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We present an extension of the cluster variation method to take into account the dumbbell configuration of
interstitial defects in a body centered cubic alloy. In addition to the interaction between both atoms of a
dumbbell, we consider nearest-neighbor interactions between substitutional atoms and dumbbells. A point
approximation leads to simple expressions of the relative amount of dumbbell compositions and the averaged
local surrounding of a given species as a function of nominal composition and temperature. In contrast, a pair
approximation requires a more complex local surrounding variable q first introduced by Kikuchi �J. Phys.
Chem. Solids 20, 17 �1961��. The predicted mean compositions of the dumbbell using both approximations are
compared with Monte Carlo simulations. The point approximation leads to good agreement with Monte Carlo
simulations as long as the dumbbell-atom interactions are not too strong.
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I. INTRODUCTION

This paper is the first part of a two-paper series devoted to
the diffusion by dumbbell mechanism in an interacting body
centered cubic �bcc� alloy. We hereby treat equilibrium spa-
tial correlations before turning to kinetics in the following
paper. This two-step approach has been used by earlier dif-
fusion theories for the vacancy mechanism.2–5

Dumbbell-type interstitial defects occur in metals mainly
under irradiation and often exhibit low migration energies �a
few 0.1 eV� when compared to the vacancies �around 1 eV�,
so that they must contribute to the diffusion in irradiated
materials. As a consequence, kinetic models including dumb-
bells for the calculation of the transport coefficients have
been built in the past decades, mainly in dilute6–8 and con-
centrated face centered cubic �fcc� alloys9–13 and in
dilute14–16 and concentrated bcc alloys.13,17,18 In concentrated
alloys, up to now, calculations of the transport coefficients
including correlation effects are restricted to noninteracting
systems because of the complex geometry already present in
those “simple” systems. By “noninteracting” system we
mean a system without interactions between species on dif-
ferent lattice sites, the binding energies between both atoms
of a dumbbell being considered.10 The advantage of such a
model is that the occupancy probability of a given cluster of
sites is always the product of the corresponding point occu-
pancy probabilities.

However, recent ab initio calculations19,20 showed that
strong interactions, both attractive or repulsive, can occur
between a dumbbell and nearest-neighbor �NN� substitu-
tional atoms. These observations supported the nearest-
neighbor interaction model introduced by Barbu6 and Allnatt
et al.7 in the fcc dilute alloy, which was recently extended to
the bcc dilute alloy.16 Considering the value of the observed
interactions �1 eV�, clusters involving several solute atoms
are expected to play a major role in diffusion: as a conse-
quence, the present work further extends the treatment of an
interacting alloy to the concentrated bcc alloy.

The first difficulty to be considered when introducing NN
interactions is their effect on the local environment of atoms
and defects, as was already studied for the vacancy-type

defects.2 In the dumbbell case, these interactions can also
affect the relative amount of the different dumbbell compo-
sitions. Both results are of primary importance in treating the
kinetics of the alloy.

In the previous models, all results could be achieved by
simply solving a limited set of detailed balance equations for
the different configurations of dumbbell,13,15,16 though this
procedure is not compatible with a concentrated interacting
alloy. We use the cluster variation method �CVM� formalism
introduced by Kikuchi,1 which we find particularly suitable
for our problem. We restrict the study to NN interactions and
to the point and pair statistical approximations. The latter
approximation is known to lead to a correct phase diagram of
a bcc alloy.21 Furthermore, the CVM can be extended to
longer-range interactions or many-body approximations.22

In Sec. II, we introduce the specific notations that will be
used along the two-paper series. As often as possible, the
symbols used for the interactions or the description of a par-
ticular configuration are the same ones previously used in the
dilute case.16 Sections III and IV will be devoted to the ap-
plication of the CVM in the point and pair approximations,
respectively. A comparison between the predicted repartition
of the dumbbell compositions in a binary alloy and Monte
Carlo simulations is presented and discussed in Sec. V.

II. SPECIFIC NOTATIONS

As in the previous papers devoted to the dumbbell
mechanism,5,13,16 we consider only the �110� orientation of
the defect in a bcc crystal. The dumbbell composed of atoms
A and B, with B pointing in the � direction �out of 12 pos-
sible �110� directions�, is noted AB�. As we are interested in
this study in the equilibrium properties of the system, all 12
directions are equivalent and we can write xAB as the prob-
ability to find on any site an AB dumbbell in an arbitrary
direction.27 The corresponding conservation equation in a bi-
nary alloy writes

6xAA + 6xBB + 12xAB = cI, �1�

where cI is the total dumbbell concentration. We can define
the relative occurrence �or proportion� of each composition
of the defect as

PHYSICAL REVIEW B 76, 054205 �2007�

1098-0121/2007/76�5�/054205�7� ©2007 The American Physical Society054205-1

http://dx.doi.org/10.1103/PhysRevB.76.054205


pAA =
6xAA

cI
, �2a�

pAB =
12xAB

cI
, �2b�

with the obvious relation in a binary alloy

pAA + pAB + pBB = 1. �3�

While those proportions are easily calculated in a noninter-
acting alloy,10,13 one of the goals of this paper is to general-
ize those results to more realistic interacting systems.

Due to the orientation of the defect, all nearest neighbors
are not equivalent. It is worth differentiating them on the
basis of their relative position to the defect: we call “target
sites” the four sites that the defect can reach within one
jump, and “nontarget sites” the four other sites �see Fig. 1�.
One distinguishes the two target sites for atom A from the
two target sites for atom B, and the substitutional atom situ-
ated on a target site is called “target atom.”

As this geometry implies different distances between at-
oms, it is logical to introduce different sets of interactions.
We hereby follow the definitions of Ref. 13:

�1� �AB is the interaction between both atoms of the dumb-
bell, also called binding energy of the defect;

�2� VAB is the binding energy between two NN substitu-
tionnal atoms;

�3� VAB�C
between an AB dumbbell and a substitutional C

atom on a target site for atom B;
�4� VBA�C

between an AB dumbbell and a substitutional C
atom on a target site for atom A;

�5� VAB�C between an AB dumbbell and a NN nontarget C
atom.

All those values are taken negative for attractive interac-
tions; positive for repulsive interactions.

In the following application of the CVM, we need to de-
fine the conditions of the equilibrium that we intend to de-
scribe: the observed system is the canonical ensemble, where

the number of atoms of each chemical species, the total num-
ber of dumbbells, the volume, and the temperature T are
fixed. For each species i �chemical species or dumbbell�, the
number of items Ni defines the concentration

ci =
Ni

Ns
, �4�

where Ns is the number of sites of the system. Throughout
this study, we will consider only concentrated alloys with a
vanishingly low concentration of dumbbells, which implies
the assumption

cI � cA,cB . . . . �5�

III. CLUSTER VARIATION METHOD
IN THE POINT APPROXIMATION

In the point approximation, the only unknown variables
are the x’s, which correspond to one-site occupations. In a
binary alloy for which the concentration of atomic species
and interstitials is specified, there are two independent vari-
ables to be calculated such as xAA and xAB. Following the
CVM formalism,1 they are obtained by minimizing the free
energy F of the system, which is usually divided into three
parts.

The internal energy represents the contribution of all
binding energies involved in the system. A careful counting
leads to the simple expression

E

Ns
=

1

2�
a,b

8xaxbVab + �
a,b,�

�ab�
xab�

+ �
a,b,�,c

4xab�
xc�Vab�c

+ Vab�c� , �6�

where the indices a, b, and c refer to chemical species and �
to the orientation of the dumbbell.

The second part is the entropy contribution, expressed as

S

Ns
= − kB	�

a

L�xa� + �
a,b,�

L�xab�
�
 , �7�

where kB is the Boltzmann constant and the function L is
defined as

L�x� = x ln�x� − x . �8�

The CVM equations are obtained by equating the varia-
tion of the free energy to zero for any variation of one-site
occupation of each species ci. In practice, we treat the atomic
and dumbbell occupations, xa, as independent variables and
add Lagrange multipliers to the free energy to satisfy the
constraints of conservation of each species �chemical species
and dumbbell�. They are denoted as �i for species i, includ-
ing one multiplier �I for the dumbbells:

� = − �
a

�a	ca − xa − �
b,�

�xab�
+ xba�

�
 − �I�cI − �
a,b,�

xab�� .

�9�

The free energy is

A
B

T2

T4

T1

T3

FIG. 1. Nearest neighbors of a �110� dumbbell: white atoms are
on nontarget sites, black atoms T1 and T2 are target atoms for A,
and black atoms T3 and T4 are target atoms for B.
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F =
E

Ns
−

TS

Ns
+ � , �10�

and the variables xa are obtained by solving the system

∀a,
�F

�xa
= 0,

∀a,b,�,
�F

�xab�

= 0, �11�

taking care that the factors of each Lagrange multiplier re-
main equal to zero.

Under the assumption of Eq. �5�, solving this system is
straightforward, with the resulting equality xA=cA for chemi-
cal species and the following expressions for the dumbbells:

xAA =
cA

2ẼAAẼA
−2

�
a,b

cacbẼabẼa
−1Ẽb

−1

cI

6
, �12�

xAB =
cAcBẼABẼA

−1ẼB
−1

�
a,b

cacbẼabẼa
−1Ẽb

−1

cI

6
. �13�

Here, the Ẽ’s are the contribution of the average energy of

one species embedded in a mean medium. ẼA expresses the
mean binding energy experienced by a substitutional atom A

in a mean medium and ẼAB is the equivalent for an AB
dumbbell:

ẼA = exp	− 8��
b

VAbcb
 , �14�

ẼAB = exp
− �	�AB + �
c

�4VAB�c + 2VAB�c
+ 2VBA�c

�cc
� ,

�15�

where � is the inverse temperature 1/kBT. It should be noted
that the dumbbell’s orientation is not specified in Eqs. �12�
and �13� because the result does not depend on the orienta-
tion.

IV. CLUSTER VARIATION METHOD
IN THE PAIR APPROXIMATION

A. Two-point clusters

The pair approximation consists in taking the pair occu-
pation variables y as the new independent unknowns, the
one-site occupation variables x being expressed as sums of
the pair occupations. When compared to the preceding appli-
cations of the CVM,22,23 the main difficulty arises from the
necessary classification of the different NN pairs. We use the
following notation:

�1� yAB for two NN substitutional atoms,
�2� yAB�C

� if C is on a target site for the B atom of the
dumbbell AB�,

�3� yAB�C
� if C is on a NN nontarget site of the dumbbell

AB�.
Entropy contributions of pairs beyond the NN distance are

not considered; i.e., the occupancies of two distant sites are
considered as independent. This assumption is consistent
with our energetic model limited to NN interactions. Further-
more, the corresponding phase diagram when the interstitial
concentration is set to zero is known to be correct.22 The two
maximal clusters to be considered are the two pairs corre-
sponding to yAB�C

� and yAB�C
� . These two clusters are equiva-

lent when they are occupied by substitutional atoms. In a
canonical ensemble with two atomic species, A and B, there
are three variables of type yAB, eight of type yAB�C

� , and eight
of type yAB�C

� . Due to symmetry relations and conservation
laws, only 11 variables are independent, e.g., yAA, yAB, yAB�A

� ,
yAB�B

� , yBA�A
� , yAA�A

� , yAA�B
� , yBB�A

� , yAB�A
� , yAA�A

� , and yBB�A
� .

Yet, formally, all 19 variables are assumed to be independent
for the symmetry of the calculation.

The point variables are deduced from the pair variables:

xA = �
b

yAb +
1

2 �
a,b,�

�yab�A
� + yab�A

� � , �16�

where the sum �byAb can be replaced by its symmetric form:
�bybA. On the other hand, the one-site occupancy of a dumb-
bell can be obtained by several combinations:

xAB�
= �

c

yAB�c
� = �

c

yBA�c
� = �

c

yAB�c
� , �17�

where the pairs involving two dumbbells are neglected fol-
lowing Eq. �5�. For the minimization of the free energy, it is
convenient to use the symmetrical expressions

xAB�
=

1

4�
c

�yAB�c
� + yBA�c

� + yAB�c
� + yBA�c

� � , �18�

xA =
1

2�
b

�yAb + ybA� +
1

2 �
a,b,�

�yab�A
� + yab�A

� � , �19�

although any other combination would be mathematically
equivalent.

B. Free energy

The internal energy contribution now involves pair prob-
abilities:

E

Ns
=

1

2�
a,b

8yabVab + �
a,b,�

�abxab�

+ �
a,b,�,c

�4yab�c
� Vab�c

+ 4yab�c
� Vab�c� , �20�

where the indices a, b, c, and � still refer to chemical species
and direction.

The entropy contribution is more deeply affected by the
pair approximation, and one must now calculate the CVM
coefficients,22 a1, a2

� , and a2
�, which control the contribution

of each cluster:
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−
S

kBNs

= �2a2
� + 2a2

���
a,b

L�yab� + 4a2
� �

a,b,�
L�yab�c

� �

+ 4a2
� �

a,b,�
L�yab�c

� � + a1	�
a

L�xa� + �
a,b,�

L�xab�
�
 .

�21�

These coefficients are fixed to 1 for every maximal cluster,
i.e., every kind of pair in our case:

a2
� = a2

� = 1. �22�

The point coefficient is then calculated by counting the num-
ber of pairs in which one point can be involved. For a dumb-
bell or a substitutional atom, this number is 8, and the fol-
lowing relation must be obeyed:

4a2
� + 4a2

� + a1 = 1, �23�

so that the one-point coefficient is a1=−7.
The last change with respect to the point approximation

consists in introducing additional Lagrange multipliers in Eq.
�9�, which take into account the triple equality of Eq. �17�:

� = − �
a

�a	ca − xa − �
b,�

�xab�
+ xba�

�
 − �I�cI − �
a,b,�

xab��
− �

a,b,c,�
�ab

� �yba�c
� − yab�c

� � − �
a,b,c,�

�ab
� �yab�c

� − yab�c
� � .

�24�

The free energy still being expressed as the sum of the
three variables of Eq. �10�. The system to solve is now
formed of the following equations:

�F

�y
= 0, �25�

for any pair. Particular attention must be paid to the terms of
the form �x /�y, which require that only one form be formally
chosen among the expressions �17�–�19�. Equations �18� and
�19� will be used in the present paper.

C. Results

In the general case, the results of the pair approximation
could not be expressed analytically. We hereby present two
sets of formulas which can be useful in different situations.
The calculations leading to those formulations are lengthy
but straightforward, although special attention must be paid
to the counting of the pairs and to the symmetry properties.

We begin by expressing the pair variables as a function of
reduced variables qi:

yAB = qAqB exp�− �VAB� , �26a�

yAB�C
� = qABqC exp�− ��VAB�C

+ �AB
� − �BA

� − �AB
� �� ,

�26b�

yAB�C
� = qABqC exp�− ��VAB�C + �AB

� �� . �26c�

The variables qi contain the independent contribution of each
point occupancy of the pair cluster and are defined as

qA = xA
�7/8� exp�−

�

8
�A� , �27�

qAB = xAB
�7/8� exp	−

�

8
��A + �B + �I + �AB�
 . �28�

The relative simplicity of these equations will make them
useful in the kinetic treatment of the diffusion by the dumb-
bell mechanism. Nevertheless, the qi’s as well as the “geo-
metrical” Lagrange multipliers of the type �AB

� or �AB
� are still

to be solved at this stage of the calculation. As their expres-
sion is very complex in the general case, we will focus in this
study on the point occupancy variables x. It will be shown
that they can be obtained without the help of the geometrical
Lagrange multipliers.

For convenience, we define EAB�exp�−�VAB� and
EAB�C

�exp�−�VAB�C
�. We point out that they correspond to

one given pair only and are not to be confused with the Ẽ’s
previously introduced in Eq. �14�. By using Eq. �17�, the site
occupancy xAB can be calculated in three different ways:

xAB = qAB exp����AB
� − �BA

� − �AB
� ���qAEAB�A

+ qBEAB�B
�

= qAB exp����BA
� − �AB

� − �AB
� ���qAEBA�A

+ qBEBA�B
�

= qAB exp���AB
� ��qAEAB�A + qBEAB�B� . �29�

Hence, the Lagrange multipliers can be eliminated to obtain
the expression

xAB = qAB�qAEAB�A + qBEAB�B�1/2�qAEAB�A

+ qBEAB�B
�1/4�qAEBA�A

+ qBEBA�B
�1/4 �30a�

�qABṼAB, �30b�

where the term ṼAB corresponds to the interaction of the
dumbbell AB with only one averaged neighbor atom.

The last step of the calculation is then to determine the
reduced variables qi. We take advantage of Eq. �19� to treat
the case of the substitutional atoms, the pairs involving
dumbbells being neglected following Eq. �5�. It becomes

yAA + yAB = cA = qA
2EAA + qAqBEAB, �31a�

yBA + yBB = cB = qAqBEAB + qB
2EBB. �31b�

This system can be decoupled into two independent qua-
dratic equations of the type

qA
4EAA�EAAEBB − EAB

2 � − qA
2�2cAEAAEBB − �cA − cB�EAB

2 �

+ EBBcA
2 = 0, �32�

the calculation of the one-point reduced variables now being
straightforward. Eventually, determining the value of the
qij’s requires the use of Eq. �28� together with Eq. �30b�. One
obtains
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qAB =
�qAqB�8

�cAcB�7 ṼAB
7 exp�− ��AB�exp�− ��I�

=
�qAqB�8

�cAcB�7

ẼAB

ṼAB

exp�− ��I� , �33�

where the average “embedding factor” ẼAB has been intro-
duced by analogy with Eq. �15� of the point approximation

ẼAB = ṼAB
8 exp�− ��AB� . �34�

The last unknown is the Lagrange multiplier �I, which helps
satisfy the conservation condition of Eq. �1�:

exp�− ��I� = 	qA
16

cA
14 ẼAA + 2

�qAqB�8

�cAcB�7 ẼAB +
qB

16

cB
14 ẼBB
−1cI

6
.

�35�

The calculation of the qAB’s and xAB’s is now a simple com-
bination of Eqs. �30�–�35�. Note that all values but qA and qB
are expressed analytically as a function of the binding ener-
gies V or � and of the concentrations ci. An analytical ex-
pression of qA and qB can be obtained from Eq. �32�, but we
found its complexity unnecessary for the interest of this pa-
per.

We also notice that the given results are sufficient to cal-
culate the one-point occupancies xAB but not the two-point
occupancies yAB�C

� ; the latter requires the expression of the
geometrical Lagrange multipliers �AB

� and �AB
� . However, as

will be shown in Ref. 25 the two-point occupancies are not
required to treat the kinetic aspect of the system, so we will
omit this lengthy though straightforward calculation.

V. COMPARISON WITH MONTE CARLO SIMULATIONS

A. Principle of the simulations

To test the accuracy of point and pair approximations, we
performed a series of Monte Carlo simulations to measure
the proportions pAB �see Eq. �2�� of each dumbbell composi-
tion in a bcc alloy for different sets of interactions. We used
a simulation box of 512 atomic sites containing 513 atoms
and one dumbbell, and employed a classical kinetic resi-
dence time algorithm24 to perform kinetic Monte Carlo
�KMC� simulations. The dumbbell jump frequencies wi are
calculated at each jump following a bond-breaking model
with a constant saddle point energy,13,25 consistent with the
above energetic description. At each KMC step, one of the
possible jumps is chosen with a probability proportional to
its jump frequency, and one adds a time increment given by

�MC =
1

�
i

wi

. �36�

Eventually, we calculate the proportion of each composition
by observing the time proportion that the defect spent with a
given composition within a long enough sequence of jumps.
Considering a simulation box containing NA atoms A and NB
atoms B, the length of the sequence was set so that at least

100NA jumps of atoms A and 100NB jumps of atoms B were
performed during the sequence. For such a simulation, the
time proportions are observed to reach stationary values,
which are then compared with Eq. �2�, the x values being
calculated within the point or pair approximations.

If binding energies between substitutional atoms are
present, we performed a 105-step Metropolis algorithm26 be-
fore the kinetic simulation so that the short-range order is
established between substitutional atoms before the first
jump of the dumbbell interstitials.

B. Comparison with the cluster variation method predictions

Three types of systems were explored. The first one is
used as a reference, where all interactions are set to zero
�Fig. 2�: in this case, the point and pair approximations of the
CVM are equivalent and give exact values. This will also be
the case in any system without two-site interactions, i.e.,
when the energetic description is limited to the dumbbell
stabilities �ij. The corresponding results are the same as those
already calculated10,13 by simply solving the detailed balance
equations.

In the second type of systems, we explored the effect of
binding energies between substitutional atoms and set to zero
all energies involving the interstitials. In this case, the main
effect is the appearance of a short-range order in the alloy,
but the equilibrium of the defect compositions is also af-
fected. Figure 3 shows the different proportions for an order-
ing tendency �top; �VAB=−1/4, all other interactions are
equal to zero� and a clustering tendency �bottom; �VAB
=1/4�. The temperature is set to 1200 K, corresponding to a
ratio of T /Tc�1.3 when normalized with the critical tem-
perature Tc.

22 Although those interactions are relatively
strong, we can see that the point approximation is sufficient
to describe the weight of the different compositions of the
defect. The improvement obtained by the pair approximation
is marginal.

Eventually, we consider in Fig. 4 a system where all in-
teractions are set to zero, except for an attractive binding

FIG. 2. Proportion of the different dumbbell compositions in a
concentrated bcc alloy without interactions as a function of the
concentration C�B�. The temperature is equal to 1200 K. The sym-
bols stand for Monte Carlo simulations and the solid lines for the
CVM prediction �point and pair approximations are equal�.
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energy between an AA dumbbell and a B atom in target po-
sition: the value �VAA�B

=−2 is used, a much higher value
than typical interactions between substitutional atoms; this
difference being supported by ab initio calculations in dilute
alloys.19,20 We can see that the point approximation fails to
describe the repartition of the dumbbell compositions in the
concentrated range, while the pair approximation is sufficient
even for such strong interactions. Note that, in the dilute
limit, the CVM results within the pair approximation are

identical to the direct resolution of the detailed balance equa-
tions performed in Ref. 16.

VI. CONCLUSION

We have extended the CVM formalism to systems con-
taining dumbbell-like defects: in the point approximation,
the main difficulty was accounting for the different compo-
sitions of a defect, while in the pair approximation, an addi-
tional difficulty arose from the different types of pairs in-
volving the same dumbbell. Analytical or quasianalytical
results were obtained for the proportion of different dumb-
bells in a concentrated alloy dilute in defects, which are con-
sistent with earlier results in noninteracting alloys13 or dilute
interacting alloys.16

The CVM results were compared to Monte Carlo simula-
tions: for realistic values of the interactions, the point ap-
proximation is found sufficient to describe the repartition of
the dumbbell interstitials in the presence of binding energies
between substitutional atoms only, but the pair approxima-
tion is needed when strong dumbbell-substitutional atom in-
teractions are added.

This formalism will now be applied to a study of the
diffusion by dumbbell mechanism in an interacting concen-
trated bcc alloy.
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