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A two-sublattice Ising metamagnet in both external longitudinal and transverse fields is studied within the
mean-field approach based on Bogoliubov’s inequality for the Gibbs free energy. At finite temperatures, by
changing values of the parameters of the model many different types of phase diagrams in the longitudinal
field-temperature plane and in the transverse field-temperature plane are determined. The results show that the
tricritical point can occur and decomposes into a critical end point and a double critical end point in a certain
small region of the external longitudinal and transverse fields. The temperature of the tricritical point mono-
tonically increases with decreasing the transverse magnetic field � and increasing the longitudinal magnetic
field h. A line of fourth-order critical points is also determined.
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I. INTRODUCTION

An ideal metamagnet is made up of identical plane layers
of spins, with ferromagnetic couplings between the spins in
each layer but antiferromagnetic couplings between adjacent
layers. In a zero external field, a metamagnet behaves as an
Ising-like antiferromagnet. FeCl2 and FeBr2 are well-known
metamagnets of Ising type. The phase diagram of metamag-
netic systems in the external longitudinal field versus tem-
perature plane has been studied both theoretically1–10 and
experimentally.11–14 Theoretically, in mean-field theory, the
Ising metamagnet is known to display two kinds of phase
diagrams in the �T ,H� plane,1 depending on the ratio R
=Z1J1 /Z2J2. The Z1 and Z2�J1 ,J2� are the numbers of nearest
neighbors �exchange coupling� in the plane and in adjacent
planes, respectively. In both cases, the transition between the
antiferromagnetic and paramagnetic phases is of first order
at low temperature and large longitudinal fields, while it is
second order at higher temperature. When R�−3/5, the
two types of transitions are connected by a tricritical point.
When R�−3/5, the tricritical point decomposes into a
critical end point and a double critical end point. Kincaid
and Cohen predicted that new types of critical behavior
may be observed in FeBr2 and other similar systems from a
study of a simple mean-field model for metamagnets.15 Selke
and Pleimling5,6 studied anomalies of the magnetization and
the specific heat by using the mean-field theory and the
Monte Carlo simulations for the cases s=1/2 and s=1, re-
spectively. In particular, the dependence of the anomaly be-
havior on competing intralayer interactions, the spin value,
and the Ising-like anisotropy are investigated. Wang and
Rauchwarger16 and Wang and Kimel17 showed that a fourth-
order critical point along with other critical points of lower
order prevails in the s=1 antiferromagnetic Blume-Capel
model in the mean-field approximation and by using Monte
Carlo simulations for the simple cubic lattice. The observa-
tion of the fourth-order criticality is also discussed. They
proposed to observe the fourth-order critical point in a trans-
verse field.

Recently, Žukovič and Bobak and Žukovič and Idogaki
studied the phase diagrams and tricritical behavior of a di-
luted Ising metamagnet in an external longitudinal field by
the use of an effective-field theory with correlation8 and
Monte Carlo simulation,9 respectively, and examined the be-
havior of the tricritical point as a function of dilution and
ratio of interplane-intraplane interactions. Moreira et al.10

studied compressible metamagnetic Ising model within the
mean-field Curie-Weiss approach and found that three differ-
ent possibilities arise for the behavior of the tricritical point
under pressure. Žukovič and Idogaki18 studied multicritical
properties of an s=1/2 Ising metamagnet in an external field
by using Monte Carlo simulations and observed only tricriti-
cal behavior with no signs of the decomposition. Galam
et al.19 studied the phase diagram of an Ising metamagnet in
the presence of a uniform and a random field. Using the
mean-field theory, they showed that the qualitative features
of the phase diagrams are significantly dependent on the dis-
tribution of the random fields.

Experimentally, in the temperature range between the
critical end point and the double critical end point, Petracic
et al.20 observed a sharp peak in magnetization measure-
ments under a field inclined by 33° with the c axis �perpen-
dicular to the plane� of the crystal FeBr2. They concluded
that the peak was affected by the ordering of the planar spin
components. It is obvious that the field can be decomposed
into the longitudinal �perpendicular to the plane� and trans-
verse �parallel to the plane� fields.

On the other hand, the critical and magnetic properties of
the spin-1 /2 transverse Ising model and the mixed two-
sublattice Ising model in the external transverse field have
also been studied by using the mean-field approximation21,22

and the effective-field theory.23,24 Recently, Ovchinnikov et
al.25 studied the antiferromagnetic Ising chain in a mixed
transverse and longitudinal magnetic field by using the clas-
sical approach and the density-matrix renormalization-group
method and given the ground-state phase diagram in �hx ,hy�
plane. These investigations show that the transition tempera-
ture falls to zero at a certain transverse field. However, up to
now few people, as far as we know, have studied Ising meta-
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magnet in both external longitudinal and transverse fields. In
this work, we extend the mean-field theory to Ising meta-
magnet in both external longitudinal and transverse fields.
The purpose is to investigate the phase diagrams of Ising
metamagnet in both external longitudinal and transverse
fields. Specifically, the effect of the external transverse field
on the tricritical behavior of the Ising metamagnet is studied.

The paper is organized as follows. In Sec. II, a precise
definition of the model is given, and relevant expressions in
the mean-field approximation are derived. In Sec. III, the
numerical results and discussions are given. The conclusions
are given in Sec. IV.

II. MODEL AND METHODS

We consider a two-sublattice Ising metamagnet in both
longitudinal and transverse magnetic fields. The Hamiltonian
of the system is given by

H = − J1��
�i,j�

si
zsj

z + �
�k,l�

sk
zsl

z� − J2�
�i,k�

si
zsk

z − Hz��
i

si
z + �

k

sk
z�

− Hx��
i

si
x + �

k

sk
x� , �1�

where si
� ��=x ,z� denotes the � component of a spin vari-

able, si
z= ±1. In the system, odd planes and even planes con-

stitute sublattice A and sublattice B, respectively. �i , j� �be-
long to sublattice A� and �k , l� �belong to sublattice A� denote
the nearest neighbor pairs in the plane and �i ,k� denote the
nearest neighbor pairs in adjacent planes �between sublat-
tices A and B�. Hz and Hx denote the longitudinal �perpen-
dicular to the plane� and the transverse �parallel to the plane�
magnetic field. In the calculation, we assume J1�0 and
J2�0 so that each of the planes is ferromagnetic, but anti-
ferromagnetic coupled to adjacent planes.

According to the procedure outlined in Ref. 19 for a two-
sublattice Ising metamagnet in uniform and random fields,
we can obtain the conditions determining the transition tem-
perature and the tricritical point of the system. First, we de-
rive the mean-field equations from Bogoliubov’s variational
principle for Gibbs free energy,26

G�H� � � = G0�H0� + �H − H0�0, �2�

where G�H� is the true free energy of the system described
by the Hamiltonian �1�, G0�H0� is the free energy of a trial
Hamiltonian H0 which depends on variational parameters,
and �H−H0�0 denotes a thermal average over the ensemble
defined by H0.

Choosing the noninteracting trial Hamiltonian

H0 = − ��A + Hz��
i�A

si
z − Hx�

i�A

si
x − ��B + Hz� �

k�B

sk
z

− Hx �
k�B

sk
x, �3�

where �A and �B are the two variational parameters. By us-
ing the rotation transformation,27 we obtain

G�H� � � = −
N

2�
�ln	2 cosh„�
��A + Hz�2 + Hx

2
…�

+ ln	2 cosh„�
��B + Hz�2 + Hx
2
…��

+
N

2

��A −

1

2
Z1J1mA −

1

2
Z2J2mB�mA

+ ��B −
1

2
Z1J1mB −

1

2
Z2J2mA�mB� , �4�

where �=1/kBT and N is the total number of sites of the
system. The longitudinal and transverse sublattice magneti-
zations mA, mB and mA

x , mB
x per spin are defined by

mA � �si
z�0 =

�A + Hz


��A + Hz�2 + Hx
2

tanh„�
��A + Hz�2 + Hx
2
… ,

�5�

mB � �sk
z�0 =

�B + Hz


��B + Hz�2 + Hx
2

tanh„�
��B + Hz�2 + Hx
2
… ,

�6�

mA
x � �si

x�0 =
Hx


��A + Hz�2 + Hx
2

tanh„�
��A + Hz�2 + Hx
2
… ,

�7�

mB
x � �sk

x�0 =
Hx


��B + Hz�2 + Hx
2

tanh„�
��B + Hz�2 + Hx
2
… .

�8�

Now, by minimizing the right-hand side of inequality �4�
with respect to �A and �B, we determine the variational pa-
rameters in the form

�A = Z1J1mA + Z2J2mB, �9�

�B = Z1J1mB + Z2J2mA, �10�

where Z1 and Z2 are the coordination numbers of nearest
neighbors in the plane and in adjacent planes, respectively.

In order to determine analytically some features of the
phase diagram, we introduce longitudinal total magnetiza-
tion, staggered magnetization, as done in Ref. 19, and trans-
verse total magnetization,

Mt =
1

2
�mA + mB� , �11�

Ms =
1

2
�mA − mB� , �12�
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Mx =
1

2
�mA

x + mB
x � , �13�

and the reduced quantities

t =
1

��Z1J1 − Z2J2�
, h =

Hz

Z1J1 − Z2J2
, � =

Hx

Z1J1 − Z2J2
,

�14a�

	 =
Z1J1 + Z2J2

Z1J1 − Z2J2
=

R + 1

R − 1
, �14b�

where R=Z1J1 /Z2J2.
Inserting Eqs. �9� and �10� into the right-hand side of Eqs.

�4�–�8� and using Eqs. �11�–�14�, we arrive at the mean-field
equations

Mt =
1

2
 h + 	Mt + Ms


�h + 	Mt + Ms�2 + �2
tanh


�h + 	Mt + Ms�2 + �2

t
+

h + 	Mt − Ms


�h + 	Mt − Ms�2 + �2
tanh


�h + 	Mt − Ms�2 + �2

t
� ,

�15�

Ms =
1

2
 h + 	Mt + Ms


�h + 	Mt + Ms�2 + �2
tanh


�h + 	Mt + Ms�2 + �2

t
−

h + 	Mt − Ms


�h + 	Mt − Ms�2 + �2
tanh


�h + 	Mt − Ms�2 + �2

t
� ,

�16�

Mx =
1

2
 �


�h + 	Mt + Ms�2 + �2
tanh


�h + 	Mt + Ms�2 + �2

t
+

�


�h + 	Mt − Ms�2 + �2
tanh


�h + 	Mt − Ms�2 + �2

t
� .

�17�

Then, the mean-field free energy per spin is identified with
the lower limit of inequality �4� and may be written as

f =
�

N�Z1J1 − Z2J2�

= −
t

2
�ln
2 cosh


�h + 	Mt + Ms�2 + �2

t
�

+ ln
2 cosh

�h + 	Mt − Ms�2 + �2

t
�� +

	

2
Mt

2 +
1

2
Ms

2.

�18�

It can get analytic solution for second-order transition
point and tricritical point. The order parameter, which is used
to describe the transition of Ising metamagnetic system, is
Ms. The magnetizations of two sublattices are not equal for
Ms�0, and the system is in the metamagnetic phase. The
magnetizations of two sublattices are equal for Ms=0, and
the system is in the saturated paramagnetic phase. Because
Ms is small in the neighborhood of second-order transition
point, we can expand Eqs. �15� and �16�.

The expansion of the longitudinal total magnetization
takes the form

Mt = Mt0 + Mt1 = Mt0 + B1Ms
2 + B2Ms

4 + B3Ms
6 + B4Ms

8 + ¯ ,

�19�

where Mt0 is the paramagnetic solution and is given by equa-
tion

Mt0 =
	Mt0 + h


�	Mt0 + h�2 + �2
tanh


�	Mt0 + h�2 + �2

t
, �20�

and

Mt1 = B1Ms
2 + B2Ms

4 + B3Ms
6 + B4Ms

8 + ¯ . �21�

Inserting Eq. �19� into Eqs. �15� and �16�, and noting 	Mt1 is
also small in the neighborhood of second-order transition
point, the expansion of the right-hand side of Eqs. �15� and
�16� in powers of �	Mt1±Ms� gives the expressions

Mt1 =
1

2�
n=1




An	�	Mt1 + Ms�n + �	Mt1 − Ms�n� , �22�

MS =
1

2�
n=1




An	�	Mt1 + Ms�n − �	Mt1 − Ms�n� . �23�

Inserting Eq. �21� into Eq. �22� and equating the coefficients
of the same degree in Ms, we find the coefficients Bn in terms
of An,

B1 =
A2

1 − 	A1
, �24�

B2 =
1

1 − 	A1
�	2A2B1

2 + 3	A3B1 + A4� , �25�

B3 =
1

1 − 	A1
�2A2B1B2 + 3	A3B2 + 6	2A4B1 + 5	A5B1

+ 15	2A6B1
2 + A6� . �26�
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Finally, substituting Mt1, given by Eq. �21�, into Eq. �23� we
obtain the expansion

aMs + bMs
3 + cMs

5 + dMs
7 + ¯ = 0, �27�

where

a = 1 − A1, �28�

b = − 2	A2B1 − A3, �29�

c = − 2	A2B2 − 3	2A3B1
2 − 4	A4B1 − A5, �30�

d = − 2	A2B3 − 6	2A3B1B2 − 4	3A4B1
3 − 4	A4B2

− 10	2A5B1
2 − 6	A6B1 − A7. �31�

The coefficients An�n=1–5� are given in the Appendix.
The second-order transition point is found at a=0 with

b�0, the tricritical point occurs for a=b=0 with c�0, and
the fourth-order critical point occurs for a=b=c=0 with
d�0.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we shall present and discuss the results we
have obtained for the finite temperature phase diagrams to-
gether with the temperature dependence of the staggered
magnetization.

In a previous paper,28 we have given the ground-state
phase diagrams of the present model and found that at 	=
−0.5, h=0.7071, and �=0.3536, a=b=c=0. From Eq.
�14b�, we also know that 	=−0.25 corresponds to R=−3/5,
so for 	�−0.25, there is a tricritical point; for 	�−0.25, the
tricritical point decomposes into a critical end point and a
double critical end point when �=0.

Some typical results of the finite temperature phase dia-
gram in the �-t plane are depicted in Figs. 1 and 2 for 	
=0.1 ��−0.25� and −0.4�−0.25�	�−0.5�, respectively. In
the phase diagrams, the second-order transition lines, the tri-
critical points, and the fourth-order critical points are ob-
tained through solving numerically a=0 and b�0, a=b=0
and c�0, and a=b=c=0 with d�0, respectively. Here a, b,
c, and d are given by Eqs. �28�–�31�. However, the phase
transitions of first order must be determined by comparing
the corresponding Gibbs free energies of the various solu-
tions of Eqs. �15� and �16� for the pair �Mt ,Ms� by using Eq.
�18�. In the phase diagrams, the solid and dashed lines indi-
cate, respectively, the phase transitions of the second and the
first order, the � curve is the tricritical line, and the number
accompanying each curve is the value of h.

In Fig. 1, we see that the phase diagram comprises a
metamagnetic phase �ms�0� at low transverse fields and a
paramagnetic phase �ms=0� at high transverse fields for a
fixed value of longitudinal field h. The phase transitions be-
tween these phases are of first order for low temperatures,
low transverse fields, and high longitudinal fields, and the
phase transitions are of second order for high temperatures,
high transverse fields, and low longitudinal fields, being
separated by the tricritical point. The temperature of the tri-

critical point monotone increases as the transverse magnetic
field � decreases and the longitudinal magnetic field h in-
creases. In the region 	0.7607���1, 0�h�0.2994�, the
phase transition is always of second order. In the region
	0���0.5465, 0.3689�h�0.45�, the phase transition is
always of first order. In these two regions, the tricritical point
does not exist. We also find that the phase transitions change
from second order for high temperatures to first order for low
temperatures with increasing � from 0 to 0.7156 for a given
value of h�0.2994�h�0.3689�. At t=0, �=0, comparing
the corresponding Gibbs free energies of the various solu-
tions of Eqs. �29� and �30�, one can find hc= �1−	� /2. When
h�hc, the system is the disorder phase and it is the order
phase when h�hc. We can determine hc=0.45 at t=0,
�=0.

In Fig. 2, we find that for 	0.4517���1, 0�h
�0.6341�, the phase diagram consists of entirely the lines of

FIG. 1. �Color online� Finite temperature phase diagrams in the
�-t plane for 	=0.1. The dashed and the solid curves indicate
first-order and second-order transition lines, the � curve is the tri-
critical line, and the number accompanying each curve is the value
of h.

FIG. 2. �Color online� Finite temperature phase diagrams in the
�-t plane for 	=−0.4. The dashed and the solid curves indicate
first-order and second-order transition lines, the � curve is the tri-
critical line, and the number accompanying each curve is the value
of h.
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second-order points; for 	0.3939���0.4517, 0.6341�h
�0.6492�, a tricritical point appears and the first-order line
joins smoothly to the second-order line. For 	0��
�0.3939, 0.6497�h�0.6976�, the tricritical point disap-
pears and decomposes into a critical end point and a bicriti-
cal end point. A typical phase diagram is shown in the inset
of Fig. 2. The fourth-order critical point is located at the
intersection of the tricritical line, the line of critical end
point, and the line of the bicritical end point. Of most interest
is the existence of a fourth-order critical point at h=0.6497,
�=0.3908, t=0.2108. When �=0, hc=0.70, the system is
the disorder phase. For 0.6976�h�0.726, the transitions
again become of second order with the reentrant phenom-
enon.

In order to see the effect of the field on the tricritical
behavior, the projections of the tricritical lines along the h
axis are plotted in Fig. 3 for different values of 	. In Fig. 3,
the � lines represent the positions of stable tricritical points,
the � line corresponds to the projection of the fourth-order
critical points, and the number accompanying each curve is
the value of 	. In Fig. 3, we see that the tricritical tempera-
ture tr decreases as the � increases and the h decreases for a
given value of 	. The region exhibiting the first-order tran-
sition and the length of the tricritical line decrease as the
value of 	 decreases. The fourth-order point appears in the
region −0.5�	�−0.25.

The phase diagrams with fourth-order critical points have
been obtained in the mean-field Ising model in the presence
of a random field obeying a symmetric three-peak
distribution,29 in the BEG model with a repulsive biquadratic
coupling,30 in the random-site binary ferromagnetic Ising
model consisting of spin 1/2 and spin 1 with a single-ion
anisotropy,31 in the mixed spin-1 and spin-3 /2 Ising system
on a square lattice with different single-ion anisotropies,32

and in the mean-field Ising model of the mixed
ferromagnetic-ferrimagnetic ternary alloy with a single-ion
anisotropy.33 However, in these reference, the single fourth-
order critical point in the phase diagrams is given. In the
present model, we find the fourth-order critical point line.

Figure 4 shows the position �tf ,� f ,hf� of the fourth-order
critical points as a function of 	. When 	=−0.25
�R=−3/5�, the position of the fourth critical order point is at
�tf ,� f ,hf�= �4/9 ,0 ,0.614�; this result is the same as that
given in Ref. 15. In the figure, one can find that the � f has
the maximum value 0.3937 at 	=−0.3537 and hf has the
minimum value 0.6088 at 	=−0.2790. It is necessary to note
that the temperature falls to zero, i.e., tf =0, at 	=−0.5.

Figure 5 expresses the finite temperature phase diagram in
the �-t plane for 	=−0.6��−0.5�. This figure is similar to
Fig. 2 except the absence of tricritical point line. We find that
for 	0.3507���1, 0�h�0.7781�, the phase diagram
consists of entirely the lines of second-order points; for
	0���0.3507, 0.7781�h�0.8000�, the critical end point
and the bicritical end point can be found. A typical phase
diagram is shown in the inset. For 0.8002�h�0.8775, the
transitions again become of second order with the reentrant
phenomenon.

Figures 6�a�–6�d� express the behaviors of staggered mag-
netization per site as a function of temperature for the present

FIG. 3. �Color online� Projection of the tricritical line along the
h axis. The � lines represent the positions of stable tricritical points
and the � line corresponds to the projection of the fourth-order
critical points.

FIG. 4. Positions �tf ,� f ,hf� of the fourth critical order point as
a function of 	.

FIG. 5. Finite temperature phase diagram in the �-t plane for
	=−0.6. The dashed and the solid curves indicate first-order and
second-order transition lines and the number accompanying each
curve is the value of h.
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model with 	=−0.4, h=0.675,0.69,0.696,0.708, respec-
tively, when values of � are changed. In these figures, the
staggered magnetization curves exhibit reentrant phenomena
except the curve labeled 0.1. In particular, the staggered
magnetization curves labeled 0.127 of Fig. 6�b� and 0.002 of
Fig. 6�c� express the characteristic behavior: the staggered
magnetization curve is divided into two segments, i.e., with
the increase of the temperature t from 0 the staggered mag-
netization first decreases and suddenly changes to zero, then
suddenly increases from 0 to a certain maximum value, and
finally continuously decreases to zero again. The staggered
magnetization curve labeled 0.075 of Fig. 6�c� expresses
similar behavior and is divided into two segments, but in the
second segment the staggered magnetization continuously
increases from 0 to a certain maximum value. For the given
	 and h, as � increases the first segment of staggered mag-
netization curve firstly disappears and then the second seg-
ment also disappears. The role of transverse field � is to
destroy the reentrant phenomenon. In other words, when the
transverse field is not too large, the reentrant phenomenon
becomes weak. When the transverse field is larger than a
certain value, the reentrant phenomenon will disappear and
the staggered magnetization curve becomes to a point. The
positions of the points are at ��=0.4048, t=0.4074�,
��=0.3428, t=0.4212�, ��=0.3139, t=0.4276�, and
��=0.2446, t=0.4383� for the above four cases. We know
that the phase transition line in Fig. 2 changes to be a point
located at �=0, t=0 when h=0.7. However in Fig. 6�d�, for
h=0.708, the system exhibits reentrant phenomenon; it is
shown that the role of h is to generate the reentrant phenom-
enon. The curves in Fig. 6 are consistent with the results in
Fig. 2.

Finally, in order to compare with previous results, we also
give some typical phase diagrams. Figure 7�a� shows the
phase diagram of the system for t=0, 	=0 and −1. In Fig.

FIG. 6. Thermal variations of the staggered
magnetization ms with 	=−0.4 for h equal to
�a�0.675, �b�0.69, �c�0.696, and �d�0.708. The
number accompanying each curve is the value of
�, and the vertical dashed lines indicate the first-
order transitions.

FIG. 7. �a� Ground-state phase diagram in the �-h plane for 	
=0 and −1. �b� Finite temperature phase diagrams for 	=0, 1 /3,
and −3/7 when �=0. The dashed and the solid curves indicate
first-order and second-order transition lines, respectively, and � is
the tricritical point.
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7�a�, we can see that the curve labeled 	=−1 is the same as
the one in Ref. 25, which is obtained by using the classical
approximation when spins are represented as three-
dimension vectors. We can also see that the curve labeled
	=0 is the same as Fig. 1 of Ref. 34; the position of the
tricritical point is at ht0=4/53/2=0.3578, �t0=8/53/2

=0.7156. When h=0, we see that �c=z1J1−z2J2 and it is
independent of 	. Figure 7�b� shows the phase diagrams of
the system for �=0, 	=0, 1 /3, and −3/7. We can see that
the phase transition curve labeled 0 is the same as curve a of
Figs. 1 and 2 of Ref. 19; the tricritical point is at t
=0.6667,h=0.4390. The two phase transition curves labeled
1/3 �R=−2� and −3/7 �R=−0.4� in Fig. 7�b�, after expand-
ing both axis h and axis � by 6 and 2.8 times, respectively,
are the same as those of Figs. 1 and 3 of Ref. 5.

IV. CONCLUSION

Within the mean-field approach based on Bogoliubov’s
inequality for the Gibbs free energy, the two-sublattice Ising
metamagnet in both external longitudinal and transverse
fields is studied. We calculate the staggered magnetization,
the longitudinal total magnetization, the transverse total
magnetization, the free energy, etc., and plot the finite tem-

perature phase diagrams in the �-t plane for some typical
parameters. The results show that the tricritical points can
occur in a certain region of the external longitudinal and
transverse fields and that the temperature of the tricritical
point monotone increases with decreasing the transverse
magnetic field � and increasing the longitudinal magnetic
field h. Of most interest is the existence of the fourth-order
critical point in the phase diagrams due to the existence of
the transverse field �. We have found that the fourth-order
critical point appears in the region −0.5�	�−0.25 and ob-
tained the position of the fourth-order critical point as a func-
tion of 	. In the phase diagrams, there are various reentrant
phenomena. Of course, these results are obtained by using
the mean-field theory and need further investigation by using
more reliable techniques such as the effective-field theory,
Monte Carlo simulation, or renormalization-group approach.
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APPENDIX

The list of coefficients in Eqs. �28�–�31� is as follows.

A1 =
�2

	�h + 	Mt0�2 + �2�3/2 tanh

�h + 	Mt0�2 + �2

t
+

�h + 	Mt0�2

t�h + 	Mt0�2 + �2
1 − tanh2

�h + 	Mt0�2 + �2

t
� ,

A2 = −
3�2�h + 	Mt0�

2	�h + 	Mt0�2 + �2�5/2 tanh

�h + 	Mt0�2 + �2

t
+

3�2�h + 	Mt0�
2t	�h + 	Mt0�2 + �2�2
1 − tanh2


�h + 	Mt0�2 + �2

t
�

−
�h + 	Mt0�3

t2	�h + 	Mt0�2 + �2�3/2 tanh

�h + 	Mt0�2 + �2

t

1 − tanh2


�h + 	Mt0�2 + �2

t
� ,

A3 =
�2	4�h + 	Mt0�2 − �2�
2	�h + 	Mt0�2 + �2�7/2 tanh


�h + 	Mt0�2 + �2

t
−

�2	4�h + 	Mt0�2 − �2�
2t	�h + 	Mt0�2 + �2�3 
1 − tanh2


�h + 	Mt0�2 + �2

t
�

−
2�h + 	Mt0�2�2

t2	�h + 	Mt0�2 + �2�5/2 tanh

�h + 	Mt0�2 + �2

t

1 − tanh2


�h + 	Mt0�2 + �2

t
�

−
�h + 	Mt0�4

3t3	�h + 	Mt0�2 + �2�2
1 − 4 tanh2

�h + 	Mt0�2 + �2

t
+ 3 tanh4


�h + 	Mt0�2 + �2

t
� ,

A4 =
5�h + 	Mt0��2	3�2 − 4�h + 	Mt0�2�

8	�h + 	Mt0�2 + �2�9/2 tanh

�h + 	Mt0�2 + �2

t
−

5�h + 	Mt0��2	3�2 − 4�h + 	Mt0�2�
8t	�h + 	Mt0�2 + �2�4

�
1 − tanh2

�h + 	Mt0�2 + �2

t
� −

5�h + 	Mt0��2	�2 − 2�h + 	Mt0�2�
4t2	�h + 	Mt0�2 + �2�7/2 tanh


�h + 	Mt0�2 + �2

t

�
1 − tanh2

�h + 	Mt0�2 + �2

t
� −

5�h + 	Mt0�3�2

6t3	�h + 	Mt0�2 + �2�3
1 − 4 tanh2

�h + 	Mt0�2 + �2

t
+ 3 tanh4


�h + 	Mt0�2 + �2

t
�

−
�h + 	Mt0�5

3t4	�h + 	Mt0�2 + �2�5/2
2 tanh

�h + 	Mt0�2 + �2

t
− 5 tanh3


�h + 	Mt0�2 + �2

t
+ 3 tanh5


�h + 	Mt0�2 + �2

t
� ,
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A5 =
3�2	�4 − 12�2�h + 	Mt0�2 + 8�h + 	Mt0�4�

8	�h + 	Mt0�2 + �2�11/2 tanh

�h + 	Mt0�2 + �2

t
−

3�2	�4 − 12�2�h + 	Mt0�2 + 8�h + 	Mt0�4�
8t	�h + 	Mt0�2 + �2�5

�
1 − tanh2

�h + 	Mt0�2 + �2

t
� −

�2	�4 − 15�2�h + 	Mt0�2 + 12�h + 	Mt0�4�
4t2	�h + 	Mt0�2 + �2�9/2 tanh


�h + 	Mt0�2 + �2

t

�
1 − tanh2

�h + 	Mt0�2 + �2

t
� +

�2�h + 	Mt0�2	4�h + 	Mt0�2 − 3�2�
4t3	�h + 	Mt0�2 + �2�4 
1 − 4 tanh2


�h + 	Mt0�2 + �2

t

+ 3 tanh4

�h + 	Mt0�2 + �2

t
� +

�2�h + 	Mt0�4

t4	�h + 	Mt0�2 + �2�7/2
2 tanh

�h + 	Mt0�2 + �2

t
− 5 tanh3


�h + 	Mt0�2 + �2

t

+ 3 tanh4

�h + 	Mt0�2 + �2

t
� +

�h + 	Mt0�6

15t5	�h + 	Mt0�2 + �2�3
2 − 17 tanh2

�h + 	Mt0�2 + �2

t
+ 30 tanh4


�h + 	Mt0�2 + �2

t

− 15 tanh6

�h + 	Mt0�2 + �2

t
� ,

A6 and A7 are not given here for simplicity.
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