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In the literature, phononic band gaps in periodic media are generated via two different means, namely, Bragg
scattering and local resonances. In this paper, an alternative method is introduced, in which effective inertia of
the wave propagation medium is amplified via embedded amplification mechanisms. A prototype two-
dimensional mass-spring lattice is introduced. The band structure of this lattice is computed for various
instantiations to highlight the benefits of inertial amplification and to quantify the sensitivity of inertial ampli-
fication induced band gaps to parametric variations. It is shown that inertial amplification gives rise to very
wide band gaps at low frequencies.
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I. INTRODUCTION

Spectral gaps in the band structure of periodic media have
long been attracting many researchers.1 In the last decade,
there has been growing interest in computing and designing
the phononic band structure of two- and three-dimensional
periodic systems comprising various materials.2–7 Of particu-
lar focus has been obtaining complete phononic band gaps,
which forbid the propagation of elastic or acoustic waves
regardless of mode or wave vector. Practical applications of
these systems include mechanical filters, sound and vibration
isolators, and acoustic waveguides.7,8

There are two different widely published means of gener-
ating phononic band gaps in periodic media, which are
Bragg scattering and local resonances.5,9,10 In Bragg scatter-
ing, a gap appears due to destructive interference of the wave
reflections from the periodic inclusions within the media.
Band gaps can also be generated via local resonators, which
impede wave propagation around their resonance frequen-
cies. Moreover, a band gap can be formed by the combined
effect of these two mechanisms.5,9,10

A significant and practical challenge is to design solid
systems that possess wide low-frequency band gaps. Due to
the existence of transverse �shear� modes in solids, it is
harder to obtain wide low-frequency band gaps when com-
pared to fluids.11 Moreover, the lowest frequency gap due to
Bragg scattering is of the order of the wave speed �longitu-
dinal or transverse� of the medium divided by the lattice
constant.10,13 Thus, to have a low-frequency Bragg gap, one
needs low wave speeds �i.e., heavy inclusions in a soft me-
dium� or a large lattice constant. Heaviness, low stiffness,
and large size are not good attributes for band gap structures
that are to be used for practical purposes. On the other hand,
by choosing low resonator frequencies, one can place local
resonator induced band gaps at much lower frequencies than
that can be obtained by Bragg scattering.12–15 Low-frequency
local resonances can be realized by embedding rubber-coated
dense metal �e.g., Pb or Au� spheres or cylinders in an epoxy
matrix.10,12,13 It has been shown that the gap size and the gap
center frequency are independent of the geometric arrange-
ment of the coated inclusions �local resonators� within the
medium but are dependent on their volume filling fraction.10

Moreover, to obtain wide band gaps at low frequencies, large

volume filling fractions are required.10,13 Since the average
density of the coated inclusions, i.e., rubber and dense metal,
is more than the epoxy matrix, large volume fractions imply
even larger mass fractions. Therefore, to obtain wide band
gaps at low frequencies, one needs heavy resonators that
form a large fraction of the overall mass of the medium.

In this paper, phononic band gaps are generated via an
alternate method, in which effective inertia of the wave
propagation medium is amplified via embedded amplifica-
tion mechanisms. One of the first designs that made use of
amplified effective inertia employs a single stage vibration
isolator consisting of a levered mass in parallel with a
spring.16 These systems are used to isolate massive objects
from vibrations. The lever in the system generates large in-
ertial forces by amplifying the motion of a small mass, which
in turn effectively increases the inertia of the overall system
by lowering its resonance frequency. Furthermore, the isola-
tor also introduces an antiresonance frequency when the in-
ertial force generated by the levered mass cancels the spring
force. For a literature review on vibration isolation systems
that utilize this principle, see Yilmaz and Kikuchi.17 In the
present paper, this inertial amplification method is utilized to
generate band gaps in infinite periodic systems. The amplifi-
cation mechanisms in consideration are not in the form of
levers, but their simple yet effective geometry allows them to
be easily embedded into two- or three-dimensional lattices.
To illustrate the band gaps generated by inertial amplifica-
tion, a two-dimensional mass-spring lattice is considered,
which can sustain in-plane waves with longitudinal and
transverse modes. The characteristics of the gaps obtained
via this method are determined and compared with those
obtained via Bragg scattering and local resonators. The pre-
sented method gives rise to very wide band gaps at low fre-
quencies even in the presence of transverse modes. Further-
more, wide low-frequency band gaps can be realized without
using large mass fractions on the embedded amplifiers.

II. LATTICE WITH INERTIAL AMPLIFICATION

Consider the system in Fig. 1. First, we assume that the
springs ka are rigid. In this case, when the masses m are
displaced by a small amount u toward each other, ma is dis-
placed by an amount u / tan���. If � is small �not infinitesi-
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mally small�, then the displacements of the masses m will
cause amplified displacement for the mass ma with an ampli-
fication ratio of 1 / tan���. As there is only one nonzero mode
of vibration, the corresponding equation of motion is given
by

�2m +
ma

tan���2�ü + 4ku = 0. �1�

In Eq. �1�, the term that multiplies ü is the effective inertia of
the system. Statically, the total mass of the system is 2m
+ma. However, the effective inertia can be much larger than
the total mass by prescribing small values of �. Amplification
of inertia is possible due to the amplified inertial forces gen-
erated by the mass ma. If the springs ka are not rigid, then
there will be two additional degrees of freedom in the sys-
tem. Amplified inertial forces can still be generated if the
system is excited at a frequency less than the resonance fre-
quencies caused by the finite stiffness amplification mecha-
nism. Therefore, inertial amplification effect is present until
resonance effect takes place.

A two-dimensional infinite periodic lattice, using the am-
plification mechanism of Fig. 1, is shown in Fig. 2�a�. The
wave propagation characteristics of this lattice are deter-
mined from the irreducible unit cell shown in Fig. 2�b� via
Bloch’s theorem.18–20 In this lattice, the thin lines with stiff-
ness k and big dots with mass m form a triangular truss
structure. To form the lattice, the thick lines with stiffness ka
and the small dots with mass ma are added to this truss struc-
ture. These additions do not increase the static stiffness of the
system since they form mechanisms. We denote the nodes
with mass m as structural nodes, since they make up the
structural backbone of the lattice. If the springs denoted by

ka are assumed to be rigid, the motion of the masses ma will
be rigidly coupled to the masses m. If � is small �not infini-
tesimally small�, then the relative displacements of the struc-
tural nodes will cause amplified displacements for the
masses ma. Consequently, the lattice possesses inertial am-
plification.

To see the effect of inertial amplification on the genera-
tion of band gaps, we derive the dispersion equation of the
lattice for the general case of finite ka, which can be set to a
very large value to approximate rigid coupling. The deriva-
tion can be found in Appendix A, which gives the dispersion
equation of the lattice as

det„K��� − �2M… = 0. �2�

To obtain the band structure of the lattice, Eq. �2� is solved
for � by evaluating � on the exterior boundary of the irre-
ducible Brillouin zone shown in Fig. 2�c� along the path
�-M-K-�. If all the parameter values are finite and nonzero,
the dispersion relation ���� has 14 branches. Otherwise,
there are less number of branches corresponding only to the
finite and nonzero frequency modes. Plotting ���� reveals
the band structure in which only complete band gaps will be
considered, i.e., the frequency ranges in which no branch
exists regardless of mode.

III. NUMERICAL RESULTS

The band structure of the lattice described in the previous
section is computed for several different instantiations. In the
first case, parameter values are prescribed such that the lat-
tice comprises only the structural backbone, i.e., no amplifi-
cation mechanism exists. This baseline configuration is then
contrasted with a model in which rigid mechanisms are in-
troduced, followed by a model in which the mechanism
springs are compliant. To isolate the effect of inertial ampli-
fication, an additional kinematic constraint is embedded on
the mechanism pairs. Finally, the sensitivity of the inertial
amplification induced band gaps to variations of the lattice
parameters is demonstrated.

A. Lattice without amplification mechanisms

As a baseline configuration, consider the lattice in Fig. 2
without amplification mechanisms added. To this end, let k
=1, m=1, ka=0, ma=0, and �=0 �numerically, ma is as-

k
�

u u

)tan(/ �uy
max ka kam m

FIG. 1. The system with amplification mechanism. Here, the
thin line is an axial spring with stiffness k, and the thick lines are
axial springs each with stiffness ka. The big and small dots repre-
sent point masses with masses m and ma, respectively. Within the
system, the springs ka and the mass ma form the amplification
mechanism.
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FIG. 2. �a� The infinite periodic lattice with
inertial amplification and �b� its irreducible unit
cell. Here, the thin lines with stiffness k and big
dots with mass m form a triangular truss struc-
ture. The thick lines with stiffness ka and the
small dots with mass ma form the amplification
mechanisms. The angle � determines the amplifi-
cation generated by the mechanisms. The num-
bers 1–7 denote the nodes within the unit cell. �c�
The hexagonal first Brillouin zone of the recipro-
cal lattice, in which the irreducible Brillouin zone
is shaded. The hexagon has side length 4� /3l.
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signed a very small value to preserve the rank of the mass
matrix�. In this case, we are left with the triangular truss
structure that forms the backbone of the lattice. Figure 3
shows the computed band structure. There are only two
branches and no gap between them. However, the lattice is a
low-pass system, and there is a semi-infinite gap starting at
�=2.449.

B. Lattice with rigid amplification mechanisms

To see the effect of inertial amplification, we set the over-
all mass of the unit cell, i.e., m+6ma, again equal to 1 but
assign half the mass on rigid amplification mechanisms. To
this end, let k=1, m=0.5, ka→�, ma=0.5/6, and �=� /18
�numerically, ka is assigned a very large value�. Figure 4
shows the band structure of this case. Again, only two
branches and a semi-infinite gap exist. However, due to in-
ertial amplification, the gap starts at �=0.830, which is one-
third of the previous case.

In Figs. 3 and 4, the slopes of the transverse and the
longitudinal branches in the long wavelength limit give the
transverse and the longitudinal wave speeds, ct and cl, re-
spectively. For both cases, ct=0.612l and cl=1.061l, where l
is the lattice constant. In general, ct and cl can be determined
in terms of k, m, ma, and l. We denote the first two branches
of ���� as �1 and �2 in increasing order. If ma=0, then the
14�14 system in Eq. �2� is reduced to a 2�2 system that

can be solved analytically for �1 and �2. Let 	�
� be the
magnitude of �= �	1 ,	2� in the propagation direction 

=tan−1�	2 /	1�; then,

ct�
� = lim
	�
�→0

��1

�	�
�
, cl�
� = lim

	�
�→0

��2

�	�
�
. �3�

Owing to the isotropy of the lattice, for any 
, Eq. �3� yields
the wave speeds for the 2�2 system as ct= l�3k /8m and
cl= l�9k /8m. For the general 14�14 system with ma�0, the
addition of the amplification mechanisms does not change
the static stiffness regardless of the value of ka; however, the
unit cell mass becomes m+6ma. As a result, the wave speeds
for the 14�14 system are

ct = l�3k/8�m + 6ma�, cl = l�9k/8�m + 6ma� . �4�

Therefore, if k and m+6ma are equal for two lattices, then
the wave speeds are the same, which can be seen by com-
paring the cases in Figs. 3 and 4.

The highest frequency in the lattice, which is also the
starting frequency of the semi-infinite gap, is obtained when
the wave vector � is at point M in the Brillouin zone. Figure
5 shows the displacements of the structural nodes, when the
wave vector � is at this point. Using the displacements of the
structural nodes, we formulate the starting frequency of the
semi-infinite gap denoted as �s in terms of k, m, ma, and � as
ka→� �see Appendix B for details�. The outcome is as fol-
lows:

�s
2 =

6k

ma� 3

tan���2 + tan���2 + 2� + m

. �5�

In the lattice, changing k and the overall mass of the unit cell
�m+6ma� scales the wave speeds cl and ct as seen in Eq. �4�.
Thus, the normalized gap starting frequency �sl /2�ct can be
written in terms of just � and the mass fraction on amplifiers,
given by

� = 6ma/�m + 6ma� . �6�

Using Eq. �4� in Eq. �5� yields

FIG. 3. Band structure of the lattice for k=1, m=1, ka=0, ma

=0, and �=0. Longitudinal and transverse branches are represented
with continuous and dashed lines, respectively.

FIG. 4. Band structure of the lattice for k=1, m=0.5, ka→�,
ma=0.5/6, and �=� /18. Longitudinal and transverse branches are
represented with continuous and dashed lines, respectively.
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FIG. 5. Displacements of the structural nodes when the wave
vector � is at point M in the Brillouin zone. All these displacements
denoted by dotted arrows have the same amplitude u.
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�sl

2�ct
=

2/�

��� 1

2 tan���2 +
tan���2

6
−

2

3
� + 1

. �7�

Figure 6 shows the dependence of �sl /2�ct on � and �.
When � is zero, the lattice becomes the triangular truss
structure with a normalized gap starting frequency of 0.637,
which is the upper bound. By increasing � and/or prescrib-
ing small � values, much lower gap starting frequencies are
obtained. Note that �sl /2�ct remains relatively constant
along the � axis if � is not close to zero. Thus, the amplifier
mass fraction does not need to be very large to generate low
gap starting frequencies, provided that amplification is large
�i.e., � is small�.

C. Lattice with finite stiffness amplification mechanisms

In this section, inertial amplification is engendered using
stiff, but not rigid, amplification mechanisms. Consider k
=1, m=0.5, ka=10, ma=0.5/6, and �=� /18. Figure 7�a�
shows the band structure for this case. There are two flat
branches �each composed of four coinciding branches� at �
=sin����2ka /ma=2.690 and �=cos����2ka /ma=15.26 cor-
responding to the transverse and longitudinal resonance
modes of the amplification mechanisms, respectively. Over-
all, there are four band gaps between the branches. The semi-
infinite gap above all the branches is not of concern. Table I
shows the lower and upper limits for the gaps and the nor-
malized gap widths, i.e.,

��/�g = ��u − �l�/�g, �g = ��u + �l�/2, �8�

where �l and �u correspond to the lower and upper band gap
limits, respectively, and �g is the midgap frequency.

Note that the band structure in Fig. 7�b� is similar to the
one in Fig. 4. The lower limit of the first band gap in Fig.
7�b�, i.e., �=0.795, is a little bit smaller than that of the
semi-infinite gap in Fig. 4, which was �=0.830. The slight
reduction in the lower limit is due to the finite stiffness of the
amplification mechanisms. Besides, due their finite stiffness,
transverse resonance modes of the amplification mechanisms
set the upper limit for the first band gap.

The inertial amplification effect in the lattice can be re-
moved by placing rigid links between the neighboring am-
plification mechanisms �see Fig. 8�. In this case, the springs
ka and the masses ma cannot form mechanisms anymore, but

they become part of the structural backbone. However, the
masses ma can displace in transverse and longitudinal direc-
tions relative to the edges that they span. The dispersion
equation for this case can be obtained by adding new cou-
pling terms to the equations of motion of the original lattice.
Figure 9�a� shows the band structure of this system. Again,
there are two flat branches at �=sin����2ka /ma=2.690 and
�=cos����2ka /ma=15.26, corresponding to the transverse
and longitudinal resonance modes of the masses ma with
respect to the edges that they span. The band structure is very
similar to the one of Fig. 7�a�, except that the first gap in Fig.
7�a� does not exist, which can be seen more clearly by com-
paring Figs. 7�b� and 9�b�. Thus, the origin of the first gap in
Fig. 7�a� is inertial amplification. Moreover, due to the unal-
tered local resonances of the masses ma in the transverse
direction with respect to the edges that they span, the second
gap in Fig. 7�a� remains unchanged in Fig. 9�a�. This local
resonance induced gap is the lowest frequency gap in the

FIG. 6. Normalized gap starting frequency ��sl /2�ct� as a func-
tion of � and the mass fraction on amplifiers ���.

(a)

(b)

FIG. 7. �a� Band structure of the lattice for k=1, m=0.5, ka

=10, ma=0.5/6, and �=� /18. �b� Details of the band structure in
the lower frequency range. Longitudinal and transverse branches
are represented with continuous and dashed lines, respectively. The
flat branches correspond to the longitudinal �continuous line� and
transverse �dashed line� resonance modes of the amplification
mechanisms.

TABLE I. Lower ��l� and upper ��u� band gap limits and nor-
malized gap widths ��� /�g� for k=1, m=0.5, ka=10, ma=0.5/6,
and �=� /18.

Gap No. �l �u �� /�g

1 0.795 2.690 1.088

2 2.690 3.101 0.142

3 11.65 15.26 0.268

4 15.26 15.35 0.006
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lattice without inertial amplification. The higher frequency
gaps are not of practical concern, since the major challenge
is to obtain large low-frequency band gaps.

Again, consider the original lattice with inertial amplifi-
cation. Now, we investigate the effect of using a small value
for ka. For this purpose, let k=1, m=0.5, ka=0.1, ma
=0.5/6, and �=� /18. Figure 10�a� shows the band structure
of this case. There are again two flat branches, now at �
=sin����2ka /ma=0.269 and �=cos����2ka /ma=1.526, cor-
responding to the transverse and longitudinal resonance
modes of the amplification mechanisms, respectively. Again,
there are four band gaps between the branches. Table II
shows the lower and the upper limits for the gaps and the
normalized gap widths. The normalized width of the first
gap, which arises from inertial amplification, is reduced sig-
nificantly compared to the case with ka=10 �see Table I�.

However, the normalized width of the second gap, which is
due to local resonance, did not change. Reducing ka reduces
the midgap frequencies of both of these gaps.

Now, we consider the effect of the lattice parameters on
the frequency limits of the first band gap, which arises from
inertial amplification. To this end, normalized frequencies
�l /2�ct are considered, which enables us to fully character-
ize the first band gap by �, the stiffness ratio ka /k, and the
mass fraction �.

First, we consider the effect of the stiffness ratio ka /k on
the frequency limits of the first band gap. To this end, let
�=0.5, �=� /18, and vary ka /k from 1 to 100. As seen in
Fig. 11�a�, the lower limit of the gap remains relatively con-
stant, except for small ka /k values. The upper limit of the
gap increases proportionally to �ka /k. As seen in Fig. 11�b�,
one does not need very large ka /k values to obtain wide gaps.

These results show that band gap size can be increased by
increasing the stiffness ratio ka /k. The gap size increase is

k
m

ma
ka
�

x

y

FIG. 8. The modified unit cell. Here, rigid links �as shown by
dotted lines� are placed between the neighboring amplification
mechanisms in order to eliminate the inertial amplification effect.

(a)

(b)

FIG. 9. �a� Band structure of the modified lattice �with rigid
links between the neighboring amplification mechanisms� for k=1,
m=0.5, ka=10, ma=0.5/6, and �=� /18. �b� Details of the band
structure in the lower frequency range. Longitudinal and transverse
branches are represented with continuous and dashed lines, respec-
tively. The flat branches correspond to the longitudinal �continuous
line� and transverse �dashed line� resonance modes of the masses
ma with respect to the edges that they span.

(a)

(b)

FIG. 10. �a� Band structure of the lattice for k=1, m=0.5, ka

=0.1, ma=0.5/6, and �=� /18. �b� Details of the band structure in
the lower frequency range. Longitudinal and transverse branches
are represented with continuous and dashed lines, respectively. The
flat branches correspond to the longitudinal �continuous line� and
transverse �dashed line� resonance modes of the amplification
mechanisms.

TABLE II. Lower ��l� and upper ��u� band gap limits and nor-
malized gap widths ��� /�g� for k=1, m=0.5, ka=0.1, ma=0.5/6,
and �=� /18.

Gap No. �l �u �� /�g

1 0.257 0.269 0.047

2 0.269 0.310 0.142

3 1.525 1.526 0.0006

4 1.526 1.872 0.204
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accompanied by an increase in the midgap frequency. To
lower the midgap frequency, amplification within the lattice
can be increased by reducing �. To observe this effect, let
�=0.5, ka /k=10, and vary � from � /600 to � /6 �very small
� values resulting in extremely large amplifications, which
may not be realized physically, are included to show the
trend in the limit when � approaches zero�. As seen in Fig.
12�a�, when � approaches zero, both the upper and the lower
limits of the first band gap approach zero, while the normal-
ized gap width does not change much �see Fig. 12�b��.
Therefore, as long as large amplifications are realized, mid-
gap frequency of inertial amplification induced band gaps
can be much smaller than 1 in terms of normalized frequen-
cies. This is in contrast to obtaining band gaps via Bragg
scattering, in which the midgap frequency of the lowest gap
can be on the order of 1 in terms of normalized frequencies.

Finally, we investigate the effect of mass distribution
within the unit cell on the upper and the lower limits of the
first band gap. To this end, let ka /k=10, �=� /60, and vary �
from 0 to 1. Figure 13�a� shows that when the mass fraction
on amplifiers ��� increases, both the upper and the lower
limits decrease with a decreasing rate. Moreover, as seen in
Fig. 13�b�, the normalized gap width remains nearly constant
except for small mass fractions. So, a large fraction of the
overall mass is not required to be on the amplifiers to obtain
wide low-frequency band gaps, provided that ka /k is moder-
ately large and � is small. This is unlike obtaining wide
low-frequency gaps via local resonators, which require heavy
resonators that form a large fraction of the overall mass of
their unit cell.

IV. CONCLUSIONS

Characteristics of the phononic band gaps generated by
inertial amplification have been investigated in this work.
First, a simple low-pass triangular truss structure was con-
sidered. It is shown that the addition of rigid amplification
mechanisms to this structure does not change the wave

(a)

(b)

FIG. 11. �a� Upper and lower band gap limits of the first band
gap in the lattice with inertial amplification for �=0.5 and �
=� /18 as a function of the stiffness ratio ka /k. �b� Normalized gap
width as a function of ka /k.

(a)

(b)

FIG. 12. �a� Upper and lower band gap limits of the first band
gap in the lattice with inertial amplification for �=0.5 and ka /k
=10 as a function of �. �b� Normalized gap width as a function of �.

(a)

(b)

FIG. 13. �a� Upper and lower band gap limits of the first band
gap in the lattice with inertial amplification for ka /k=10 and �
=� /60 as a function of mass fraction on amplifiers �. �b� Normal-
ized gap width as a function of �.
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speeds or the number of branches or its low-pass nature if the
overall mass of the unit cell is kept constant. However, the
rigid amplification mechanisms can reduce the highest fre-
quency in the lattice considerably, provided that amplifica-
tion is large and the mass fraction on amplifiers is not very
small. Then, finite stiffness amplification mechanisms were
considered. It is shown that the widest low-frequency band
gaps are obtained when most of the mass within the lattice is
concentrated on very stiff amplifiers that can generate large
amplifications. However, with smaller mass fractions on am-
plifiers, wide low-frequency band gaps can still be obtained,
provided that amplifiers are moderately stiff and can generate
reasonably large amplifications. This is in contrast to obtain-
ing wide low-frequency gaps via local resonators, which re-
quire heavy resonators that form a large fraction of the over-
all mass of their unit cell. Moreover, unlike Bragg scattering,
wave speeds and the lattice constant do not limit how low a
band gap can be placed. Hence, this alternative method of
generating band gaps has benefits especially in the low-
frequency ranges.

Attention was restricted to a two-dimensional lattice that
has embedded inertial amplifiers. Adapting inertial amplifi-
cation to three-dimensional lattices can be achieved by plac-
ing the described amplification mechanism on each edge of a
three-dimensional truss structure. Although we considered a
lumped parameter system in this paper, the principles of ob-
taining wide low-frequency band gaps in distributed param-
eter �continuous� systems via inertial amplification would be
similar. Explicitly, the amplification mechanisms within
these systems should be able to generate large amplifications
and their resonance frequencies have to be high.

Physically realizing a lattice with inertial amplification is
considered for future work. It is expected that the experimen-
tal response of the lattice at low frequencies would be similar
to the computed response of its lumped parameter model
with finite stiffness amplification mechanisms. Specifically, it
would show a wide band gap upper bounded by the lowest
resonance frequency of the amplifiers. However, a distrib-
uted parameter model would be required if the response at
high frequencies is sought after.

APPENDIX A

In this appendix, we derive the dispersion equation of the
lattice, i.e., Eq. �2�. The springs are assumed to be linear,
massless, and undamped; oscillations are assumed to be
small. Hence, linear theory is applicable. The notation in
deriving the equations will be similar to Martinsson and
Movchan.21

The origin of the Cartesian coordinate system in Fig. 2�b�
is at node 1. The lattice vectors are

t�1� = �l,0�T, t�2� = �1

2
l,

�3

2
l�T

, �A1�

where l is the lattice constant, which determines the size of
the unit cell. The domain covered by the unit cell is denoted
as D. With integer translations of D along the lattice vectors,
the plane R2 is covered, i.e.,

R2 = �
n�Z2

�D + Tn�, T = �t�1�,t�2�� , �A2�

where the integer pairs n= �n1 ,n2�T specify each cell in the
plane. In the lattice, nine different angles denoted by 
 j for
j=1,2 , . . . ,9 are needed to define the forces between neigh-
boring masses,


1+3i =
�

3
i, 
2+3i = � +

�

3
i ,


3+3i = − � +
�

3
�i + 1�, i = 0,1,2. �A3�

Moreover, some of these angles will also be used to define
the coordinates of the nodes in D, denoted by x j for j
=1,2 , . . . ,7, and are given by

x1 = �0,0�T, x2 =
l

2
„1,tan�
2�…T,

x3 =
l

2
� cos�
3�

cos�
2�
,

sin�
3�
cos�
2��

T

,

x4 =
l„�3 − tan�
2�…

4
��3,1�T,

x5 =
l„�3 + tan�
2�…

4
��3,1�T,

x6 = l�1 +
cos�
5�

2 cos�
2�
,

sin�
5�
2 cos�
2��

T

,

x7 = l�1,
�3 − tan�
2�

2
�T

. �A4�

The coordinates of the node j in cell n, denoted by x�n,j�, are
obtained as

x�n,j� = x j + Tn . �A5�

Furthermore, the displacement vector of the node j in cell n
is denoted as

u�n,j� = �u1
�n,j�,u2

�n,j��T. �A6�

Now, by assigning to each 
 j a unit vector

a j = „cos�
 j�,sin�
 j�…T, j = 1,2, . . . ,9, �A7�

and defining e1= �1,0�T ,e2= �0,1�T, the equations of motion
for the case of harmonic oscillations �with circular frequency
�� can be written as
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�2mu�n,1� = ka1a1
T�2u�n,1� − u�n−e1,1� − u�n+e1,1�� + ka4a4

T�2u�n,1� − u�n−e2,1� − u�n+e2,1�� + ka7a7
T�2u�n,1� − u�n−e1+e2,1� − u�n+e1−e2,1��

+ kaa2a2
T�2u�n,1� − u�n,2� − u�n−e1−e2,7�� + kaa3a3

T�2u�n,1� − u�n,3� − u�n−e1−e2,6�� + kaa5a5
T�2u�n,1� − u�n−e1,6� − u�n−e2,3��

+ kaa6a6
T�2u�n,1� − u�n−e1,5� − u�n−e2,4�� + kaa8a8

T�2u�n,1� − u�n−e1,4� − u�n−e2,5�� + kaa9a9
T�2u�n,1� − u�n−e1,2� − u�n−e2,7�� ,

�2mau�n,2� = kaa2a2
T�u�n,2� − u�n,1�� + kaa9a9

T�u�n,2� − u�n+e1,1�� ,

�2mau�n,3� = kaa3a3
T�u�n,3� − u�n,1�� + kaa5a5

T�u�n,3� − u�n+e2,1�� ,

�2mau�n,4� = kaa8a8
T�u�n,4� − u�n+e1,1�� + kaa6a6

T�u�n,4� − u�n+e2,1�� ,

�2mau�n,5� = kaa6a6
T�u�n,5� − u�n+e1,1�� + kaa8a8

T�u�n,5� − u�n+e2,1�� ,

�2mau�n,6� = kaa5a5
T�u�n,6� − u�n+e1,1�� + kaa3a3

T�u�n,6� − u�n+e1+e2,1�� ,

�2mau�n,7� = kaa9a9
T�u�n,7� − u�n+e2,1�� + kaa2a2

T�u�n,7� − u�n+e1+e2,1�� . �A8�

In Eq. �A8�, any cell n+m, where m= �m1 ,m2�T is an integer
pair, corresponds to the cell obtained by m1 translations
along t�1� and m2 translations along t�2� with respect to the
cell n. Assuming straight line wave fronts �analogous to
plane waves in three dimensions�, displacements at the cell
n+m are given by

u�n+m,j� = ei�·Tm · u�n,j�, j = 1,2, . . . ,7, i = �− 1,

�A9�

via Bloch’s theorem.18–20 In Eq. �A9�, �= �	1 ,	2� denotes
the wave vector. By substituting Eq. �A9� into Eq. �A8�, all
the unknown displacements in Eq. �A8� can be written in
terms of u�n,j� for j=1,2 , . . . ,7. By defining the 14�1 vec-
tor,

u�n� = �u1
�n,1�,u2

�n,1�, . . . ,u1
�n,7�,u2

�n,7��T, �A10�

the equations of motion can be compactly written as

�2Mu�n� = K���u�n�, �A11�

where the mass matrix M is a 14�14 diagonal matrix with
the first two diagonal terms equal to m and the rest equal to
ma. The stiffness matrix K��� is obtained by arranging the
right-hand sides of Eq. �A8� after substituting Eq. �A9�.
From Eq. �A11�, we arrive at the dispersion equation of the
lattice, i.e.,

det„K��� − �2M… = 0. �A12�

APPENDIX B

In this appendix, we give the derivation of Eq. �5�. Note
that if ka→�, all the nodal displacements can be obtained in
terms of the displacements of the structural nodes, which are
shown in Fig. 5. The displacement amplitudes of the masses
at nodes 1, 4, and 5 is u. Due to symmetry, nodes 2, 3, 6, and
7 have equal displacement amplitudes. Consider node 2. The

y components of the structural node displacements induce a
displacement along the x axis with amplitude u tan��� /2, and
the x components of the structural node displacements in-
duce a displacement along the y axis with amplitude
�3u / (2 tan���). Thus, the displacement amplitude of node 2
and of nodes 3, 6, and 7 is the sum of the squares of these
two quantities in square root. Using the displacement ampli-
tudes obtained above, the kinetic energy of the unit cell is
given by

T =
1

2
�m + 2ma�u̇2 +

1

2
�4ma�� 3

4 tan���2 +
tan���2

4
�u̇2.

�B1�

In the lattice, the springs that form the edges of the unit cell
are shared by the neighboring cells. Thus, half of the poten-
tial energy of these springs contributes to the potential en-
ergy within the unit cell. Due to symmetry, these springs
have equal deformation amplitudes. Consider the spring at
the bottom edge. Only the x components of the structural
node displacements induce a deformation, which results in
an amplitude of �3u. Moreover, there is no deformation in
the spring that is in the middle of the unit cell. Then, within
the unit cell, the potential energy is

V = 2�1

2
k��3u�2� . �B2�

From Lagrange’s equation,22 i.e.,

d

dt
� �T

�u̇
� −

�T

�u
+

�V

�u
= 0, �B3�

the equation of motion for this mode is
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�ma� 3

tan���2 + tan���2 + 2� + m	ü + 6ku = 0. �B4�

In Eq. �B4�, the term that multiplies ü is the effective inertia
of the unit cell. Given m and ma, the effective inertia can be

quite large by prescribing small values of �. From Eq. �B4�,
�s is obtained as

�s
2 =

6k

ma� 3

tan���2 + tan���2 + 2� + m

. �B5�
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