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Past work has shown that the generalized-stacking-fault surface energy �GSFE� curve, which represents the
energy dependency of rigidly shearing an fcc crystal at a �111� plane along a �−1−12� slip direction, can
provide invaluable information on the nature of the dislocation activity in nanocrystalline Ni, Al, and Cu.
Atomistic simulations have also revealed the complex localized strain environment in which nanocrystalline
dislocation nucleation occurs. Using the density functional theory method, the present work investigates the
role of an imposed isotropic and simple shear strain field on the shape of a GSFE curve for Al, Cu, and Ni, and,
in particular, how this affects the ratio of the stable to unstable stacking fault surface energy. The results are
discussed in terms of second and third order elasticity theories.
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I. INTRODUCTION

An important material parameter is the so-called
generalized-stacking-fault energy �GSFE� curve, which rep-
resents the energy dependency of rigidly shearing a crystal at
a �111� plane along a �−1−12� slip direction,1,2 and gives
information about the shear properties of a perfect crystal
and therefore insight into a material’s ideal shear strength as
originally proposed by Frenkel.3 Rice has employed the ex-
trema points of the GSFE curve to study dislocation nucle-
ation at a crack tip.4 Although GSFE curves are experimen-
tally not accessible, with the advent of empirical and ab
initio atomistic simulation methods, the GSFE curve has
been the focus of considerable attention in the simulations of
plasticity of bulk crystalline materials.5–8

The plastic deformation of metallic nanocrystalline �nc�
materials is believed to be mediated by partial dislocations
that are nucleated at grain boundaries �GBs�, propagate
through the grains, and eventually are absorbed in neighbor-
ing GB regions.9 This viewpoint has been suggested by ato-
mistic simulation of computer generated fcc metallic nc
structures10–15 and is supported by in situ x-ray diffraction
experiments that can probe the dynamics of plasticity.16,17 In
these simulations, the GSFE curve has been used to clarify
why simulations performed for Al show full dislocations
traveling across the grain leaving no dislocation debris in
their wake, while for Cu and Ni only leading partials travel-
ing across the grain are seen leaving behind an extended
stacking fault that experimentally has not been observed.18–20

In particular, it was demonstrated that, given the nucleation

of a leading partial, the probability that a second trailing
partial is nucleated depends on the stable and unstable stack-
ing fault surface energy density for the empirical potential
used. If the stable to unstable stacking fault ratio is close to
1, then the likelihood of observing full dislocations within
the nanosecond time frame of a classical molecular dynamics
simulation is high. If the ratio is low, the likelihood of seeing
a full dislocation in a simulation is minimal.

The arguments presented in Ref. 18 that relate an empiri-
cal potential’s GSFE curve to the resulting nature of disloca-
tion activity within the nc system are, however, based on the
rigid slip properties of unstrained fcc lattices with the im-
plicit view that the results are transferable to highly strained
environments. Detailed analysis of the atomistic configura-
tions during loading has, however, shown that leading and
trailing partial dislocations often nucleate in the vicinity of
anomalous local stress intensities in the GB and that nucle-
ation is usually followed by a subsequent relaxation and re-
moval of the stress intensity.13–15 Figure 1 displays an atomic
cross section of a grain boundary region where in �a� the
atoms are colored and/or shaded according to their local
crystallinity:21 gray �light gray� atoms are locally fcc, red
�dark gray� locally hcp, green �dark gray� other 12 coordi-
nated, and blue �dark gray� non-12 coordinated, �b� accord-
ing to their local hydrostatic pressure and �c� according to
their local deviatoric stress. The two latter quantities are the
scalar invariants of the local stress tensor calculated accord-
ing to the momentum conserving expression for the virial
stress,22 and have been used in the past work to investigate
the stress signature of computer generated nc GBs.15,23 Fig-
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FIG. 1. �Color online� Atomic cross section of a computer generated nanocrystalline sample where atoms are colored and/or shaded
according to �a� medium range order analysis, �b� local hydrostatic pressure, and �c� local deviatoric shear stress.
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ure 1�a� provides an easy identification of where the GBs and
grains are—the GBs are visualized by the nongray and/or
dark regions. Inspection of the stress invariants reveals
strong oscillations in the gigapascal range particularly close
to the GB region: we note that a positive hydrostatic pressure
represents tension. It is in such highly stressed regions that
leading and trailing partial dislocations nucleate.

In the present work, ab initio calculation methods are
used to calculate GSFE curves in highly strained environ-
ments. In particular, using density functional theory �DFT�
the present paper investigates the role of an imposed isotro-
pic and volume conserving simple shear strain field on the
shape of a GSFE curve and, in particular, how this affects the
ratio of the stable to unstable stacking fault surface energy
densities for Al, Cu, and Ni. It is found that the conclusions
made in Ref. 18 retain their validity in highly strained envi-
ronments. The calculations also shed further light on the
electronic origin of the important features of the GSFE curve
and how they can be related to second and third order elas-
ticities.

II. CALCULATION AND RESULTS

For the calculations of the GSFE curves, the DFT code
VASP was used, in which the pseudopotential originates from
the projector augmented wave framework.24,25 Convergence
is reached within an error in total free energy of 0.01 meV
for the electronic contributions and 0.1 meV for the atomic
positions. To guarantee convergence within 0.1 meV/at., 72
irreducible k points and a 400 eV energy cutoff are chosen.
For correct handling of the Fermi surface, the smearing
method of Methfessel and Paxton was used.26 To simulate
ferromagnetic Ni, spin polarized simulations were per-
formed. The orbital resolved local density of states �DOS�
calculations were determined by projecting the wave func-
tions derived from the converged charge densities onto local
orbitals within the Wigner-Seitz radius. The simulation cells
for the GSFE calculations are built up from 12 �111� layers
via an ABC stacking to produce an fcc slab structure sepa-
rated by a vacuum region. The GSFE curves are generated
by ten equally spaced rigid shifts of the upper six �111� lay-
ers in the �−1−12� direction. For each rigid shift, the atomic
positions are relaxed along the �111� direction by minimiza-
tion of the Hellmann-Feynman forces on each atom. The
atoms within the two �111� layers closest to each surface are
held fixed during this relaxation. This type of calculation is
repeated for several isotropic volume changes and for a num-
ber of volume conserving shear strains along the �−1−12�
direction. These two strained environments were chosen to
separately investigate the effect of changing the volume per
atom which probes the effect of bond length and a simple
shear distortion which probes the simplest shear distortion at
a constant volume per atom.

A. Generalized-stacking-fault curves

Figure 2 displays the calculated ab initio GSFE curves for
Al, ferromagnetic �FM�, and nonmagnetic �NM� Ni and Cu
at zero pressure. Table I lists the corresponding unstable and

stable stacking fault energies along with other calculated val-
ues published in literature.7,27–32 Figure 2 and Table I show
that Cu has the lowest stable stacking fault energy, followed
by Ni, and Al has the highest stable stacking fault energy.
The addition of ferromagnetism in Ni raises the unstable
stacking fault energy by �20 mJ/m2 and the stable stacking
fault energy by �3 mJ/m2. In terms of the unstable stacking
fault energy, we see that Al does indeed have the lowest
value relative to its stable stacking fault energy when com-
pared to Cu and Ni, that is, a ratio closest to unity.

The stacking fault energy ordering across the three ele-
ments may be largely understood in terms of the energy of
hcp and fcc phases. At a stacking fault, an ABAB stacking
sequence exists resulting in the two �111� planes of the fault
exhibiting a locally hcp nearest neighbor environment. The
equilibrium stacking fault energy is therefore related to the
energy difference between the bulk fcc and hcp phases,
Efcc-hcp, of that material with 2Efcc-hcp�Esf. Such a relation
has been established for the 3d, 4d, and 5d transition metal
elements33 and is a result of the short range nature of the
transition metal d-state bonding. Since both fcc and hcp are
close packed structures, the short range bonding environment
differs only in the dihedral angle between nearest neighbors
and therefore the d-state �- and �-type bondings are particu-
larly sensitive to such a structural difference. Such angular
dependent bondings become increasingly important in open
shell systems and it is for this reason that Ni, with eight 3d
electrons, has a higher Efcc-hcp energy than Cu which has a
closed shell. For the case of trivalent Al, the dominant open
shell bonding is seen to occur in the form of ss-�, sp-�,
pp-�, and pp-� bonding and also a component due to dd-�
and dd-� bonding, leading to its own higher value of Efcc-hcp
and stacking fault energy.34

Figure 3 displays the GSFE curves for Al, Cu, and Ni as a
function of isotropic volume change. For all three elements,
the stable stacking fault energy decreases with increasing
volume, a trend that can be understood by considering the
volume dependence of Efcc-hcp. Figure 4 plots the stable
stacking fault energy versus the calculated 2Efcc-hcp for Al,
Ni, and Cu for all volumes considered in Fig. 3. The result-
ing linear correlation clearly demonstrates the validity of the
2Efcc-hcp approach for Cu, Ni, and now for Al. There are,
however, also some important differences: Cu and Ni are less

z

FIG. 2. �Color online� General-stacking-fault curves for mag-
netic and nonmagnetic Ni, Cu, and Al.
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sensitive to volume changes than Al, with the latter’s stack-
ing fault energy changing more rapidly than 2Efcc-hcp. Since
for the transition metals, it is d-state bonding that predomi-
nantly contributes to Efcc-hcp, the electronic origin for this
difference has to be found in the radial behavior of the Al
interatomic interaction. Indeed, for Cu and Ni the dominant
short range d-state bonding has an �R−5 range whereas in Al
the s-p bonding has an �R−2 range35 that can also manifest
itself in higher-order second and third nearest neighbor inter-
actions that contribute also to Efcc-hcp.

36,37

With these considerations in mind, Fig. 5�a� now plots the
unstable and stable stacking fault energies as a function of
volume revealing that the unstable stacking fault energy de-
pendency closely follows that of the stable stacking fault.
This is particularly evident when the ratio of the two energies
is plotted, as in Fig. 5�b�, revealing a negligible change in the
ratio for all three elements.

Figure 6 now displays the GSFE curves for a range of
applied volume conserving shear strains in the �−1−12� di-
rection. In these plots the elastic shear strain energy and the
shear strain were added to the calculated GSFE values in
order to be able to investigate nonlinear changes in the GSFE
curves. The elastic strain energy was calculated using the ab
initio derived elastic constants of each material with the for-
mula �Ee=��2 /2 in which �= �C11−C12+C44� /3 is the

elastic shear modulus in the slip plane and slip direction.
Inspection of Fig. 6 reveals that by doing so, the GSFE
curves for Cu and nonmagnetic Ni fall nicely on top of each
other, indicating that the GSFE curve remains essentially un-
changed with the imposition of a volume conserving shear
strain field. For the case of magnetic Ni and Al, we see a
change in the shape of the GSFE curves as a function of
shear strain which can be best seen by plotting the corrected
stable and unstable stacking fault energies as a function of
the shear strain—see Fig. 7 which plots �a� the absolute cor-
rected values and �b� the ratio of the corrected values. For
magnetic Ni and for Al, the stacking fault energy increases
and the unstable stacking fault energy decreases resulting in
an increase in the ratio of unstable to stable stacking fault
energy as a function of increasing shear strain.

The difference between the magnetic and nonmagnetic Ni
GSFE curves can be qualitatively understood by inspection
of the spin resolved charge density as a function of the rigid
shift and the use of a simple Stoner picture for itinerant
magnetism.38 Indeed it is observed that the local charge at
the stacking fault reaches a maximum at the unstable stack-
ing fault region, which via the Stoner picture would result in
the magnetic energy becoming less negative and therefore
the total energy of the GSFE curve becoming more positive
when compared to the nonmagnetic GSFE curve, as is ob-

TABLE I. Unstable and/or stable stacking fault energies calculated in the present work for Al, Cu, and
ferromagnetic Ni and previously published literature values. All values are given in mJ/m2.

Present
work

Ogata
et al.a Denteneer and Solerb

Hartford
et al.c

Zimmerman
et al.d Lu et al.e

Sun and
Kaxirasf Wright et al.g

Al 178/146 175/158 -/126 -/143 213/153 224/164 224/165 -/161

Cu 164/38 158/39 210/49

Ni 278/137 350/183

aReference 7.
bReference 27.
cReference 28.
dReference 29.
eReference 30.
fReference 31.
gReference 32.

FIG. 3. �Color online� General-stacking-fault
energy curves for Al, Ni, and Cu as a function of
isotropic volume change. Volume changes are
given as percentage changes. For Ni, both the
nonmagnetic �NM� and ferromagnetic �FM�
phases are shown.
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served in Fig. 2 for Ni. This is also reflected in a correspond-
ing drop in the local magnetic moment at the slip plane of
�1% –2% in the unstable stacking fault region. The small
difference between the magnetic and nonmagnetic stable
stacking fault energies is therefore due to the small volume
per atom �and therefore the electron density number� differ-
ence between the local fcc and hcp structures. The changing
contribution in energy due to magnetism across the entire
GSFE curve and its strain dependence indicates that a simple
rectangular-band Stoner model39 would be insufficient to de-
scribe the ferromagnetism in fcc Ni, and the explicit environ-
mental dependence of the electronic density of states would
need to be included in any quantitative model as has been
done in �for example� Ref. 40.

B. Charge density profile and local density of states

Figure 8 shows a view of the unit cell used in the ab initio
calculation for Al, for three rigid shear configurations: �a� the
initial fcc structure, �b� the geometrical unstable stacking
fault energy configuration, and �c� the stable stacking fault

configuration. Atoms colored blue �shaded darker� in Fig.
8�b� constitute the two central �111� planes of the rigid slip
plane. Superimposed on all three figures is a contour map of
the converged ab initio local electron number density in a
plane that is close to a �111� normal. The color �shade� range
of the electron number density spans 0.169/Å3–0.219/Å3,
where intermediate values are colored �shaded� according to
the color �shade� bar shown in Fig. 8. The mean valence
density for fcc Al is 0.182/Å3, the minimum density at the
ionic cores is �0.03/Å3, and the maximum is �0.216/Å3.
The valence electrons are distributed throughout the fcc
structure indicating the strong nearly free electron �NFE� na-
ture of Al. The heterogeneities seen in the charge density are
a result of the charge oscillations resulting from the pseudo-
potential used and typical for NFE metals. In Fig. 8�b�, the
geometrical unstable stacking fault configuration, an in-
creased electron number density is seen to occur at the bonds
across the slip plane. In terms of the electron density, the
surrounding fcc structure is largely unaffected demonstrating
once more the short range character of the electronic bond-
ing. In Fig. 8�c�, the stable stacking fault configuration, the
increased electron number density that was seen in Fig. 8�b�

FIG. 4. �Color online� Plot of the calculated stable stacking fault
energy versus that derived from the difference between the fcc and
hcp phases. For each element, the range of volumes shown in Fig. 3
are used.

FIG. 5. �Color online� �a� Unstable and stable stacking fault
energies and �b� corresponding ratio as a function of volume com-
pression and/or expansion for Al, Cu, and ferromagnetic �FM� and
nonmagnetic �NM� Ni.

FIG. 6. �Color online� General-stacking-fault
energy curves for Al, Cu, and Ni as a function of
an applied volume conserving shear strain. For
Ni, both the nonmagnetic �NM� and ferromag-
netic �FM� phases are shown.
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has disappeared. The differences observed between the upper
part of Fig. 8�a� and the upper part of Fig. 8�c�, both fcc
structures, are due to the fact that after the rigid shift in Fig.
8�c� the charge density plane is halfway between two �111�
planes. This artifact also suggests that the hcp structure of
the stacking fault in Fig. 8�c� has a larger interstitial region
of low electron density—this is, in fact, not the case, the hcp
and fcc electron density distributions being not so dissimilar.

Figure 9 shows a similar series of figures for Cu where
the electron density is colored and/or shaded over an ap-
proximately similar range as in Fig. 8. The mean valence
density for fcc Cu is 0.912/Å3 reflecting the available 11
electrons per atom. In Fig. 9, the ionic locations exhibit the
largest electron number density at �15/Å3 and the intersti-
tial region the least at �0.196/Å3. This strongly heteroge-
neous distribution of electrons reflects the well localized
atomiclike d-state orbitals of the �10 electrons at each ion
and the delocalized �1 NFE-like electron within the inter-
stitial region, where the scale of variations of the latter is
similar to that seen in Al. The spherical charge distribution
around each ion originates from the fully filled d-state shell

of Cu. Across Figs. 9�a�–9�c�, little absolute change is seen
in the charge densities. At the geometrical unstable stacking
fault configuration �Fig. 9�b��, a slight charge distortion is
seen at the slip plane with changes in charge density of the
same order as those observed for Al. For Ni �not shown�, a
similar charge distribution is obtained, with the only differ-
ence being that the localized electron number distribution
due to the d-state electrons is somewhat less spherical re-
flecting Ni’s unfilled d-state shell.

Figures 8 and 9 are in agreement with published work that
investigated the nature of ideal shear in Cu and Al,7 where it
was concluded that Al has a directional “stick-rod-like”
bonding and Cu has an isotropic “gluelike” bonding. Con-
cerning Al, this viewpoint is, however, not supported when
looking at the local DOS of the Al atoms at the slip plane.
Figure 10 displays the total local DOS for �a� the initial fcc
configuration, �b� the geometrical unstable stacking fault
configuration, and �c� the stable stacking fault configuration.
Despite the somewhat spiky curves, which arise from the
single zone center k point along the �111� direction of the
unit cell and the resulting 12-fold multiband structure of the
Kohn-Sham states, the total local DOS �Fig. 10�a�� is well
represented by a the usual square root form apart from the
Van Hove singularities close to the Fermi energy. Compari-
son of the DOS between the three atomic configurations re-
veals only minor changes just below the Fermi energy as the
structure moves from perfect fcc to the stacking fault con-
figuration. The integrated local s-, p-, and d-state resolved
densities of states reveal that these differences correspond to
changes in relative occupancy of the order of �1% –2%
indicating that the actual nature of the hybridization is
changing little. If covalency would be at play, more signifi-
cant changes in the local partial DOSs and their occupancy
would be expected. In other words, the increase in the charge
density observed in Fig. 8�b� is not an indication of partial
covalency but rather is due to the available s, p, and d states
that are all only partially filled in the trivalent Al, resulting in
unsaturated bonds and Al being a good NFE metal.

The variations in charge density across the GSFE curve
seen in Figs. 8 and 9 have also been understood in terms of

FIG. 7. �Color online� �a� Unstable and stable stacking fault
energies and �b� corresponding ratio as a function of an applied
volume conserving shear strain for Al, Cu, and Ni.

FIG. 8. �Color online� Al atomic structure in �a� initial fcc con-
figuration, �b� geometrical unstable stacking fault configuration, and
�c� stable stacking fault configuration. Atoms colored blue �shaded
darker� in the central figure indicate the slip plane. For all three
configurations the calculated electron density is shown for a �111�
plane.

FIG. 9. �Color online� Cu atomic structure in �a� initial fcc con-
figuration, �b� geometrical unstable stacking fault configuration, and
�c� stable stacking fault configuration. Atoms colored blue �shaded
darker� in the central figure indicate the slip plane. For all three
configurations the calculated electron density is shown for a �111�
plane.
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the breaking and forming of bond critical points in the charge
density, where in the intermediate �unstable stacking fault�
region the charge redistributes around the atoms of the slip
plane as an emerging cage critical point rather than a bond
critical point.41,42 This has been shown to occur in Al, Ag,
and Ir �Ref. 43� and thus is expected to hold also for Cu and
Ni—indeed the changes in charge density seen in Figs. 8 and
9 at the unstable stacking fault configuration for Cu and Ni
are similar in magnitude to that of Al. Special to Al is that
there exists a large anisotropy between the bond breaking
and cage forming critical charge densities leading to a strong
asymmetry in the GSFE curve for Al �evident in Fig. 2�
when compared to other metals.42 This charge asymmetry is
also reflected in Al having an anomalously low elastic aniso-
tropy factor.41

III. DISCUSSION

The relationship Esf�2Efcc-hcp seen in Fig. 4 evidences
the relatively short range electronic nature of the bonding for
the metals considered. This result suggests that the unstable
stacking fault energy may be well represented by the maxi-
mum of the relation between the energy per atom versus a
simple shear strain of an fcc lattice along the �−1−12� direc-
tion. Figure 11 displays such a curve for Al together with the
unrelaxed and relaxed Al GSFE curves. For direct compari-
son we plot both quantities as an energy density with units
gigapascal. Good correspondence between the maxima of all
curves is obtained, where better agreement is seen with the
unrelaxed GSFE curve. Such a good correspondence is also
seen for Cu and Ni. This approach has also been developed
in Ref. 7 in which the multiplane generalized stacking fault

energy, �n�x�, was calculated, where �1�x� is equivalent to
the GSFE curves shown in Fig. 1 and ���x� represents the
energy of globally sheared fcc lattice. In that work, however,
a simple shear stress was used rather than a simple shear
strain to better investigate more realistic deformations that
measure strength.

Figure 12�a� now displays the corresponding simple shear
strain curves for Al, Ni, and Cu. By plotting the energy
curves in this way, the curvature at a displacement of zero
�and unity� is equal to the shear modulus along the �−1
−12� slip direction. Figure 12�b� plots the obtained shear
moduli as a function of the energy density maximas in Fig.
12�a� �filled circles� and the unstable stacking fault energies
�open circles�. The linear correspondence is good for Cu and
Ni, demonstrating that the shear modulus plays an important
role in the energy scale of the unstable stacking fault. This is
a more general manifestation of the classical notion that elas-
ticity is a first order determinant of material strength. The
fact that Al does not lie on the same line, confirms that elas-
ticity underestimates the unstable stacking fault energy for
this metal.7

Such a simple picture of the unstable stacking fault region
of the GSFE curve for Cu, Ni, and to a lesser extent Al then

FIG. 10. �Color online� Al local density of states of an atom at
the slip plane for the initial FCC configuration �black solid line�, the
geometrical unstable stacking fault configuration �red dashed line�,
and the stable stacking fault configuration �green dotted line�: �a�
displays the total, �b� the s-state resolved, �c� the p-state resolved,
and �d� the d-state resolved local densities of states.

FIG. 11. �Color online� The energy increase per atom as a func-
tion of deforming the fcc lattice under simple shear strain condi-
tions for Al. For comparison, the unrelaxed and relaxed Al GSFE
curves are also shown.

FIG. 12. �Color online� �a� Shear strain energy curves divided
by atomic volume. �b� Maximum of shear strain energy curves
�filled circles� and unstable stacking fault energy �open circles� as a
function of calculated shear modulus.
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suggests that its response to strained environments will
largely be determined by how the elastic constants vary as a
function of a finite lattice distortion. In other words, the third
order elastic constants control the behavior of the GSFE
curves in Figs. 3 and 5–7 of the unstable stacking fault re-
gion. For the case of isotropic volume expansion and con-
traction, simple analytical formulas exist for expressing the
derivative of the cubic elastic constants with respect to
pressure.44 Using these relations, the derivative of the shear
modulus with respect to pressure can be obtained in terms of
the second and third order elastic constants. Using the third
order constants derived from a recent multivariate linear re-
gression analysis of a wide range of published data,45 we
obtain experimental d� /dP values of 1.55±0.10, 1.06±0.23,
and 1.46±0.25 for, respectively, Al, Cu, and Ni. By exploit-
ing the linear relationship between simple shear strain energy
density and the calculated shear modulus seen in Fig. 12�b�
and expressing the volume changes of Fig. 3 as a hydrostatic
pressure �using the DFT calculated bulk modulus�, we obtain
values of d� /dP for Al, Cu, and Ni equaling 2.44, 1.12, and
1.05, which compare well with those estimated via third or-
der elasticity. Cu exhibits the best agreement, followed by Ni
and Al. We note that since Ni has an unstable stacking fault
energy less than that predicted by elasticity, its value of
d� /dP will be less than that predicted by third order elastic-
ity, whereas for Al it will be larger—as is demonstrated in
the present numerical values. Such an approach could be
applied to the unstable stacking fault energy dependence of
the volume conserving simple shear strain by calculating the
derivative of the shear modulus with respect to such a dis-
tortion; however, it appears that no such analytical formulas
exist yet in the literature.

IV. CONCLUDING REMARKS

The motivation for the present work has been to investi-
gate how the stacking fault energy curve is affected by large
isotropic and volume conserving shear strains of the lattice.
The ab initio methods applied show that there are only minor
changes in the GSFE curves for Al, Cu, and Ni for the ap-
plied distortions, strengthening the notion that the ratio be-
tween stable and unstable stacking fault energy provides
qualitative physical insight into the nature of slip in nano-
crystalline materials where highly distorted environments are
present.18 The present work has shown that for Cu, the form
of the GSFE curve and its behavior under strain can be very
well understood in terms of second and third order elastici-
ties and its value for Efcc-hcp. For Al and Ni, a significant part
of the GSFE curve can also be understood in terms of these
bulk material parameters, although in the case of Al the de-
viations away from such a simple model are significant

enough to result in anomalous strength properties as investi-
gated in Refs. 7 and 8.

The simulation of multimillion atom nc atomic configura-
tions must employ less accurate empirical potential schemes
such as the embedded atom or second moment tight binding
formalisms to model the metallic bond which do not take
into account explicitly angular bonding. The present results
demonstrate that for the accurate empirical simulation of the
GSFE curve, such interatomic models must be able to de-
scribe well the energy difference, Efcc-hcp. In practice the fit-
ting of this energy difference is achieved by extending the
range of a potential to more distant neighbors. While this is
an effective approach, it is inconsistent with the short range
nature of, for example, the d-state bond and leads to trans-
ferability issues when the potential is applied to atomic con-
figurations not included in the fitted physical database. A
typical configuration not included in such a database is the
unstable stacking fault. A good example of this is in the Al
and Ni embedded atom potentials of Mishin et al. which in
one case employ spline functions46 and in another case use
conventional analytical functions.47 All of these potentials
have been fitted to Efcc-hcp and reproduce well the stable
stacking fault energy, with the range of these potentials ex-
tending to up to the fifth nearest neighbor shell. For the pre-
dicted unstable stacking fault energy, the two representations
for both Al and Ni give, however, different values with the
spline representation in Ref. 46 agreeing better with the ab
initio predictions than the analytical functional representa-
tion in Ref. 47. In terms of strained GSFE curves, the present
work also demonstrates the importance of third order elastic
constants suggesting that such anharmonic material proper-
ties should also be included in the fitting database of future
empirical potentials.

In conclusion, the present work demonstrates a relative
insensitivity of the stable to unstable stacking fault ratio to
an isotropic volume change and a volume conserving simple
shear. In the context of the work performed in Ref. 18, this
indicates that the logical arguments therein remain valid in
strongly strained environments such as near a grain boundary
region. Therefore the explanation of why only partial dislo-
cations are seen in molecular dynamics simulations of the
deformation properties of nc-Cu and nc-Ni, and full disloca-
tion in nc-Al, is on a firmer theoretical grounding. The work
has also provided insight into the origins of the generalized
stacking fault energy curves in terms of a metal’s second and
third order elastic properties.
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