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I present density functional perturbation theory for lattice dynamics with the fully relativistic ultrasoft
pseudopotentials �PPs� introduced recently for dealing with spin-orbit effects and use it to calculate the phonon
dispersions of fcc-Pt and fcc-Au. The results are compared with the dispersions obtained by scalar relativistic
PPs and by inelastic neutron scattering. It is found that, on the phonon spectrum of fcc-Au, spin-orbit effects
are small, essentially within the numerical accuracy. In fcc-Pt, these effects, although still small, improve the
agreement between theory and experiment close to the Kohn anomaly of the T1 branch along the � line.
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I. INTRODUCTION

More and more often, the theoretical analysis of the ex-
perimental inelastic neutron scattering data and of infrared
and Raman spectra of molecules, solids, and nanostructures
is carried out with the help of vibrational frequencies and
displacement eigenvectors calculated within density func-
tional theory �DFT�.1–7 First-principles vibrational free ener-
gies are key ingredients for the study of temperature and
pressure dependent material properties,1 and also the super-
conducting and normal state properties of conventional su-
perconductors are addressed by techniques which rely on ac-
curate phonon dispersions and electron-phonon couplings.8,9

Density functional perturbation theory1,10 �DFPT� plays an
important role in these applications because it provides the
dynamical matrix of a periodic solid at any wave vector with
a numerical effort comparable to that required for the ground
state.

DFPT is implemented in several free software codes,11–13

and it can be based either on all-electron methods14–16 or on
plane wave and pseudopotential approaches.1,17 A few years
ago, I presented a generalization of DFPT18,19 for dealing
with ultrasoft pseudopotentials �US-PPs�,20 which has been
used to address the vibrational properties of several systems:
magnetic and nonmagnetic metals �bcc-Fe,21 fcc-Ni,21

Ni2MnGa,7 fcc-Cu,18 fcc-Ag,18 and fcc-Au18�, superconduct-
ing materials �C6Ca,9 and transition metal carbides and
nitrides22�, isolated molecules �nitrobenzene,19 magnesium
phthalocyanine,23 and C60 �Ref. 24��, and atoms and mol-
ecules adsorbed on surfaces.25,26

So far, in these applications, the US-PPs have been con-
structed starting from the nonrelativistic or the scalar
relativistic27 �SR� solutions of the atomic problem where
spin-orbit effects are neglected. The use of SR-PPs is usually
justified by the assumption that spin-orbit coupling has small
effects on the phonon vibrational frequencies. This approxi-
mation is particularly good for systems made by light ele-
ments, but it might be less accurate when dealing with heavy
elements whose electronic structure is considerably modified
by the spin-orbit coupling. Qualitatively, one can argue that
in metals, the phonon dispersions around the Kohn
anomalies28 should have spin-orbit-induced features which

cannot be reproduced by SR-PPs. If the topology of the
Fermi surface is modified by spin orbit and some Kohn wave
vectors change, the Kohn anomalies could move or could
have a different shape. Quantitatively, it is instead more dif-
ficult to estimate the size of spin-orbit effects on the overall
phonon dispersions. Recently, I introduced fully relativistic
�FR� US-PPs,29 which are constructed starting from the large
components of the solutions of the atomic radial Dirac-like
equation derived in the framework of relativistic DFT.30 In
Ref. 29, the method has been applied to fcc-Pt and fcc-Au. It
has been shown that these PPs, which are used within a DFT
scheme based on two-component spinor wave functions,
yield the same electronic structure as a FR four-component
Dirac-like equation.29 In agreement with previous all-
electron calculations, it was found that the lattice constants
and the bulk moduli of fcc-Au and fcc-Pt are not signifi-
cantly modified by the spin-orbit coupling, but the effect on
the phonon dispersions was not studied.

In this paper, I generalize DFPT in order to use it together
with FR US-PPs, and I present a comparison of the phonon
dispersions of fcc-Au and fcc-Pt calculated with the SR and
FR US-PPs. I find that, in fcc-Au, spin-orbit coupling has a
small effect on the calculated frequencies, essentially within
the numerical accuracy. In fcc-Pt, spin-orbit effects remain
quite small, but they change the phonon dispersion close to
the anomaly of the T1 branch along the � line.31 Both the SR
and FR US-PPs reproduce the anomaly, but its frequency–
wave vector dependence is closer to the experimental T
=90 K data with FR-PPs.

II. THEORY

Within the spin DFT,32 the total energy of N interacting
electrons in an external potential is a functional of the spin
density matrix or, equivalently, a functional of the charge
n�r� and magnetization m�r� densities. As in the Kohn-Sham
approach,33 this functional can be written by introducing
one-electron two-component spinor wave functions, �i

��r�,
which describe an auxiliary noninteracting electron gas with
the same density matrix as the interacting electrons. It is
convenient to decompose the total energy into four terms:19
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Etot��i�= Ē��i�+F�n�r� , �m�r���+UII+Emet. UII is the ion-
ion interaction energy, while Emet is a correction term non-
vanishing in metals and in systems with fractional occupa-
tion numbers.19,34 These two terms are the same as in the SR
theory1 and are not discussed further on.

F�n�r�, �m�r��� =� d3rVloc�r�n�r� + EHxc�n�r�, �m�r���

�1�

depends on the spinor wave functions implicitly through the
charge and the modulus of the magnetization densities.35

Here, Vloc�r� is the local part of the external potential and

EHxc is the Hartree and exchange-correlation energy. Ē��i�
depends on the spinor wave functions explicitly. When the
nuclei and core electrons are described by FR US-PPs,29 it is
given by �in a.u.�

Ē��i� = −
1

2�
i,�

�̃F,i��i
���2��i

�	 + �
i,�,��

�̃F,i��i
��VNL

�,����i
��	 ,

�2�

where � and �� are spin indices. The sum over i runs over all

the states, and �̃F,i are the occupation numbers �see Ref. 19�.
VNL

�,��, the nonlocal part of the external potential, is a 2�2
matrix in spin space, nondiagonal for FR-PPs, and a multiple
of the 2�2 identity matrix for SR-PPs. As discussed in de-

tail in Ref. 29, for FR US-PPs, VNL
�,�� is given by

VNL
�,���r1,r2� = �

I,n,m
Dn,m

��I�,�,���n
��I��r1 − RI��m

*��I��r2 − RI� ,

�3�

where Dn,m
��I�,�,�� are spin-dependent PP coefficients and �n

��I�

��r−RI�=�	,l,j
��I���r−RI��Yl,ml

�
r−RI
� are projector functions

factorized into radial functions and spherical harmonics. I
runs over all the atoms, RI are the atomic positions, and ��I�
identify the atomic types. The index n �as well as m� is a
shorthand notation for the four indices 	 , l , j ,ml �see Ref.
29�.

The density matrix is a quadratic functional of the orbit-
als:

n�,���r� = �
i,�1,�2

�̃F,i��i
�1�K�1,�2

�,�� �r���i
�2	 , �4�

and the electron density is the trace of the density matrix,
n�r�=��n�,��r�, while the magnetization density is given by
the product of the density matrix and the Pauli matrices �:
m�r�=�B��,��n

�,���r���,�� ��B is the Bohr magneton�. In

the present formalism, the operator K�1,�2

�,�� �r�, defined

through the augmentation functions Qn,m
��I��r−RI� and the pro-

jector functions �n
��I��r−RI� as in the SR case,29,36 becomes

spin dependent through the factors f l,j,ml;l,j,ml�
�,�� introduced in

Ref. 29 to write the spin-angle functions with spherical har-
monics:

K�1,�2

�,�� �r;r1,r2� = ��r − r1���r − r2���,�1
���,�2

+ �
I,n,m

�
n1,m1

Qn,m
��I��r − RI�

�fn1,n
�1,��n1

��I��r1 − RI�fm,m1

��,�2�m1

*��I��r2 − RI� ,

�5�

where the symbol fn,m
�,�� stands for fn,m

�,��= f
	,l,j,ml;	�,l�,j�,ml�
�,��

= f l,j,ml;l,j,ml�
�,�� �	,	��l,l�� j,j�. For the integral of the charge density

to be equal to the total number of electrons, the orbitals ��i
�	

must obey generalized orthonormalization constraints

��,����i
��S�,���� j

��	=�i,j, where S�,���r1 ,r2�
=��1


d3rK�,��
�1,�1�r ;r1 ,r2� is the overlap matrix �see also Ref.

29�.
Written in this compact form, the total energy functional

is formally similar to the functional used in Ref. 19 to derive
DFPT with SR US-PPs. The dynamical matrix of a solid at
any wave vector q can be determined in the same way, with
the additional bookkeeping of the spin indices. Nonetheless,
the present functional allows the description of magnetic as
well as nonmagnetic systems �for m�r�=0� in the presence
of spin-orbit coupling. Moreover, in some limits, one obtains

other functionals useful in specific applications. For fn,m
�,��

=�n,m��,�� and neglecting the total angular momentum index
j in n and m, we get the functional which describes uncon-
strained noncollinear magnetic structures with SR-PPs.37–40

FR norm-conserving PPs, as those proposed in Ref. 41, lead
to the present functional with Qn,m

��I��r−RI�=0, and hence

S�,���r1 ,r2�=��r1−r2���,��. The formulas deduced in Ref.
19, valid for SR US-PPs within the local spin density ap-

proximation, can be found by setting fn,m
�,��=�n,m��,��, taking

the magnetization density m�r� everywhere parallel to a
fixed direction and separating the spinor wave functions into
spin up or spin down.

By minimizing the total energy functional, we obtain the
generalized Kohn-Sham equations for the spinor wave func-
tions:

�
��

H�,����i
��	 = i�

��

S�,����i
��	 , �6�

with H�,��=− 1
2�2��,��+VKS

�,�� and VKS
�,��=VNL

�,��

+��1,�2

d3r VLOC

�1,�2�r�K�,��
�1,�2�r�. Here, VLOC

�,���r�=Vef f�r���,��
−�BBxc�r� ·��,�� is a spin-dependent local potential defined
in terms of the effective potential Vef f =

�F
�n and of the

exchange-correlation magnetic field Bxc
� =−

�Exc

�m�
. Vef f�r�

=Vloc�r�+VHxc�r� is the sum of the local and of the Hartree
and exchange-correlation potentials, while Bxc is the func-
tional derivative of Exc with respect to the magnetization �see
Refs. 19 and 29�. For the following, it is useful to define a
spin-dependent Hartree and exchange-correlation potential as

VHxc
�,���r�=VHxc�r���,��−�BBxc�r� ·��,��, so that VLOC

�,���r�
=Vloc�r���,��+VHxc

�,���r�.
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The forces acting on the ions, equal to the negative first-
order derivative of the total energy with respect to the ionic
displacements, can be calculated by the Hellmann-Feynman
theorem. Calling � the amplitude of the displacement uI,� of
the atom I in the direction �, we can write the first-order
derivative of the total energy with respect to � as42

dEtot

d�
= �

i,�
�̃F,i��i

����,i
� 	 , �7�

with

���,i
� 	 = �

��

� �VKS
�,��

��
− i

�S�,��

��
���i

��	 , �8�

where the partial derivative of VKS
�,�� is calculated at fixed

orbitals and it is given by

�VKS
�,��

��
=

�VNL
�,��

��
+ �

�1

� d3r
�Vloc�r�

��
K�,��

�1,�1�r�

+ �
�1,�2

� d3rVLOC
�1,�2�r�

�K�,��
�1,�2�r�

��
. �9�

Note that the factors fn,m
�,��, which make K�1,�2

�,�� �r� spin depen-
dent, do not introduce new terms in Eq. �9� because they are
products of unitary matrix elements and of Clebsch-Gordan
coefficients,29 which are independent of the atomic positions.

The dynamical matrix at an arbitrary q point of the Bril-
louin zone �BZ� is the Fourier transform of the interatomic
force constants �I,�;I�,�. Within the Born-Oppenheimer adia-
batic approximation, we identify �I,�;I�,� with the mixed sec-
ond derivatives of the total energy with respect to the dis-
placements uI,� and uI�,� of the atoms I and I� in the
directions � and �, respectively. These derivatives depend on
the first-order change of the spinor wave functions. In order
to calculate them, we start from the first-order derivative of
the density matrix with respect to the displacement uI�,�,
called � for short, which is given by

dn�,���r�
d�

= 2 Re �
i,�1,�2

��i
�1�K�1,�2

�,�� �r�����i
�2	

− �
i,�1,�2

��i
�1�K�1,�2

�,�� �r�����i
�2	

+ �
i,�1,�2

�̃F,i�i
�1� �K�1,�2

�,�� �r�

��
��i

�2� ,

�10�

where, as in Ref. 19, we have introduced two auxiliary
spinor wave functions:

����i
�	 =

1

2�
�̃F,i

dF

d�
��i

�	 + �
j,�1,�2

�̃F,i − �̃F,j

i −  j
� j,i�� j

�	�� j
�1�

��dVKS
�1,�2

d�
− i

�S�1,�2

��
���i

�2	 �11�

and

����i
�	 = �

j,�1,�2

��̃F,i�i,j + �̃F,j� j,i��� j
�	� j

�1� �S�1,�2

��
��i

�2� .

�12�

The first term in Eq. �11�, due to the change of the Fermi
energy induced by an atomic displacement, is illustrated in
Ref. 19. To calculate the other term that would involve a sum
over all the conduction states, we can introduce a linear sys-

tem whose solutions are the spinor wavefunctions: ��̃��i
�	

= ����i
�	− 1

2� �̃F,i
dF

d� ��i
�	. Following Ref. 34, we write

�
��
�−

1

2
�2��,�� + VKS

�,�� + Q�,�� − iS
�,�����̃��i

��	

= − �
����

Pc,i
†,�,���dVKS

��,��

d�
− i

�S��,��

��
���i

��	 , �13�

with

Pc,i
†�,�� = ��̃F,i��,�� − �

j,�1

�i,jS
�,�1�� j

�1	�� j
���� . �14�

�i,j are calculated as in Refs. 19 and 34. Q�,�� is an operator,
vanishing on the conduction states, which makes the linear
system nonsingular: Q�,��=� j,�1,�2

� jS
�,�1�� j

�1	�� j
�2�S�2,��,

where the � j are discussed in Refs. 19 and 34. In Eq. �13�,
the right-hand side depends on the variation of the spin-
dependent Hartree and exchange-correlation potential:

�
��

�dVKS
�,��

d�
− i

�S�,��

��
���i

��	

= ���,i
� 	 + �

�1,�2,��
� d3r

dVHxc
�1,�2�r�
d�

K�,��
�1,�2�r���i

��	 .

�15�

The latter depends linearly on the variation of the charge and
magnetization densities:

dVHxc
�,���r�
d�

= ��VHxc

�n

dn�r�
d�

+ �
�=1

3
�VHxc

�m�

dm��r�
d�

���,��

− �B�
�=1

3 ��Bxc
�

�n

dn�r�
d�

+ �
�=1

3
�Bxc

�

�m�

dm��r�
d�

���
�,��,

�16�

and hence, it depends linearly on the first-order derivative of

the density matrix
dn�,���r�

d� . Therefore, Eqs. �10�, �13�, �15�,
and �16� form a set of self-consistent equations which can be
solved with the same techniques used for the SR US-PPs.
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Once the change of the wave functions ����i
�	 has been

calculated, one can obtain the mixed second-order deriva-
tives of the total energy with respect to two atomic displace-
ments. As in Ref. 19, the differentiation of the Hellmann-
Feynman forces �Eq. �7�� with respect to � gives four terms.
The first term, depending on the unperturbed wave functions,
is

d2Etot
�1�

d�d�
= �

i,�,��

�̃F,i��i
��� �2VKS

�,��

����
− i

�2S�,��

����
���i

��	 ,

�17�

where
�2VKS

�,��

���� is calculated at fixed orbitals:

�2VKS
�,��

����
=

�2VNL
�,��

����
+ �

�1

� d3r
�2Vloc�r�

����
K�,��

�1,�1�r�

+ �
�1,�2

� d3rVLOC
�1,�2�r�

�2K�,��
�1,�2�r�

����

+ ��
�1

� d3r
�Vloc�r�

��

�K�,��
�1,�1�r�

��
+ �� ↔ ��� .

�18�

The second term, depending on the solution of the linear
system �Eq. �13��, is

d2Etot
�2�

d�d�
= 2 Re�

i,�
����i

����,i
� 	 . �19�

For norm-conserving PPs, these two terms give the complete
expression of the mixed second-order derivative of the total
energy, while in the US-PP scheme, one must consider two
additional contributions which have no correspondent coun-
terparts in the norm-conserving scheme.18,19 As in the SR
case, the third term is the integral of the product of the
change of the augmentation density matrix ��n�,���r�, equal
to the last two terms in Eq. �10�, and the change of the
spin-dependent Hartree and exchange-correlation potential:

d2Etot
�3�

d�d�
= �

�,��
� d3r

�VHxc
�,���r�
��

��n�,���r� , �20�

while the fourth term, due to dependence of the orthogonal-
ity constraint on the atomic positions, is given by

d2Etot
�4�

d�d�
= − �

i,�
�����i

����,i
� 	 + �� ↔ ��� . �21�

As shown in Ref. 19, by using these expressions, it is
straightforward to derive the dynamical matrix at any wave
vector q. Due to the formal analogy between Eqs. �18�–�21�
and Eqs. �39�, �40�, �41�, and �42� of Ref. 19, the result is not
essentially different and is not repeated here. The final ex-
pressions are implemented in the QUANTUM-ESPRESSO

package,11 and the code is publicly available.

III. APPLICATIONS

In this section, the above theory is used to calculate the
phonon dispersions of fcc-Au and of fcc-Pt. DFT calcula-
tions are carried out within the local density approximation
�LDA� with the Perdew and Zunger43 parametrization of the
exchange and correlation energy. The PPs of Au and Pt are
described in Ref. 29.44 The kinetic energy cutoffs are 30 and
250 Ry for the pseudo-wave-functions and for the charge
density, respectively. Monkhorst-Pack special k-point grids45

of 12�12�12 and 24�24�24 points are used for the in-
tegration over the BZ of fcc-Au and fcc-Pt, respectively. The
smearing approach of Ref. 46 is used for dealing with the
Fermi surface. The smearing parameter is �=0.01 Ry in fcc-
Au, while it is �=0.005 Ry in fcc-Pt, due to the presence of
a Kohn anomaly in the T1 branch along the � line �see
below�.31 In fcc-Au �fcc-Pt�, the dynamical matrices are cal-
culated in a 4�4�4 �8�8�8� q-point grid and a Fourier
interpolation is used to obtain phonon frequencies in the
other points of the BZ. The phonon dispersions are calcu-
lated at the theoretical lattice constants, which turn out to be
a0=7.65 a.u. �7.64 a.u.� with the SR �FR�-PPs in fcc-Au, and
a0=7.41 a.u. �7.40 a.u.� in fcc-Pt.

The phonon dispersions of fcc-Au calculated with SR
�dashed lines� and with FR �solid lines� PPs are shown in
Fig. 1. Conventional names of the phonon dispersion
branches are taken from Ref. 31. Diamonds indicate the ex-
perimental inelastic neutron scattering data measured at
room temperature �295 K�.47 On the scale of the figure, the
FR phonon dispersions are barely distinguishable from the
SR ones. The calculated frequencies at the main symmetry
points of the BZ are reported in Table I. In these points, the
largest difference between SR and FR results is about 2 cm−1

at L, comparable with the numerical accuracy of the calcu-
lation. This result is not surprising because in Au the 5d shell
is completely filled and the spin-orbit coupling does not
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FIG. 1. Calculated LDA phonon dispersions at T=0 K for
fcc-Au obtained with FR US-PPs �solid lines�, compared with dis-
persions obtained with SR US-PPs �dashed lines� and inelastic neu-
tron scattering data at T=295 K from Ref. 47 �solid diamonds�. Dot
dashed lines are obtained with FR-PPs at a0=7.67 a.u., the esti-
mated theoretical lattice constant at T=295 K.
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change the Fermi surface, which is determined by bands with
mainly 6s character.

In order to compare theoretical and experimental results,
we have to keep into account that the uncertainty of the
measured values, though not uniform in all the BZ, is of the
order of a few cm−1.47 Furthermore, our results are obtained
at the T=0 K theoretical lattice constant, while the experi-
mental data are measured at 295 K and are influenced by
anharmonic effects. The order of magnitude of the anhar-
monic effects can be estimated by comparing the phonon
frequencies calculated at the T=0 K and at the T=295 K
lattice constants. From the experimental thermal expansion
coefficient, the lattice constant at T=295 K can be estimated
to be about 0.4% larger than that at T=0 K. It is therefore
a0=7.68 a.u. and a0=7.67 a.u. in the SR and FR cases, re-
spectively. As can be seen from the calculated values re-
ported in Table I and from the FR dispersions reported in
Fig. 1, the lattice expansion actually softens by about
3%–4% of the theoretical frequencies that become slightly
lower than experiment. A recent calculation performed at
a0=7.71 a.u., the experimental room temperature lattice con-
stant, is in agreement with this conclusion.48 In fcc-Cu and
fcc-Ag, the LDA approximation overestimates the phonon
frequencies,18 and in fcc-Cu, the generalized gradient ap-
proximation is known to underestimate them.49 In this re-
spect, Au differs from the other two noble metals having
LDA frequencies lower than experiment. This is found both
with SR- and with FR-PPs.

The phonon dispersions of fcc-Pt calculated with SR
�dashed lines� and with FR �solid lines� PPs are shown in
Fig. 2. Diamonds indicate the experimental inelastic neutron
scattering data measured at 90 K.31 The theoretical and ex-
perimental frequencies at the main symmetry points of the
BZ are reported in Table I. The differences between FR and
SR results are of the order of 1–2 cm−1, so on the overall
phonon spectrum the spin-orbit effects are quite small. The
agreement with experiment is very good in both cases, with
errors almost always lower than 5 cm−1. There is an excep-
tion at the W point, where the SR result has an error of
7 cm−1, while the FR result is 10 cm−1 higher than the ex-

perimental value �that in this point has an estimated uncer-
tainty of 2.7 cm−1�. In the case of fcc-Pt, the anharmonic
effects on the experimental data should be quite small. Ac-
tually, the thermal expansion is smaller than that of fcc-Au
and the experiment is done at T=90 K. The lattice constant
at this temperature differs from that at T=0 K by less than
0.1%.

In Fig. 2, we can observe a sizable difference between SR
and FR results on the T1 branch along the � direction. Ex-
perimentally, it is known that Pt has an anomaly in the T1
branch, which has been suggested to be a Kohn anomaly.31 A
Kohn anomaly is a jump in the first derivative of the
frequency–wave vector curve due to a sudden change of the
screening properties of the electron gas at particular wave
vectors. It is visible in the phonon dispersion curve as a
sudden change of the slope.28 In platinum, the anomaly of
the T1 branch has been explained by the presence of Kohn
wave vectors parallel to the � direction, which join different
points in the heavy hole cylinder in the experimental Fermi

TABLE I. LDA frequencies calculated at selected points of the BZ for the two metals studied in this work.
All frequencies are in cm−1. Experimental data are at T=295 K from Ref. 47 for fcc-Au, and at T=90 K from
Ref. 31 for fcc-Pt.

a0

�a.u.� XT XL W� W� LT LL

fcc-Au

SR 7.65 �7.68� 89�86� 154�149� 87�83� 122�118� 60�58� 158�152�
FR 7.64 �7.67� 89�86� 155�150� 88�84� 123�118� 62�59� 159�153�
Expt. 7.67a 92 154 88 121 62 157

fcc-Pt

SR 7.41 131 196 115 159 95 201

FR 7.40 130 195 118 159 97 200

Expt. 7.40b 128 193 108 155 97 195

aExtrapolated at T=0 K values.
bReference 51.
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FIG. 2. Calculated LDA phonon dispersions at T=0 K for fcc-Pt
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surface.31 A similar anomaly in Pd has been addressed re-
cently by using ab initio techniques.50 The anomaly leads to
long range interatomic force constants and therefore, in this
part of the spectrum, it is difficult to compare SR and FR

results using the Fourier interpolation, which could introduce
a significant error. Actually, with the 8�8�8 q-point grid,
close to the anomaly, only the two points q
= �0.25,0.25,0.0� and q= �0.5,0.5,0.0� �in units of 2� /a0�
are calculated by DFPT. Therefore, the phonon frequencies
in several points along the � direction have been recalculated
directly via DFPT and the results are shown in Fig. 3, in an
enlarged scale. In agreement with the fact that the Kohn
wave vectors that join the heavy hole cylinder are not sub-
stantially changed by the spin-orbit coupling, both the SR
and the FR dispersions present the anomaly at about q
= �0.35,0.35,0.0�. However, the SR-PP gives a much stron-
ger anomaly with lower frequencies with respect to the FR-
PP. The FR results turn out to follow the experimental data
taken at T=90 K. It has to be noted that the shape of the
anomaly is temperature dependent. While less pronounced, it
is still visible at room temperature and also at T=473 K.31

From Fig. 3 we can also see that, close to the � point,
along the � direction, the frequencies of the T2 phonon
branch calculated with SR-PP are too low with respect to
experiment, which is instead reproduced by the FR-PP.
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