached numbers give the multiplicity d,, of each M
level. Note that the energies are rescaled in each sector of total spin
S.

rate, can assume large values. Below the saturation field, the
isentropes remain rather flat, i.e., the temperature does not
increase again when going to B=0. This is of course an
important property because otherwise the system would heat
up again when switching off the field.

The nonfrustrated ring system, Fig. 4, does not possess
the latter property nor does it exhibit large cooling rates at
low temperatures close to the saturation field. The second
property is easily understood because the massive degen-
eracy at the saturation field does not occur in an antiferro-
magnetic ring. Therefore, only isentropes with §<kgIn(2)
approach the field axis. The first property, however, is related
to the overall structure of the low-lying levels. In finite bi-
partite systems, the levels are arranged in rotational
bands?'3? which means that in each sector of total magnetic
quantum number M the excited states are separated from the
ground state in the respective sector by a nonvanishing gap.
Thus, at lower magnetic fields, a certain entropy can only be
realized by populating higher-lying levels, i.e., by acquiring
a higher temperature.

The behavior of the icosahedron is intermediate. The an-
tiferromagnetic icosahedron is also a geometrically frustrated
spin system but differs from the cuboctahedron in some as-
pects. Each spin has five nearest neighbors (cuboctahedron—
four), and the structure consists of edge-sharing triangles in-
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stead of corner-sharing triangles as for the cuboctahedron.
Therefore, the icosahedron does not possess independent
one-magnon states and consequently a similar degeneracy at
the saturation field cannot be expected, see Fig. 5.

Nevertheless, it turns out that the special frustration of the
icosahedron leads to different (quasi) degeneracies in several
Hilbert subspaces with total spin S. This can be seen in Fig.
6 where the low-lying levels of the icosahedron with s
=1/2 are displayed. Note that for better visibility the ener-
gies are rescaled in each sector of total spin S. The numbers
display the multiplicities d), of the M levels. These are the
relevant degeneracies in an applied field. The total degen-
eracy at B=0 is d=d);(2S+1). Thus, we find also for the
icosahedron that at certain magnetic field values, not neces-
sarily at the saturation field, highly degenerate levels will
cross and give rise to notable (T=0) entropy. This can, for
instance, be observed for the isentrope with S=2.01kp, which
is displayed by the dashed-dotted line in Fig. 5. It approaches
the field axis very closely at about 0.9B,,.

The unusually large degeneracy in many sectors of total
spin is also the reason for the interesting property that the
isentropes remain at rather small temperatures for decreasing
magnetic fields. This is in strong contrast to spin rings and
reflects the fact that populating the degenerate levels pro-
duces sufficient entropy without increasing the temperature.
The upturn at small fields close to B=0 is mainly due to the
nondegenerate ground state in the sector with S=0 which is
separated by large gaps from excited states.

The two panels of Fig. 7 summarize the above discussion
for the three systems with N=12 by comparing the isentropes
with S=2kp. One sees that at low temperatures close to the
saturation field, the cuboctahedron indeed achieves the larg-
est cooling rate. In the extreme quantum case, i.e., for s
=1/2, it also outperforms the two other systems when look-
ing at the achievable temperatures for B— 0. Nevertheless,
for the icosahedron, similarly large cooling rates can be
achieved due to a different kind of geometric frustration. For
larger spin quantum numbers, i.e., for becoming more clas-
sical, the differences between the cuboctahedron and the
icosahedron tend to disappear. The unfrustrated ring systems
always show poorer cooling.

Finally, we like to discuss the behavior of the antiferro-
magnetic icosidodecahedron which also possesses icosahe-
dral symmetry. This Archimedian solid is closely related to
the cuboctahedron. It also consists of corner-sharing tri-

FIG. 7. (Color online) Isentropes with S
=2kp of the cuboctahedron, the icosahedron, and
the ring with N=12 with spins s=1/2 (lhs) and
s=1 (rhs).
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FIG. 8. (Color online) Isentropes of the icosi-
T dodecahedron with s=1/2 and s=5/2. By,
=(12s|J))/ (gps)-
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angles, and each spin has four nearest neighbors.>** But
compared to the cuboctahedron, it has a much bigger
ground-state degeneracy of 38 at the saturation field, again
independent of spin quantum number. Figure 8 shows some
isentropes of the icosidodecahedron for the two experimen-
tally relevant cases of s=1/2 and s=5/2. Due to the much
larger Hilbert space, these isentropes can be evaluated ex-
actly only close to the saturation field since there are only
some small subspaces that contribute. The magnetothermal
behavior is very similar to the cuboctahedron with the no-
ticeable difference that now isentropes with entropies up to
So=8(T=0,B=B,,) =k In(38) = 3.63k; head toward T=0 at
the saturation field.

IV. SUMMARY

In summary, we can say that the investigated frustrated
antiferromagnetic bodies show an enhanced cooling rate in
comparison with nonfrustrated (bipartite) spin rings. This
rate is especially large for those systems that show a large
degeneracy of levels, either at the saturation field (cubocta-
hedron and icosidodecahedron) or elsewhere (icosahedron).

We like to mention that similar effects can be observed in
interacting electron systems described by the Hubbard
model. This is related to the appearance of flatbands in these
systems. 3330

| distorted cuboctahedron, sf1/2 |
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FIG. 9. (Color online) Isentropes of a distorted cuboctahedron
with s=1/2. Each coupling J;; between spins at sites i and j was
modified by a random distortion of maximally +5%.

A few words seem to be in order regarding the question of
how realistic the outlined scenario is. In realistic systems, the
perfect degeneracy of levels at the saturation field will cer-
tainly be lifted, thus keeping the entropy S(7=0,B=By,) at a
small value. Nevertheless, the low-energy density of states
will remain large in the vicinity of the saturation field, since
the originally degenerate levels move not too far, thus the
magnetothermal properties will be left qualitatively
unchanged.'#

To make this point clearer, we have evaluated the isen-
tropes of several distorted cuboctahedra where each original
coupling J;; between spins at sites i and j was modified by a
random distortion of maximally +5%. All samples lead to
very similar isentropes; Fig. 9 shows the resulting isentropes
of one typical sample. As said before, a distortion of this
order of course lifts the perfect ninefold degeneracy of the
cuboctahedron at the saturation field. This can be seen by
looking at the dashed-dotted curve for S/kz=2.01 which now
no longer touches the x axis. Nevertheless, the slope of the
isentropes both around the saturation field and elsewhere is
practically unchanged due to the fact that the density of
states is rather robust against small random modifications of
the exchange integrals J;.

The main source of any enhanced magnetocaloric effect is
of course a large isothermal entropy change as a function of
magnetic field, which—as shown—is the case if many en-
ergy levels coincide at a certain field. This could also be the

N

FIG. 10. Three-dimensional projection of the cuboctahedron
(Ref. 30). The vertices are spin sites and the lines denote the anti-
ferromagnetic coupling with exchange parameter J. Each spin has
four nearest neighbors.
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FIG. 11. Three-dimensional projection of the icosidodecahedron
(Ref. 30). The vertices are spin sites and the lines denote the anti-
ferromagnetic coupling with exchange parameter J. Each spin has
four nearest neighbors.

case for so-called molecular magnets, i.e., molecules with a
large ground-state spin. Such a scenario is discussed in Ref.
27. The performance of the achievable cooling depends on
the achievable degeneracy of levels. Thus, a molecular mag-
net with high ground-state spin could be as well a good
cooling material if these levels are not split by anisotropy.
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FIG. 12. Three-dimensional projection of the icosahedron (Ref.
30). The vertices are spin sites and the lines denote the antiferro-
magnetic coupling with exchange parameter J. Each spin has five
nearest neighbors.

APPENDIX: STRUCTURES OF THE CUBOCTAHEDRON,
THE ICOSIDODECAHEDRON,
AND THE ICOSAHEDRON

Figures 10-12 show the geometric structures of the cub-
octahedron, the icosidodecahedron, and the icosahedron, re-
spectively. All of these structures lead to geometric frustra-
tion in the case of antiferromagnetic interaction due to the
presence of triangles. The first two polytopes consist of
corner-sharing triangles, whereas the icosahedron consists of
edge-sharing triangles. The latter structure leads to a differ-
ent type of frustration which is less investigated than that of
corner-sharing triangles.
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