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We consider the effect of geometric frustration induced by the random distribution of loop lengths in the
“fat” graphs of the dynamical triangulations model on coupled antiferromagnets. While the influence of such
connectivity disorder is rather mild for ferromagnets in that an ordered phase persists and only the properties
of the phase transition are substantially changed in some cases, any finite-temperature transition is wiped out
due to frustration for some of the antiferromagnetic models. A wealth of different phenomena is observed:
While for the annealed average of quantum gravity some graphs can adapt dynamically to allow the emergence
of a Néel ordered phase, this is not possible for the quenched average, where a zero-temperature spin-glass
phase appears instead. We relate the latter to the behavior of conventional spin-glass models coupled to random
graphs.
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I. INTRODUCTION

Models of random networks and surfaces have received
extensive attention in statistical physics and field theory due
to their wealth of applications in such diverse fields as the
modeling of the internet,1 spin-glass physics,2 and quantum
gravity.3 The diversity of applications is reflected in a rather
large variety of different graph models considered. Generic
random graph and network models include the most general
Erdös-Rényi model of n bonds distributed randomly between
pairs selected from N vertices, as well as the Barabási-Albert
graphs constructed with the preferential attachment rule or
the Watts-Strogatz method of interpolating between a regular
lattice and a random graph via rewiring of links.1 These con-
structions result in variable but uncorrelated vertex degrees
with graph ensembles fully defined by the coordination num-
ber distribution P�q�. On the other hand, fixed-degree or
k-regular random graphs have also been considered, which
are equivalent to the nonplanar or “thin” �3 ,�4 , . . . Feynman
diagrams of a zero-dimensional field theory.4 While none of
these networks feature a well-defined topology allowing for
a local geometrical interpretation, a fattening of the thin
graph propagators to ribbons yields orientable faces, en-
abling an interpretation of the graphs as random surfaces of
fixed genus. The resulting dynamical triangulations model
has been thoroughly studied with matrix model and combi-
natorial methods in the context of Euclidean quantum
gravity.3 The topological constraint induces spatial correla-
tions in the degree distribution, and the ensemble of graphs is
no longer fully determined by P�q�. Other ensembles of ran-
dom graphs of well-defined topology have been studied, for
instance, the Poissonian Voronoï-Delaunay tessellations re-
sulting from a generalization of the crystallographic Wigner-
Seitz construction to randomly distributed generators.5

A lot of effort has been invested in understanding the
generic geometrical properties of these graph ensembles. In
particular, for the network-type models, dynamical properties
have been regularly considered, such as the emergence of a
giant component as edges are successively added to the
graphs.1 For the Delaunay and dynamical tessellations with a

well-defined topology, genuinely geometrical attributes such
as the fractal or Hausdorff dimension and the correlation
function of the local degrees have been of most interest.3,5 As
an alternative to direct investigations, these ensembles might
be characterized by observing the cooperative behavior of
matter variables such as classical Ising spins si= ±1 with
Hamiltonian

H = − �
�i,j�

Jijsisj , �1�

or, more generally, Potts or O�n� spins placed on the graph
vertices, assuming ferromagnetic couplings Jij =J0�0. This
exercise is also of interest from the inverted point of view of
studying the effect of these various types of connectivity
disorder on the spin models, being complementary to the
canonical case of weak disorder from randomness of the cou-
plings on regular lattices.6 Graphs without topological con-
straint are inherently nonlocal and thus effectively infinite
dimensional. Consequently, one expects mean-field phase
transitions for the ferromagnetic models. These are indeed
found for the Erdös-Rényi and k-regular �or thin� random
graphs,2,4,7–10 transforming them into convenient alternatives
to treatments on the Bethe lattice or the complete graph, not
encumbered with boundary effects. More generally, degree
distributions with divergent moments can lead to interesting
deviations from mean-field behavior.11 The effects on sur-
facelike graphs are less homogeneous. For �uncorrelated�
bond disorder, the celebrated Harris criterion6 predicts a
change of critical behavior for cases with a positive specific-
heat exponent �. An analogous criterion can be formulated
for random graphs, taking into account the spatial correlation
of the degree distribution.12 The predicted change in univer-
sality class for virtually all types of matter coupled to dy-
namical triangulations or fat graphs is in agreement with
exact results for percolation13 and numerical investigations
of the Ising and Potts models.14 For Voronoï-Delaunay tes-
sellations, however, the predicted change of universality
class for models with ��0 such as the two-dimensional q
=3,4 Potts and three-dimensional Ising models is not ob-
served numerically.15,16 It is an open problem why, instead,
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these models behave according to their regular lattice critical
exponents.

In contrast to this weak-disorder case, the effect of con-
nectivity disorder on models with antiferromagnetic interac-
tions is much more profound. The existence of odd-length
loops on many of the graphs discussed leads to severe geo-
metric frustration with the possibility of altogether preclud-
ing the onset of a long-range ordered phase. Interestingly,
however, this problem for random graphs has received very
little attention to date,8 such that the behavior of, e.g., the
Ising antiferromagnet for the various cases is unclear. The
effect of tuning the amount of frustration on a regular lattice
has been considered in Ref. 17 for the ±J Ising model on the
triangular lattice, where it was found that a spin-glass phase
appears as the concentration p of antiferromagnetic bonds is
increased from zero and disappears again as the system
comes close to the perfect frustration of the pure antiferro-
magnet. Some use has been made of k-regular or thin random
graphs as an alternative realization of the mean-field limit of
spin glasses,2,7 and in general, one expects the perfect frus-
tration of the effectively infinite-dimensional graphs of the
nontopological type to lead to mean-field spin-glass behavior
for the antiferromagnet. The less extreme case of fixed-
topology graphs is the subject of the present study.

The rest of the paper is organized as follows. Section II
discusses the general problem of frustration exerted by
graphs of the dynamical triangulation type on antiferromag-
nets and the annealed and quenched limits for the Ising an-
tiferromagnet coupled to different graph types. The results of
Monte Carlo simulations for the annealed case are discussed.
In Sec. III, we investigate the quenched limit by means of
exact ground-state computations in the framework of a
defect-wall calculation, comparing Gaussian and bimodal
spin glasses to the antiferromagnet. Finally, Sec. IV contains
our conclusions.

II. FRUSTRATION FROM FAT GRAPHS

Dynamical triangulations originate in the discrete ap-
proach to Euclidean quantum gravity via a path-integral
quantization of the gravitational interaction. The integral
over metrics is regularized by a sum over combinatorial
manifolds or simplicial complexes.3 We focus here on the
case of two dimensions, where this amounts to a sum over all
possible gluings of equilateral triangles to closed, orientable
surfaces of a given, for instance, planar or toroidal topology.
Graphs of this type are hence constructed by taking a number
N2 of equilateral triangles and connecting them together
along their edges at random, such that the resulting graph
represents a closed and orientable surface of well-defined
topology. In a computer simulation, such graphs can be
implemented by the successive application of the “link-flip”
move depicted in Fig. 1 to the graph starting, e.g., from a
regular hexagonal lattice with periodic boundary conditions.
The geometric duals of these triangulations naturally are
graphs of fixed degree k=3, known as planar �3 Feynman
diagrams in field theory. The planarity constraint necessitates
a “fattening” of the usual propagators to ribbons, such that
this type of diagrams is often referred to as “fat graphs.”18

Instead of triangles, one can, of course, consider more gen-
eral elementary polygons, such as the quadrangulations con-
structed from gluings of squares, whose duals are then con-
sequently “fat” �4 graphs, etc. The resulting combinatorial
problem of counting these discrete surfaces can be solved
exactly for various cases using a matrix-model formulation19

or alternative combinatorial approaches.20,21 Geometrically,
the most striking result is that of an unusually large internal
Hausdorff dimension dh=4 for these topologically two-
dimensional surfaces,3 resulting from a structure of “baby
universes” connected to the main graph body with a minimal
number of links �“bottlenecks”�. This fractal structure is ap-
parent from the example graph embedding shown in Fig. 2.
While the graphs themselves are, by construction, defined in
a purely intrinsic manner, without reference to an embedding
into external space, an approximate embedding to some ex-
tent observing the constraint of equal edge lengths can be
constructed to visualize the internal geometry.22 The distri-
bution P�q� of coordination numbers is found to fall off
exponentially22,23 and hence does not exhibit the fat tails
found in small-world networks. However, the structure of
the graphs is not solely determined by P�q�, since the
well-defined topology introduces long-range correlations in
the coordination numbers, declining as r−2 at large separa-
tions r.12

A. Annealed average

When coupling matter variables to the graphs, averages
have to be performed for the fluctuations of the graphs as

FIG. 1. �Color online� The link-flip move on two adjacent tri-
angles of a dynamical triangulation �dashed lines�. The solid lines
denote the corresponding dual, three-valent, “fat” �3 graphs.

FIG. 2. Example of a dynamical triangulation of N2=5000 tri-
angles embedded into Euclidean space. Note that the equilaterality
requirement for the triangles is only approximately fulfilled since an
exact embedding into R3 is not guaranteed to exist.
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well as those of the coupled spins with associated character-
istic time scales �graph and �matter. The annealed case of
�graph=�matter is the situation considered in the context of mat-
ter coupled to quantum gravity. Since spin and disorder de-
grees of freedom fluctuate on the same time scales, the total
free energy of the system is given by

Fannealed��� = − �−1 ln �Z��,G��G, �2�

where Z�� ,G� denotes the partition function for spins on a
fixed graph G and �·�G symbolizes the average over the con-
sidered graph ensemble. Hence, the effect of geometric ran-
domness on the behavior of spins is augmented by a backre-
action of matter variables on the underlying graphs.
Formulating the combined problem as a multimatrix model,
several cases such as the �ferromagnetic� Ising,24,25 q-state
Potts,26,27 and O�n� models28,29 �where the two latter classes,
of course, include the simpler Ising model as the special
cases q=2 and n=1, respectively� can be treated analytically
�in the regime where they show continuous phase transitions
on regular lattices, i.e., for q�4 and −2�n�2, respec-
tively�. In these cases, the coupling to dynamical triangula-
tions results in a shift of universality class. More generally,
in the framework of Liouville theory, Knizhnik, Polyakov,
and Zamolodchikov �KPZ� and David, Distler, and Kawai
�DDK� predicted the dressing of conformal weights � of
critical matter coupled to two-dimensional quantum gravity
to be30–32

�̃ =
�1 − c + 24� − �1 − c

�25 − c − �1 − c
, �3�

where c denotes the central charge.33 The resulting critical
exponents agree with the exact results discussed above, and
the predictions for a number of cases have been confirmed by
numerical simulation studies, see, e.g., Refs. 34–36.

Coupling antiferromagnets to this type of random graphs
leads to strong frustration37 due to the presence of loops of
odd length. Depending on the exact type of graphs consid-
ered, however, the annealed average to some extent allows
for the geometry to adapt to the antiferromagnetic interac-
tions. In particular, consider an Ising antiferromagnet accord-
ing to Eq. �1�, with Jij =−J0 for all bonds, coupled to the
following dynamical graphs.

Triangulations. Here, all elementary faces of the graph are
frustrated, and the frustration cannot be relieved by a dy-
namic response of the lattice. As has been shown by
Wannier,38 the Ising antiferromagnet on a regular triangular
lattice remains paramagnetic down to zero temperature
where, due to frustration, the system has a finite residual
entropy. It is clear that for any planar triangulation �whether
regular or random�, configurations of minimal energy have
two satisfied and one broken bond in each triangle. A large
number of such states exists already for the triangular lattice,
which is a member of the ensemble of dynamical triangula-
tions considered. The freedom of changing spin configura-
tions without leaving the ground-state manifold is found to
be local, offering no energetic reward and thus precluding
long-range order. In fact, the residual, zero-temperature en-
tropy of this model has been calculated39 to be S0�0.2613,

to be compared to the value S0�0.3383 found for the trian-
gular antiferromagnet.38

Quadrangulations. Any planar quadrangulation is bi-
partite—it cannot contain any loops of odd length since all
loops are composed of the elementary faces of length four.
This structure allows for a two-coloring of the lattice vertices
in, say, black and white sites. Introducing extra �nonfluctuat-
ing� signs �i= ±1 at the vertices and performing a Mattis
transformation as40

si� = �isi, Jij� = Jij�i� j �4�

leaves the Hamiltonian �Eq. �1�	 and thus the partition func-
tion invariant. Choosing �i

W=−1 for the white and �i
B= +1 for

the black vertices maps the system identically to the Ising
ferromagnet with Jij = +J0. Hence, for the random lattice, the
results of Refs. 24 and 25 apply, and the system undergoes a
third-order phase transition to a Néel ordered state.

�3 or �4 graphs. While neither of these graph classes is
bipartite as a whole, it is clear that, e.g., with the hexagonal
lattice ��3 graphs� and the square lattice ��4 graphs�, bipar-
tite graphs occur in both ensembles. Hence, the ground states
of either system are perfectly Néel ordered configurations,
and it is reasonable to expect long-range order to persist for
some finite range of temperatures.

To investigate this last case of a nontrivial interaction be-
tween geometric frustration and antiferromagnetism, we per-
formed Monte Carlo simulations of the coupled system for
graph sizes of N2=162–1282 vertices. As the temperature is
lowered, we indeed find the emergence of antiferromagnetic
Néel order with signatures of a phase transition at rather low
temperatures �c�2.5 �see the susceptibility data shown in
Fig. 3�. This temperature is to be compared with the phase
transition at �c= 1

2 ln 108
23 �0.773 found for the Ising ferro-

magnet on the “fat” �3 graphs without self-energy and tad-
pole insertions considered here.25 We find the specific heat to
be completely independent of system size with a broad peak
around ��1.4 �see Fig. 4�, and no crossing of the Binder
parameter within the temperature range 0.1���4.0 consid-
ered. These findings, together with the apparent scaling of
the susceptibility on the low-temperature side of the peak
seen in Fig. 3, hint at the presence of a critical �low-
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FIG. 3. �Color online� Magnetic susceptibility 	=N2��m2�
− �
m
�2� of the Ising antiferromagnet coupled to annealed fat �3

graphs with N2=162 up to N2=642 vertices.
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temperature� phase with an associated Kosterlitz-Thouless
phase transition.41 This conjecture is further supported by the
very slow convergence of effective critical temperatures as
the system size is increased, compatible with a logarithmic
rather than a power-law approach. A series of simulations for
the ferromagnet on the same lattices performed for compari-
son, on the other hand, yields �c=0.783�7�, dh
=3.3�2�, and
� /dh
=0.68�3�, perfectly compatible with the exact
results.24,25

The mechanism of the antiferromagnetic transition can be
understood from an inspection of the distribution P�q� of
loop lengths: As the temperature is lowered, the Ising anti-
ferromagnet forces all odd-length loops out of the system,
leading to surfaces completely composed out of faces of
even length, i.e., squares, hexagons, octagons, etc. �see Fig.
5�. Thus, the backreaction of the antiferromagnetic matter on
the graphs drives them into a nonfrustrating phase of bipar-
tite graphs compatible with Néel order. The resulting strong
coupling between graphs and matter throughout the whole
low-temperature region could plausibly give rise to a critical
phase with associated infinite-order phase transition as im-
plied by the simulation results discussed above. This is in
contrast to the Ising ferromagnet, where strong interaction
between matter and geometry is confined to the vicinity of
the critical point.

B. Quenched average

The �graph-� quenched limit �graph��matter of averages de-
scribes the case usually encountered in condensed matter
physics, where impurities or lattice defects are fixed proper-
ties of the sample. Consequently, the average over disorder
should be performed at the level of observable quantities,
such as the free energy and its derivatives, leading to

Fquenched��� = − �−1�ln Z��,G��G, �5�

This interchange of logarithm and disorder average as com-
pared to the annealed limit of Eq. �2� often leads to dramati-
cally different properties. Unfortunately, no exact prediction
for ferromagnets in the spirit of Eq. �3� is available here.
Since it is believed that ferromagnets with weak quenched
disorder in two dimensions, in general, are related to confor-
mal field theories with central charge c=0, an approximation
starting from the KPZ-DDK framework could be derived
from Eq. �3� by setting c=0 there,42 i.e.,

�̃ =
1

4
��1 + 24� − 1� . �6�

This form can also be more directly motivated by noting that
the central charge of n replicas of matter variables is addi-
tive, such that the limit n→0 of the replica trick naturally
leads to a central charge c=0 in Eq. �3�.43–45 These predic-
tions cannot be confronted with any exact solutions. Monte
Carlo simulations for the Ising and Potts ferromagnets on
quenched dynamical triangulations14,46 show a change in uni-
versality class, in agreement with the adapted relevance cri-
terion for connectivity disorder discussed above.12 The criti-
cal exponents, however, although changed from their regular
lattice values, in general, seem not to be correctly predicted
by the form �6�.

For the antiferromagnets, frustration from quenched, fat
graphs is potentially stronger than in the annealed case: The
frozen-in disorder of the graphs cannot adapt to alleviate the
energy cost of odd-length loops. As before, the degree of
frustration exerted on the Ising antiferromagnet depends on
the ensemble of graphs considered.

Triangulations. Following the argumentation presented
above, the system is paramagnetic at all temperatures for
each fixed random triangulation. Consequently, the quenched
average merely describes the modulation of a completely
disordered system.

Quadrangulations. The perfect bipartiteness of the graphs
is not affected by the process of the disorder average. Via the
described Mattis transformation, the system is identical to
the Ising ferromagnet on quenched quadrangulations. By
universality, the critical behavior is expected to be that of the
Ising ferromagnet on quenched fat �3 graphs studied in
Ref. 14.

�3 or �4 graphs. This graph ensemble features a broad
distribution of odd-length loops exerting strong frustration
on the coupled antiferromagnet. The lack of a backreaction
of the Ising spins on the underlying graphs prevents the sup-
pression of loops of odd length observed in the annealed
limit. The bipartite graph configurations selected in the low-
temperature phase of the latter only occur with vanishing
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FIG. 4. �Color online� Specific heat Cv=N2�2��e2�− �e�2� of the
Ising antiferromagnet coupled to annealed fat �3 graphs from
Monte Carlo simulations.
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FIG. 5. �Color online� Distribution P�q� of loop lengths of an-
nealed, fat �3 random graphs coupled to an Ising antiferromagnet in
the high-temperature phase at �=0.1 and deep in the ordered phase
at �=3.2. Data are for graphs with N2=322 vertices.
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weight in the quenched average. This appears to preclude the
emergence of long-range order at finite temperatures. How-
ever, the frozen-in frustration might give rise to spin-glass
order at zero temperature.

The rest of this paper is devoted to an investigation of the
possibility of such spin-glass order for the Ising antiferro-
magnet on quenched fat �3 graphs.

III. ZERO-TEMPERATURE PHASE ON QUENCHED
FAT GRAPHS

Due to the random distribution of faces of odd �frustrated�
and even �unfrustrated� lengths, it is natural to suspect that
the Ising antiferromagnet on �3 fat graphs behaves similarly
to a ±J Edwards-Anderson spin glass on the same lattices. It
is not a priori clear, however, whether the long-range corre-
lation of coordination numbers12 might cause any nonuniver-
sal differences between these cases. How can the appearance
of spin glass be detected and its properties determined? Gen-
eralizing Peierls’ argument for the stability of an ordered
phase, a droplet-scaling theory for the spin-glass phase can
be formulated.47 The role of the droplet surface �free� energy
is then taken on by the width J�L� of the distribution of
random couplings for a real-space renormalization group
decimation at length scale L. In the course of renormaliza-
tion, J�L� scales as J�L��L
s, defining the spin-stiffness ex-
ponent 
s. If the system scales to weak coupling, 
s�0, spin-
glass order is unstable at finite temperature and the system is
below its lower critical dimension, with 
s describing the
properties of the critical point at temperature T=0. On the
other hand, 
s�0 indicates stability of a spin-glass phase at
finite temperature. Numerically, the domain-wall free energy
can be determined from the energy difference between
ground states of systems with different types of boundary
conditions chosen such as to induce a relative domain wall.47

A. Method and droplet length scale

Following this program, one requires the generation of a
number of statistically independent graph realizations for
performing the quenched average. Subsequently, for each re-
alization, ground states of the Ising antiferromagnet should
be calculated. An ergodic set of graph updates for dynamical
triangulations �and the dual �3 graphs� is given by the so-
called Pachner moves,22,48 which we employ to generate in-
dependent realizations of toroidal topology, starting out from
a perfect hexagonal lattice with periodic boundary condi-
tions. Such a toroidal shape is needed to induce excited states
by a change of boundary conditions, as indicated above. The
Monte Carlo equilibration is done for closed graphs, leaving
the task of identifying appropriate loops along which to cut
them open. Several possibilities come to mind:

�1� In the original hexagonal lattice, the identification of
boundaries is obvious. If, by construction, no link-flip up-
dates are performed on the links crossing a boundary, the
toroidal cuts are fixed in the equilibrated graphs. This sim-
plicity, however, comes at the expense of strong boundary
effects: Due to the large fractal dimension3 dh=4, each ver-
tex is comparatively closer to one of the boundaries than

would be expected for a two-dimensional system.
�2� Allowing flips of links crossing a boundary, one might

keep track of the induced evolution of the boundary loops.
This turns out to be rather involved, in particular, due to the
appearance of self-intersections of the meandering boundary
lines. Consequently, we have not considered this approach
for the final ground-state computations.

�3� Ideally, the graph generation should employ periodic
boundary conditions preventing surface effects with the
graphs being “cut open” once equilibrated. This amounts to
the identification of topologically inequivalent elementary
loops on the surface. It is not immediately obvious, however,
how such an optimal homotopy basis could be computed for
an intrinsic graph structure.

As it turns out, a number of computational problems re-
lated to topologically motivated cuttings of surfaces are NP
hard. In particular, identification of the so-called cut graph
whose removal renders a surface topologically trivial, i.e.,
the locus of all points with at least two shortest paths from a
given base point, is a nonpolynomial problem.49 Rather sur-
prisingly, however, a homotopy basis of minimum length in
the form of a system of loops joint in a common base point
can be computed in polynomial time.50 Such a system con-
sists of 2g simple loops �where g is the genus of the surface�,
whose complement in the manifold is a topological disk.
This decomposition proceeds with a variant of the tree-cotree
decomposition proposed in Ref. 51: Starting from a marked
base point on a planar surface, the dual complement of a
spanning tree is a spanning tree as well �see Fig. 6�. For
nontrivial topology, however, by Euler’s formula, both trees
simply do not have enough edges to cover the whole graph,
and it is easily seen that the edges not touched by either tree
are those defining the topologically nontrivial loops with re-
spect to the base point. A set of minimal loops can then be
found by computing the tree T of shortest paths in the graph
G and the maximum spanning tree T* in the complement
�G \T�*, where the weight of each dual edge e* is chosen to
be the length of the shortest loop in G containing the base
point as well as the edge e. The desired basis is then given50

by the minimal loops defined by all edges e neither contained
in T nor crossed by T*.

Exact ground states of the Ising system on the resulting
graphs are computed in polynomial time via the mapping to

FIG. 6. �Color online� On a planar graph, two interdigitating
spanning trees on the original and dual lattices touch or cross all
links.
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a so-called minimum-weight perfect matching problem.52

Due to a limitation of this approach, only topologically pla-
nar graphs can be treated. Hence, after cutting the graph, one
of the resulting boundaries is left open, while either periodic
�P� or antiperiodic �AP� conditions are employed along the
second boundary. The scaling of the energy difference,
�
�E
P/AP��LDW


s , then gives access to the spin-stiffness ex-
ponent 
s. In contrast to the case of a regular lattice, where
the relevant domain-wall length scale is simply equivalent to
the length of the boundary, LDW�L, the corresponding scale
is not immediately obvious for the fractal graphs at hand. It
can be found, however, from the ground-state problem of the
ferromagnet: If AP boundary conditions are applied along
one direction, the system responds with a domain wall of
minimum length Lmin, corresponding to the length scale of
the applied perturbation. The corresponding average length
�Lmin� is shown in Fig. 7 for 5000 graph replicas with N2

�2562. Here, �·� denotes an average over disorder. Fits of the

form �Lmin�=ALN2
1/dh� yield dh�=4.0161�91� for the fixed

boundaries and dh�=4.0513�72� for the homotopy basis, im-
plying that, in fact, dh�=dh=4, and the relevant domain-wall
length scale is equivalent to the intrinsic length Leff�N2

1/dh of
the fractal graphs, implying �
�E
P/AP��N2


s/dh. Note that the
applied fits without correction terms allow an impressively
precise determination of dh, while it turned out to be very
tedious to determine the Hausdorff dimension numerically
by considering the geometrical two-point function.22,53

B. Spin-stiffness exponent

To determine the spin-stiffness exponent 
s, ground-state
computations were performed for a series of graph sizes,
comparing the ground-state energies for P and AP bound-
aries, using 5000 disorder replica for each size. Since previ-
ous work has almost exclusively focused on the square
lattice,54 as a benchmark and universality test, we first con-
sidered the case of the regular honeycomb lattice, performing
fits of the form �
�E
P/AP�=E0+SEL
s for L=16,24, . . . ,256.
For a Gaussian distribution of the couplings Jij of Eq. �1�, we

arrive at E0=0.0026�261�, clearly indicating that asymptoti-
cally, E0=0, as expected. Fixing E0=0 then yields 
s
=−0.2843�44� with quality of fit Q=0.29. This is in excellent
agreement with results for the square lattice,54 the negative
value of 
s indicating that spin-glass order is confined to zero
temperature in this system. For symmetric, bimodal cou-
plings Jij = ±J, on the other hand, a clear saturation of defect
energies is observed, resulting in E0=0.991�15�, leading to a
vanishing 
s=0 of the effective spin-stiffness exponent. This
is again in agreement with the square-lattice result, showing
that the ±J spin glass is marginal in two dimensions �but it
turns out that, in fact, Tg=0 there�,54 see also Refs. 55–57.

Although the quenched approximation �Eq. �6�	 to the
KPZ formula �Eq. �3�	 has been suggested for unfrustrated
situations, it is interesting to see what it predicts for the case
at hand. Noting that 
s /dh=−1/dh
=��−1, a dressing ac-

cording to Eq. �6� yields an invariant 
s /dh
˜ =0 for the ±J

model and a renormalized value 
s /dh
˜ =−0.0886 from the


s /d=−0.1422 found above for the Gaussian bonds. Our re-
sults of domain-wall energy computations for �3 random
graphs of sizes N2=162 ,242 , . . . ,2562 are collected in Fig. 8,
together with fits of the form �
�E
P/AP�=E0+SEN2


s/dh. As
for the honeycomb lattice, the Gaussian spin glass
shows clear scaling �
�E
P/AP�→0, with an estimated 
s /dh

=−0.0684�25�, different from the ordered lattice case but
also not quite compatible with the prediction of the quenched
approximation �Eq. �6�	. The ±J spin glass and the antifer-
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FIG. 7. �Color online� Scaling of the average length �Lmin� of
the domain wall in the ferromagnet with antiperiodic boundary con-

ditions, together with fits of the form �Lmin�=AN2
1/dh�. Note the con-

siderably larger scaling corrections for the graphs with fixed
boundaries.
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romagnet show saturation behavior implying 
s /dh=0 with
E0=0.599�23� �±J� and E0=0.472�44� �antiferromagnet�, in
agreement with the quenched KPZ prediction. In fact, the
finite-size approach is also very similar between these two
cases, with essentially only the correction amplitude SE dif-
fering �see Fig. 8�. This clearly supports the view that, on the
planar random graphs considered here, the antiferromagnet
shows zero-temperature spin-glass behavior in the universal-
ity class of the ±J model, in contrast to regular lattices,
where the antiferromagnet does not behave like a spin
glass.38

C. Domain-wall fractal dimension

It has been known for some time that domain walls in
spin glasses are fractal curves.54,58 Recently, evidence has
been presented that in two dimensions, they are, in fact, in
agreement with the excursions known as “stochastic
Loewner evolution,” which are closely related to unitary
conformal field theories.59,60 It is interesting to measure
the fractal behavior of domain walls on random graphs
which are fractals themselves. Considering the link overlap

ql =
1

N1
�
�i,j�

si
�P�sj

�P�si
�AP�sj

�AP� �7�

for P and AP boundaries, it is clear that for Ising spins, bonds
crossed by a domain wall contribute −1 to ql, whereas all
other bonds contribute +1 �N1 denotes the number of links of
the graph�. Hence, one expects the scaling

�1 − ql� �
N2

ds/dh

N1
� N2

−�1−ds/dh�, �8�

where ds denotes the fractal dimension of the domain wall
�note that N1=3N2 /2 from the Euler formula�. For the
Gaussian spin glass on the honeycomb lattice, this approach
yields ds=1.2725�33�, in good agreement with the accepted
value for the square lattice.54,59,61 �Here, the smallest lattice
sizes with L�32 have been omitted from the fit to account
for scaling corrections not explicitly taken into account.� For
the bimodal distribution, the comparison of P and AP ground
states does not define a unique domain wall due to the high
degree of accidental degeneracy in the ground state, such that
the above description randomly �but not necessarily without
bias� captures one of these walls and a fit to form �8� yields
dh=1.283�11�. Note that, hence, there is some uncertainty as
to how to define and measure the fractal dimension properly
in this case, and consideration of the backbone of ground
states,62 of domain walls of extremal length,61 or of the re-
sidual ground-state entropy63 leads to different estimates for
the square-lattice system. Noting that ds /dh=1−�DW, the

quenched KPZ approximation �Eq. �6�	 predicts ds /dh
˜

=0.4666 for the Gaussian spin glass coupled to the �3 ran-
dom graphs. The numerical results shown in Fig. 9 reveal
clear scaling for this case with a resulting estimate ds /dh
=0.5042�24�, again different from the regular lattice value
ds /d=0.632 48�88�, as well as from the quenched KPZ pre-
diction. The corresponding estimates of ds /dh=0.6330�10�
and ds /dh=0.6425�10� for the ±J and antiferromagnetic

models due to degeneracies again refer to some random
choice of domain walls. More importantly, however, the scal-
ing approaches for both cases are again almost identical �see
Fig. 9�, supporting the view of a common universality class
for both models.

IV. CONCLUSIONS

We have shown that the strongly frustrating influence of
odd-length loops present in random graphs can trigger very
interesting and characteristic effects in coupled antiferromag-
nets, with the observed behavior often being very different
from that expected for ferromagnets. Only for the special
case of bipartite random lattices without odd-length loops
such as dynamical quadrangulations does a Mattis transfor-
mation identically relate the antiferromagnet to the ferromag-
net. The annealed random-graph average considered in quan-
tum gravity allows the lattice to dynamically alleviate
frustration, leading, for instance, to the emergence of a Néel
ordered phase for the �3 and �4 antiferromagnets, apparently
accompanied by a Kosterlitz-Thouless phase transition �al-
though, of course, it is not proven that this transition survives
in the thermodynamic limit�. Quenching the graphs, such
dynamical adaptation is precluded, moving the phase transi-
tion to zero temperature, where instead a spin-glass phase
appears. From an exact defect-wall calculation, it appears
that this spin glass is in the same universality class as the ±J
model on the same lattice. The wealth of these observed
effects crucially depends on the locality �or finite dimension-
ality� of the considered surfaces, thus avoiding the possibly
less interesting mean-field behavior induced by more generic
random graphs.
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