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We investigate the structure and mobility of single self-interstitial atom and vacancy defects in body-
centered-cubic transition metals forming groups 5B �vanadium, niobium, and tantalum� and 6B �chromium,
molybdenum, and tungsten� of the Periodic Table. Density-functional calculations show that in all these metals
the axially symmetric �111� self-interstitial atom configuration has the lowest formation energy. In chromium,
the difference between the energies of the �111� and the �110� self-interstitial configurations is very small,
making the two structures almost degenerate. Local densities of states for the atoms forming the core of
crowdion configurations exhibit systematic widening of the “local” d band and an upward shift of the anti-
bonding peak. Using the information provided by electronic structure calculations, we derive a family of
Finnis-Sinclair-type interatomic potentials for vanadium, niobium, tantalum, molybdenum, and tungsten. Using
these potentials, we investigate the thermally activated migration of self-interstitial atom defects in tungsten.
We rationalize the results of simulations using analytical solutions of the multistring Frenkel-Kontorova model
describing nonlinear elastic interactions between a defect and phonon excitations. We find that the discreteness
of the crystal lattice plays a dominant part in the picture of mobility of defects. We are also able to explain the
origin of the non-Arrhenius diffusion of crowdions and to show that at elevated temperatures the diffusion
coefficient varies linearly as a function of absolute temperature.
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I. INTRODUCTION

The fact that in the body-centered-cubic �bcc� lattice the
energetically favorable interstitial position is not the geo-
metrically obvious center of a face of the cubic unit cell but
rather a position between the nearest neighbors was first
noted by Paneth1 in connection with the study of self-
interstitial atom configurations in bcc alkali metals. Paneth
introduced the term “crowdion” to describe the extended dis-
tortion of the crystal lattice in the 111 direction, resulting
from the embedding of an extra atom in the lattice. Figure 1
shows schematic models of several defects, including a 111
crowdion, in the bcc lattice. The interstitial defect structures,
shown in darker color in Fig. 1, result from the embedding of
just one extra atom in the lattice, followed by the elastic
relaxation of positions of all the atoms in the region sur-
rounding the defect.

The crowdion concept proposed by Paneth1 was further
extended to the case of fcc metals by Lomer and Cottrell,2

who discussed annealing of point defects in metals and al-
loys. This concept was then further developed by Blewitt et
al.3 and by Tewordt.4 de Wette investigated the formation of
crowdions in the Wigner electron lattices.5 Frank and Seeger
used the crowdion concept in the formulation of the so-called
two-interstitial model of radiation damage,6 initiating a pe-
riod of extensive debate in the literature about the structure
of self-interstitial configurations. Seeger and Chik7 investi-
gated the possible occurrence of an extended interstitial con-
figuration, stabilized by phonon entropy, in silicon. Their
idea received further attention in connection with the prob-
lem of self-diffusion in silicon,8,9 where experimental obser-
vations showed that self-interstitial atoms were able to mi-
grate at extremely low temperatures of the order of several
kelvins.

The fact that the axially symmetric “one-dimensional”
structure of a crowdion configuration was intimately related
to its high one-dimensional mobility was noted by Seeger.10

Schilling et al.11 disagreed with the crowdion hypothesis and
argued that the three-dimensional model of diffusion of de-
fects gave better agreement with experimental observations
of defect migration in fcc copper. Frank12 noted that the iso-
chronal low-temperature recovery experiments in niobium
provided evidence for the formation of highly mobile crow-
dion configurations under irradiation. Extending this idea,
Frank and Seeger13 proposed that the low-temperature mi-
gration of self-interstitial atom defects in bcc metals could be
explained in terms of diffusion of crowdions. Woo and
Frank14 used the crowdion diffusion model to explain the
origin of void lattices forming in some metals under irradia-
tion. Indenbom15 examined the part played by crowdions in
the picture of plastic deformation of materials. His theoreti-
cal ideas were corroborated by experiments carried out in
bcc tungsten.16,17 High mobility of self-interstitial atom de-
fects in tungsten at low temperatures was observed experi-
mentally in Ref. 18.

At the same time, the accumulation of experimental infor-
mation on thermally activated mobility of defects in bcc met-
als did not explicitly address the question about the structure
of these defects. Some experimental evidence �for example,
the high mobility of defects at temperatures below 40 K ob-
served in all the nonmagnetic bcc metals19,20� pointed to the
possible role played by the highly mobile �111� crowdions,
while other observations21 remained at variance with the
crowdion model. Atomistic simulations based on semiempir-
ical potentials appeared equally inconclusive, with some
simulations predicting the �110� dumbbell while others pre-
dicting the �111� crowdion as the lowest-energy configura-
tion of a self-interstitial atom defect.22–26
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Large-scale density-functional calculations performed in
the last several years provided significantly more reliable and
largely free from model assumptions information about the
energies of formation of stable, as well as metastable, con-
figurations of self-interstitial atom defects. These configura-
tions, illustrated in Fig. 1, have different formation energies,
and the first question that one has to address before proceed-
ing to the investigation of dynamical properties of defects,
for example, their thermally activated migration or migration
driven by external stress fields, is the question about the
relative energies of defect structures shown in Fig. 1.

Density-functional calculations27–29 showed that in bcc Fe
a self-interstitial atom adopts the �110� configuration, while
in vanadium and molybdenum the lowest-energy configura-
tion of a defect has the �111� symmetry.30 A recent study of
point defects spanning the entire group of bcc metals31 con-
firmed that the �111� crowdion configuration does, indeed,
have the lowest formation energy in all the nonmagnetic bcc
metals except chromium, where the difference between the
energies of the �111� and �110� configurations is very small.

An unusual feature of the crowdion configuration is that
the displacements of atoms in it are effectively one dimen-
sional and that the strain field in the string containing a self-
interstitial atom can be accurately described by an analyti-
cally tractable Frenkel-Kontorova model.32 This model also
applies to the treatment of the elastic field of the crowdion
defect,33 making it possible to derive equations of motion for
crowdions in the lattice.34 The multi-string Frenkel-
Kontorova model, describing clusters of interstitial atoms,
shows that there is a link between the soliton solutions for a
crowdion and for an edge dislocation.35 Furthermore, the fact
that in the continuum limit the strain field of a crowdion is
well approximated by the sine-Gordon equation36,37 makes
the latter a convenient model for studying the Brownian mo-
tion of defects at elevated temperatures. Migration of crow-
dion defects in bcc vanadium was recently investigated using
molecular dynamics.38 Molecular dynamics simulations also
showed that small clusters of self-interstitial atom defects
have properties similar to those of crowdion configurations,
including their high thermally activated one-dimensional
mobility.39–45

The main objective of this paper is to perform a compre-
hensive multiscale investigation of properties of crowdion
defects in bcc metals. We start from giving a detailed account
of electronic structure and energies of formation of self-
interstitial and vacancy defects for the entire group of bcc
metals. On the basis of these calculations, we derive a family
of semiempirical potentials of the Finnis-Sinclair type for
vanadium, niobium, tantalum, molybdenum, and tungsten.
We test these potentials by simulating structures that were
not included in the fitting procedure and find a generally
good agreement with density-functional calculations. We
also find that the magnitude of the bonding part of the po-
tential for each metal is well correlated with the respective
second moment of the density of d states. Furthermore, we
observe that the concept of local variation of the width of the
d band underlying the Finnis-Sinclair functional form of the
potentials is well correlated with the results of electronic
structure calculations that exhibit local broadening of the d
band near the core of the defects.

Using the developed potentials, we extend the treatment
to longer time and larger spatial scales and investigate dy-
namical properties of the �111� crowdions and their migra-
tion at elevated temperatures. An analysis of the migration of
crowdions in tungsten at temperatures higher than the Debye
temperature of the material shows, in agreement with a simi-
lar recent study of defects in vanadium,38 that the Brownian
motion of crowdions does not follow the Arrhenius law and
that the diffusion coefficient of a defect varies approximately
linearly as a function of absolute temperature. We rationalize
this observation using an analytically solvable Frenkel-
Kontorova model that describes a nonlinear elastic interac-
tion between a crowdion and the field of phonon excitations
in the lattice. We find that the linear variation of the diffusion
coefficient, as a function of absolute temperature observed in
simulations, is related to the fact that the crystal lattice,
where the crowdion migrates, is discrete. An analysis of the
statistics of the �111� to �110� transformations of the crow-
dion defect shows that the longitudinal Brownian motion of a
crowdion is fairly stable and that rotational �111�↔ �110�

vacancy tetrahedral

111 100

octahedral110

FIG. 1. �Color online� Schematic view of the vacancy and the
five high-symmetry self-interstitial atom configurations in a bcc
metal. A 111 crowdion configuration shown in this figure is formed
by inserting an extra atom halfway between the nearest neighbors
and by relaxing the resulting configuration at T=0. A tetrahedral
configuration is formed if an interstitial atom is placed at
�a /4 ,a /2 ,0�, where a is the parameter of the crystal lattice. An
octahedral configuration is formed if an extra atom is placed at the
center of the face of the cell, for example, at �a /2 ,a /2 ,0�.
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transformations have a significant effect on the diffusion of
crowdions only in the high-temperature limit.

We conclude our study by reviewing the multiscale aspect
of the problem, including the pivotal role played by the
analysis of the electronic structure of defects, the use of con-
trolled approximations in deriving the semiempirical poten-
tials, and the essential part played by solvable analytical
models in rationalizing the information provided by atomis-
tic simulations.

II. ELECTRONIC STRUCTURE OF DEFECTS FROM
DENSITY FUNCTIONAL THEORY CALCULATIONS

The total-energy and electronic structure calculations for
nonmagnetic bcc transition metals described in this section
were performed using density-functional theory �DFT�
within the generalized gradient approximation �GGA� imple-
mented in the package of linear combination of atomic type
orbitals �PLATO�.46 This code has recently undergone major
development to allow modeling of defects31 and ab initio
molecular dynamic simulations.47 Since our previous
communication31 provided only a brief description of the
method, below, we describe the significant technical aspects
of our calculations.

PLATO uses strictly localized atomiclike basis functions.
These are found by solving for an atom in an external spheri-
cal potential well U�r�, where the potential U�r� is assumed
to diverge for r�rc, where rc is a user-defined cutoff radius.
This condition results in a set of basis functions vanishing at
r=rc and retaining nonvanishing first and second derivatives
at that point. To ensure that these derivatives vanish at rc, the
functions are multiplied by the factor 1−exp�−�r
−rc�2 / �2�2��, where � is an adjustable parameter. Basis sets
are constructed by using functions from both an atom and a
positively charged ion solved in this way. Polarization func-
tions are also included in the basis set since they play an
important part in giving the basis set the required variational
freedom. Basis functions having the same angular form are
orthogonalized since this improves the stability of calcula-
tions. Basis sets consisting of two sets of functions corre-
sponding to a neutral atom and one set of functions corre-
sponding to a doubly ionized atom, referred to as the double
numeric plus polarization �DNP� basis, are used in most
cases described below.

To achieve a high accuracy in the DFT calculation of
defect structures in transition metals, treating both valence
and semicore electrons becomes equally important. There-
fore, these electrons have been included in the construction
of the DNP basis set consisting of 18 atomiclike functions
per atom. For the nd �n=3,4 ,5� transition metal series, we
retain the ns, np, nd, and �n+1�s orbitals for the neutral atom
and the nd*, �n+1�s*, and �n+1�p* orbitals for the doubly
ionized atom. All the orbitals are cut off at the critical radius
rc of 8.0 a.u., and their tails are smoothed over a distance �
of about 1.5 a.u. The calculations were performed using the
relativistic semicore separable pseudopotentials developed
by Hartwigsen et al.48 with the Perdew-Burke-Ernzerhof
�PBE�49 GGA for the exchange and correlation functional.
The fast Fourier transform �FFT� mesh was used to evaluate

numerical integrals with atomic orbitals and to solve Pois-
son’s equation. The electron charge density was projected
onto a uniform FFT mesh with spacing of 0.2 a.u. A denser
grid of 0.15 a.u. was used to assess the precision of the
charge density calculations. This, in turn, was used to esti-
mate the systematic error of our defect structure total-energy
calculations, which we found to be of the order of 0.01 eV.
Both the volume and ionic relaxations were used in the
PLATO calculations, and the forces and stress components in
relaxed configurations were smaller than 0.025 eV/Å and
0.001 Mbar, respectively. All the calculations of defect struc-
tures were performed using a reference bcc supercell con-
taining 128 atoms and a 3�3�3 shifted k-point grid. In the
case of Cr, we assumed the nonmagnetic ground state, the
total energy of which is very close to the energy of the anti-
ferromagnetic state found in recent full-potential linearized
augmented plane wave calculations.50 For completeness, ab
initio calculations were also performed for ferromagnetic
�-Fe where we used a pseudopotential generalized by the
projector augmented wave �PAW� approach and imple-
mented in the Vienna ab initio simulation package
�VASP�.51–53 This pseudopotential, which includes the effect
of semicore electrons, was taken from the VASP library. Spin-
polarized calculations were performed using the GGA-PBE
exchange-correlation �XC� functional. The plane-wave cutoff
energy of 300 eV and 27 k points were used for the 128+1
atom supercells.

Table I gives the calculated formation energies of the va-
cancy and interstitial atom defects.31,54,55 These energies are
used for fitting interatomic potentials described in the next
section of the paper. Our DFT study shows that the �111�-
type defect configurations have the lowest formation ener-
gies in all the nonmagnetic bcc metals. The energy difference
between the �110� and the �111� configurations is smaller in
group 6B than in group 5B. The pattern of ordering of self-
interstitial atom �SIA� configurations in the nonmagnetic bcc
metals is fundamentally different from that of ferromagnetic
bcc Fe, where the �110� dumbbell has the lowest formation
energy28,59 found in SIESTA �GGA-PBE� and VASP �GGA
with the Perdew-Wang �PW� XC functional61� calculations.
This is also confirmed by the present VASP �GGA-PBE� cal-
culations. We also find that apart from the significant differ-
ences between the energies of the �110� and �111� configura-
tions, all the other SIA configurations in Fe follow the same
relative pattern of ordering of formation energies as the SIA
configurations in groups 5B and 6B; i.e., the formation ener-
gies increase from the �111� dumbbell to the �110�, the tetra-
hedral, the �100� dumbbell, and to the octahedral configura-
tions.

Defects follow a systematic pattern not only for the case
of SIAs but also for the case of monovacancy formation and
migration energies.31,54,55 These energies were calculated us-
ing the nudged elastic band method,62 and results agree well
with the available experimental data.20 Experimentally mea-
sured values for the vacancy migration energy in molybde-
num were reported by several groups. Measurements per-
formed by the Delft group, where helium desorption was
used for determining vacancy concentration, gave the value
of 1.23±0.05 eV.63 This value is similar to the value corre-
sponding to the stage III recovery of electron irradiated mo-
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lybdenum, where Yamakawa et al. found 1.30±0.02 eV.64

The comparison of these two results suggests that the value
of 1.28 eV found in our calculations for the vacancy migra-
tion energy in Mo is in good agreement with the available
experimental information.

Table I also gives the calculated formation and binding
energies for divacancy defects involving the first-nearest-

neighbor �1NN� and the second-nearest-neighbor �2NN� lat-
tice sites for all the bcc transition metals. Again, we find a
systematic group-specific trend for the divacancy energies
that correlates well with the position of a bcc metal in the
Periodic Table. Whereas the divacancy formation energies
for the 2NN sites are lower than the corresponding values for
the 1NN sites for all the elements of group 5B �vanadium,

TABLE I. The first four rows of this table give basic parameters of all the bcc transition metals of groups
5B and 6B, and those for Fe �group 8� evaluated using DFT, and compare them with the experimentally
measured values taken from Refs. 56 and 20. The remaining rows of the table give defect formation �f�,
migration �m�, and binding �b� energies �in eV units�. Values referring to the interstitial configurations ��111�
dumbbell, etc.� give the formation energies of the corresponding defect structures.

V Nb Ta Cr Mo W Fe

a �Å� 3.04a 3.32a 3.31a 2.85a 3.17a 3.18a 2.84b

3.03c 3.30c 3.30c 2.88c 3.15c 3.16c 2.87c

B �Mbar� 1.71a a1.73 1.99a 1.92a 2.68a 3.05a 1.82b

1.62c 1.70c 2.00c 1.90c 2.72c 3.23c 1.68c

Hf
v 2.51a 2.99a 3.14a 2.64a 2.96a 3.56a 2.15a

2.1–2.2d 2.6–3.1d 2.8–3.1d 2.0–2.4d 2.6–3.2d 3.5–4.1d 1.6–2.2d

Hm
v 0.62a 0.91a 1.48a 0.91a 1.28a 1.78a 0.64b, 0.67e

0.5–1.2d 0.6–1.0d 0.7–1.9d 0.95d 1.3–1.6d 1.7–2.0d 0.55d

Hf
2v�1NN� 4.94f 5.62f 6.01f 5.01f 5.60f 6.71f 4.08b

3.90–3.99g 5.11g 5.47g 3.34g 5.75g 7.32g 3.31g, 3.85h

Hf
2v�2NN� 4.80f 5.57f 5.89f 5.16f 5.78f 6.93f 4.01b

3.90–4.21g 5.11g 5.50g 3.35g 5.77g 7.36g 3.34g, 3.83h

Hb
2v�1NN� 0.08f 0.36f 0.27f 0.27f 0.32f 0.41f 0.22b

0.30–0.45g 0.39g 0.43g 0.26g 0.45g, 0.39i 0.58g, 0.45i 0.27g, 0.22,i 0.19h

Hb
2v�2NN� 0.22f 0.41f 0.39f 0.12f 0.14f 0.19f 0.29

0.30–0.23g 0.39g 0.41g 0.25g 0.43g, 0.25i 0.54g, 0.29i 0.24g, 0.15i, 0.30e, 0.21h

�111� dumbbell 3.367a 5.253a 5.832a 5.685a 7.417a 9.548a 4.61b

3.14j 4.795k 7.157l, 5.858i 5.68m 7.34j 8.919k 4.72,m 4.34e

�111� crowdion 3.371a 5.254a 5.836a 5.660a 7.419a 9.551a 4.64b

3.15h 4.857k 7.158k, 5.859l 7.34j 8.893k

�110� dumbbell 3.652a 5.597a 6.382a 5.674b 7.581a 9.844a 3.93b

3.48j 4.482k 6.847k, 6.557l 5.66m 7.51j 9.641k 4.03m, 3.64e

Tetrahedral 3.835a 5.758a 6.771a 6.189a 8.401a 11.05a 4.32b

3.69j 6.845l 8.20j 4.43,m 4.26e

�100� dumbbell 3.918a 5.949a 7.003a 6.643a 9.004a 11.49a 5.05b

3.57j 4.821k 8.068k, 6.987l 6.78m 8.77j 9.815k 5.18m, 4.64e

Octahedral 3.964a 6.060a 7.095a 6.723a 9.067a 11.68a 5.21b

3.62j 7.020l 8.86j 5.34m, 4.94e

aDFT result �PLATO� from Ref. 31.
bPresent work, VASP �PAW–GGA–PBE�.
cExperimental data from Ref. 56.
dExperimental data from Ref. 20.
eDFT �SIESTA� result from Refs. 28 and 29.
fPresent work, PLATO �GGA–PBE�
gModified embedded atom model calculation �Ref. 57�.
hDFT �VASP� result from Ref. 60.
iTB result from Ref. 58.
jDFT �PWSCF� result from Ref. 30.
kFinnis–Sinclair potential calculation �Ref. 22�.
lDFT �VASP� result from Ref. 54.
mDFT �VASP� result from Ref. 59.
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niobium, and tantalum�, for all the elements of group 6B the
1NN divacancy formation energies are lower than the 2NN
ones. For ferromagnetic bcc Fe, we find that the binding
energy between the two 2NN vacancies is favored in com-
parison with those for the 1NN configuration, in agreement
with earlier calculations performed using the SIESTA code.29

Our DFT results are at variance with predictions made by the
semiempirical modified embedded atom method 57 and by
the tight-binding �TB�58 potentials, where it was found that
the 1NN divacancy formation energies are smaller than the
formation energies of the 2NN divacancies for all the bcc
transition metals. For the case of bcc Fe, by using a pairwise
potential, Johnson65 found that the 2NN divacancy configu-
ration was more stable than the 1NN divacancy configura-
tion. We also note an experimental study of quenched high-
purity tungsten carried out using a combination of field-ion
microscopy �FIM� and electrical resistivity measurements.
The study showed that the quenched-in defects observed by
FIM were monovacancies and nearest-neighbor
divacancies.66 The experiments give the value of Hv

f

=3.6 eV for the vacancy formation enthalpy and Hb
2v�1NN�

=0.7 eV for the the divacancy binding enthalpy. These val-
ues are in agreement with our DFT predictions for the va-
cancy and divacancy energies in bcc-W. We also note that the
migration of divacancies in molybdenum is attributed to a
resistivity recovery stage situated between 100 and 150 °C
below stage III in electron irradiated molybdenum.67

Atomic displacements found in our DFT calculations for
the most stable �111� crowdion SIA configuration for the six
bcc transition metals of groups 5B and 6B of the Periodic
Table, as well the atomic displacements in a metastable �111�
crowdion in ferromagnetic Fe, are shown in Fig. 2. We find
that the strongest ��20% � compressive deformation occurs
in the core of a crowdion in the case of 3d metals �V, Cr, and
Fe�, while in the case of 4d and 5d metals the crowdions
have a more extended core and the compressive strain in the
core of the defect is lower ��15% �. This finding suggests

that the semicore electrons play a more significant part in
determining the structure and the formation energy of SIA
defects in the 4d and 5d transition metals in comparison with
the 3d metals.

The crowdion configuration can be described by the ex-
actly solvable sine-Gordon model,31,35,68,69 which we also
study in the last two sections of this paper. Figure 2 shows
the field of atomic displacement calculated using the solution
of the sine-Gordon model �see Eq. �33� below� plotted for
two different values of the effective dimensionless width N
of the crowdion configuration. We see that the extended core
of the crowdion defect in bcc tungsten has a relatively large
width N=1.9, while in the case of bcc iron the solution of
the sine-Gordon model provides the best fit to the DFT re-
sults if the width of the solution is taken as N=1.4. Although
the �111� crowdion is not the most stable SIA defect configu-
ration in bcc Fe, a cluster of crowdions is the same as a small
dislocation loop similar to those observed by in situ trans-
mission electron microscopy in iron.70 A cluster of crowdi-
ons is approximately described by solutions of the multi-
string Frenkel-Kontorova model.35

It is now well established that the group-specific depen-
dence of properties of defects in bcc transition metals is cor-
related with their electronic structure and, specifically, with
the number of valence d electrons per atom.31,54,55,71 We
therefore performed a systematic study of the local density of
states �LDOS� obtained from self-consistent DFT total-
energy calculations for the most stable SIA defect in bcc
nonmagnetic transition metals, i.e., for the 111 crowdion
configuration. Figure 3 shows the LDOS calculated for at-
oms forming the central �111� string of crowdion configura-
tions for all the bcc transition metals of groups 5B and 6B.
For a fully relaxed supercell with 128+1 sites, there are five
nonequivalent atoms in the central string containing the
crowdion defect, starting with the atom in the center of the
crowdion �in Fig. 3, it is denoted as atom 1� to the atom
situated at the end of the string �denoted as atom 5�. In each
plot, the position of the Fermi energy is shown by a vertical
solid line. A striking feature seen in Fig. 3 is the upward shift
of the antibonding peak in the LDOS spectra of atoms situ-
ated near the center of crowdion configurations �atoms 1, 2,
and 3� in comparison with the bulk spectrum of DOS. The
magnitude of this shift is 1.1, 1.3, 1.4, 1.2, 1.4, and 1.7 eV
for vanadium, niobium, tantalum, chromium, molybdenum,
and tungsten, respectively. The scale of this shift is suffi-
ciently large, and it should be possible to observe it using the
high-energy resolution electron energy loss spectroscopy
technique.72,73 Our calculations show that the effect of the
high strain associated with the core of an interstitial defect
on the electronic structure is similar in terms of its magni-
tude to the chemical shift of electronic levels in the atoms
forming the defect.

For an atom located sufficiently far away from the core of
a crowdion �atom 5�, the antibonding peak is shifted back to
its bulk position. The position of the bonding peak of LDOS
also varies depending on how far an atom is from the center
of the defect configuration. Because of the strong compres-
sive strain in the core of the crowdion defect, the effective
local width of the d band increases and the pseudogap prac-
tically vanishes for atoms 1, 2, and 3 that are near the center
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FIG. 3. �Color online� The local electronic density of states �LDOS� evaluated for the five atoms located in the central �111� string of the
crowdion configuration for each of the bcc metals forming groups V and IV of the Periodic Table. Calculations were performed using a
4�4�4 128+1 atom supercell. Atom 1 is situated in the center of the crowdion, and atom 5 is the furthest away from the center of the
crowdion along the �111� string.
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of the crowdion. The latter explains why the second-
moment-based interatomic potentials derived in the next sec-
tion of the paper are able to provide a good fit to the forma-
tion energies of crowdions, as well as to other defect
configurations investigated by DFT in the case of nonmag-
netic bcc transition metals.

Figure 4 shows LDOS plots for the three nonequivalent
atoms belonging to one of the six nearest neighbor �NN�
strings running parallel to the central string of the crowdion
defect. Atom NN1 is located next to the center of the crow-
dion, whereas atoms NN2 and NN3 are situated further away
along the same nearest-neighbor string. For comparison, at
the top of the LDOS plots in Fig. 4 for each metal, we also
show the corresponding bulk density of states. These bulk
densities of states are dominated by the presence of the so-
called pseudogap between the peaks of LDOS corresponding
to bonding �at the bottom of the band� and antibonding �at
the top of the band� states. Figure 4 shows that the shape of
the LDOS for atoms in the NN strings is different from that
of the LDOS for atoms forming the crowdion itself, and is
quite similar to the bulk LDOS. Indeed, apart from a minor
variation in the region just below the Fermi energy, we ob-
serve almost no change in the position of the antibonding
peak in comparison with the bulk LDOS. This observation
shows that the strong compressive deformations affecting the
electronic structure of atoms in a crowdion defect are local-
ized entirely within the central 111 strings and that the elec-
tronic structure of neighboring atomic strings is almost un-
affected by the strain associated with the defect. This
illustrates the short-range character of the effective interac-
tion between atoms in bcc transition metals.

Figure 5 shows the LDOS calculated for both magnetic
and nonmagnetic crowdion configurations in bcc-Fe. The po-
sitions of atoms in the latter are assumed to be the same as
those found in a fully relaxed self-consistent spin-polarized
calculation. LDOS plots for both the central and the NN
strings of the crowdion are given in Fig. 5. This figure shows
that d orbitals give the dominant contribution to LDOS. The
spin-polarized LDOS for the atom in the center of the defect
shows why this atom has a negative magnetic moment
�−0.44�B� in comparison with the DFT value �2.22�B� cor-
responding to bulk crystalline bcc-Fe. In the LDOS plot de-
scribing the central atom of the crowdion configuration, the
Fermi energy is located to the left of the peak in the spin-up
DOS, whereas the corresponding spin-down contribution has
a pronounced bonding peak situated at the bottom of the
band. As in the case of nonmagnetic bcc transition metals,
the spin-polarized LDOSs for atoms forming the NN strings
of the crowdion are almost unchanged in comparison with
the bulk one. Due to the difference in the d-electron filling of
Fe �group VIII in the Periodic Table of elements�, the Fermi
energy moves closer to the antibonding peak of the non-spin-
polarized LDOS for atoms forming the central and the NN
crowdion strings.

Figure 6 shows the LDOS evaluated for the 1NN and
2NN atoms surrounding a monovacancy for all the bcc tran-
sition metals of groups 5B and 6B. For each element, we also
plot the total DOS averaged over all the 127 atoms in the
supercell. We see that unlike the crowdion configuration, the
LDOS plots for atoms in the vicinity of a vacancy defect

show a strong similarity to the bulk DOS. At the same time,
new features also emerge. For example, a new peak forms in
the pseudogap of the DOS just below the Fermi energy for
all the transition metals of group 6B. The same peak forms
approximately 1 eV above the Fermi energy in metals of
group 5B.

LDOS plots for the 1NN and 2NN atoms show that it is
their contribution to this new peak that differentiates the
electronic contribution to the vacancy formation energy be-
tween the elements of groups 5B and 6B. Other peaks asso-
ciated with the presence of the single vacancy defect can also
be identified in Fig. 6 below the Fermi energy for all the bcc
transition metals. The total vacancy DOS calculated here for
bcc Ta and W are in agreement with earlier DFT �local den-
sity approximation� calculations performed using 53 atom
supercells by Satta et al.74

Finally, both spin-polarized and non spin-polarized
LDOSs for the 1NN and 2NN atoms around the monova-
cancy in bcc-Fe are shown in Fig. 7. Again, the contribution
of d orbitals dominates the distribution of LDOS. We see a
variation in the up spin contribution to the LDOS in the
vicinity of −2.0 eV for both the 1NN and 2NN atoms. In the
case of the non-spin-polarized calculation, this variation is
seen in the pseudogap, which is now situated near −1.0 eV.

III. SEMIEMPIRICAL INTERATOMIC POTENTIALS

The group 5B and 6B nonmagnetic bcc transition metals
considered in the present work span three d-state electron
filling factors with orbitals of varying spatial extents. From
the previous section, changes in the fine structure of the local
DOS at and around the �111� interstitial defect show the pres-
ence of explicit d-state bonding effects that probably play
some role in determining the absolute values of the corre-
sponding defect energies. On the other hand, the universal
ordering of the interstitial defect energies exhibited by all the
nonmagnetic bcc metals considered here suggests that ex-
plicit angular-dependent interactions might not play a domi-
nant role. Indeed, inspection of the local DOSs at and around
an interstitial defect �see Fig. 3� reveals a general widening
of the entire local DOS as one nears the core of the defect,
suggesting that a simple scalar second-moment �or, equiva-
lently, embedded atom model� representation might suffice to
capture the relevant bonding mechanism responsible for the
ordering of the defect energies. For these reasons, in the
present work, we develop a parametrization of the Finnis-
Sinclair-type empirical potential75,76 that models the band en-
ergy through a scalar second-moment representation. We
take this simpler approach rather than develop, say, an em-
pirical matrix potential,77 which does model an explicit
d-state angular-dependent bonding.

Within the Finnis-Sinclair formalism,75 the total energy
for an N-atom system is given by

Etot = �
i

N

F��i� +
1

2 �
ij,i�j

N

V�rij� , �1�

where

MULTISCALE MODELING OF CROWDION AND VACANCY… PHYSICAL REVIEW B 76, 054107 �2007�

054107-7



0

1

2

3

4

V-bcc

0

1

2

3 V-NN-1

0

1

2

3

LD
OS

(st
ate

s/e
V/

ato
m)

V-NN-2

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10
Energy (eV)

0

1

2

3 V-NN-3

0

1

2

3

4

Cr-bcc

0

1

2

3 Cr-NN-1

0

2

LD
OS

(st
ate

s/e
V/

ato
m)

Cr-NN-2

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10
Energy (eV)

0

1

2

3 Cr-NN-3

0

1

2

3

Nb-bcc

0

1

2
Nb-NN-1

0

1

2

LD
OS

(st
ate

s/e
V/

ato
m)

Nb-NN-2

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10
Energy (eV)

0

1

2
Nb-NN-3

0

1

2

3

Mo-bcc

0

1

2
Mo-NN-1

0

1

2

LD
OS

(st
ate

s/e
V/

ato
m)

Mo-NN-2

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10
Energy (eV)

0

1

2
Mo-NN-3

0

1

2

3

Ta-bcc

0

1

2
Ta-NN-1

0

1

2

LD
OS

(st
ate

s/e
V/

ato
m)

Ta-NN-2

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10
Energy (eV)

0

1

2
Ta-NN-3

0

1

2

3

W-bcc

0

1

2
W-NN-1

0

1

2

LD
OS

(st
ate

s/e
V/

ato
m)

W-NN-2

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10
Energy (eV)

0

1

2
W-NN-3

FIG. 4. �Color online� The local electronic density of states �LDOS� evaluated for the three atoms situated in one of the six nearest-
neighbor strings �adjacent to the central �111� string� of the crowdion configuration for each of the bcc metals forming groups V and IV of
the Periodic Table. Atom labeled NN-1 is the closest to the center of crowdion.
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�i = �
j,j�i

f�rij� . �2�

Here the �nonmagnetic� embedding energy F��� is given by

F��� = − A	� . �3�

For this work, the pairwise density and the repulsive poten-
tial radial functions will be represented by a sum of cubic
knot functions,

f�r� = �
n=1

Nf

fn�rn
f − r�3��rn

f − r� �4�

and

V�r� = �
n=1

NV

Vn�rn
V − r�3��rn

V − r� , �5�

where ��r� is a Heaviside step function defined as ��x�=1
for x�0 and ��x�=0 for x	0.

To obtain a useable empirical potential, the parameter A
and the knot coefficients fn and Vn are optimized to repro-
duce as close as possible a variety of physical properties for
the particular nonmagnetic bcc metal. For the present work,
this physical data base contains the usual bulk equilibrium
properties �cohesive energy, lattice constant, and elastic con-
stants�, the vacancy formation energy, and the interstitial de-
fect energies listed in Table II. In addition to these bulk equi-
librium properties, the potentials are also fitted to the metal’s
zero temperature isotropic thermal expansion coefficient de-
fined via the thermodynamic relation
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FIG. 5. �Color online� The lo-
cal electronic density of states
�LDOS� evaluated for the five at-
oms forming the central �111�
string of the crowdion defect in
bcc iron, and the three atoms in
one of the NN strings of the de-
fect’s configuration. Calculations
were performed both for the spin-
polarized and the nonmagnetic
electronic configurations. The
fixed atomic positions used in the
nonmagnetic calculation are taken
from the relaxed magnetic calcu-
lation. Contributions of s, p, and d
orbitals are shown, with d orbitals
giving the dominant contribution
to the total LDOS.
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FIG. 6. �Color online� The local density of states for the 1NN and 2NN atoms of a vacancy evaluated for the six nonmagnetic bcc metals.
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 =
1

B

�P

�T
�

V
, �6�

where the thermodynamic pressure is determined from the
constant temperature-volume derivative of the free energy

P�T� = − 
�F

�V
�

T
. �7�

Within the harmonic approximation, the classical free energy
F is given by

F = E0 − kBT�
�

ln
��

kBT
� , �8�

where the summation is performed over the eigenmodes of
the phonon spectrum of the material. Here, the first term

represents the zero-Kelvin total energy, and the second term
the free energy contribution from the 3N phonon degrees of
freedom. Equation �8� is, in fact, the high-temperature limit
of the quantum-mechanical equation for the phonon free en-
ergy and thus contains Plank’s constant—an energy scale
that does not exist within a molecular dynamics simulation.
Such a contribution is, however, a volume independent addi-
tive constant to the free energy and therefore will drop out of
Eq. �7� when calculating the pressure.

The simplest procedure to describe the volume depen-
dence of Eq. �8� is via the quasiharmonic approximation in
which both E0 and the phonon frequencies depend on vol-
ume, and where the phonon frequencies are calculated in the
usual way for the chosen �nonequilibrium� volume.78,79 At
T=0 K equilibrium, the first order variation of E0 with re-
spect to volume is zero, resulting in the pressure arising
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FIG. 7. �Color online� Same as
in Fig. 6 but for bcc Fe. The figure
shows results of both magnetic
and nonmagnetic calculations of
the LDOS for a monovacancy.
The fixed atomic positions used in
the nonmagnetic calculations are
taken from the relaxed magnetic
calculations.

TABLE II. Database values and the optimal values �in parentheses� evaluated using the empirical poten-
tials for the nonmagnetic bcc metals considered in this work. The lattice constants a0 are in angstrom, the
elastic constants are in GPa, and all the energies are given in eV. The bcc bulk equilibrium properties are
taken from Ref. 75 and the defect energies from Table I.

V Nb Ta Mo W

a0 3.0399 3.3008 3.3058 3.1472 3.1652

Ec −5.31 −7.57 −8.1 −6.82 −8.9

B 155.1 171.0 196.1 262.6 310.4

C� 42.6 28.1 82.4 108.9 160.6

C44 54.6 56.7 52.6 151.6 159.0


�10−4� 0.252 �1.28� 0.219 �0.57� 0.189 �0.107� 0.144 �0.154� 0.135 �0.120�
Evac 2.51 �2.51� 2.99 �2.99� 3.14 �3.14� 2.96 �2.96� 3.56 �3.56�
Ed111 3.367 �3.375� 5.253 �5.203� 5.832 �5.775� 7.417 �7.406� 9.548 �9.550�
Ed110 3.652 �3.642� 5.597 �5.684� 6.382 �6.414� 7.581 �7.581� 9.844 �9.841�
Ed100 3.918 �3.921� 5.949 �6.005� 7.003 �6.955� 9.004 �9.004� 11.490 �11.513�
Ecrd 3.371 �3.379� 5.254 �5.255� 5.836 �5.873� 7.419 �7.431� 9.551 �9.557�
Etet 3.835 �3.819� 5.758 �5.733� 6.771 �6.631� 8.401 �8.400� 11.050 �10.999�
Eoct 3.964 �3.967� 6.060 �6.009� 7.095 �7.134� 9.067 �9.067� 11.680 �11.709�
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solely from the volume dependence of the phonon frequen-
cies,

P = − kBT�
i

1

�i

��i

�V
. �9�

From Eq. �6�, the thermal expansion coefficient thus reduces
to


 =
kB

BV
�

i

�i, �10�

where the �i=−�V /�i����i /�V� are the so-called Grüneisen
parameters.80

Table II lists the physical data base values for the transi-
tion metals as well as the corresponding values obtained for
the optimal fits. For the knot points, a set of equally spaced
points was chosen, with the outermost point being located at
an approximately halfway distance between the second- and
third-nearest-neighbor shells for the repulsive potential, and
just beyond the second-nearest-neighbor shell for the pair-
wise density function. This was first done for vanadium and
then scaled for the other elements according to their equilib-
rium lattice constants. The bulk equilibrium bcc lattice con-
stant, cohesive energy, and elastic constants were exactly re-
produced using a linear matrix solution to determine the
values of A and the outermost four knot coefficients of the
repulsive potential. The remaining knot coefficients of the
the repulsive potential and those of the pairwise density term
were determined via the numerical minimization of a
weighted objective function, where for each candidate pa-
rametrization the vacancy and the interstitial defect struc-
tures were relaxed to determine their formation energies. A
periodic 5�5�5 unit cell was used to represent these defect
structures. For the final interstitial defect optimization, a
number of short-range knot functions were added to obtain
the required accuracy. In addition to the above physical prop-
erties, the potentials were also optimized so that the bcc
structure was more stable against the fcc structure by at least
0.1 eV. The numerical minimization was performed via a
combination of simulated annealing81 and a nonlinear down-
hill Simplex algorithm,82 both of which do not employ de-
rivative information. The weights for each physical property
were varied throughout the fitting procedure according to
emergent correlations between fitting variables and database
values, with the final weighting biasing the interstitial ener-
gies, followed by the vacancy energy, the zero Kelvin ther-
mal expansion coefficient, and the fcc-bcc equilibrium cohe-
sive energy difference. The optimal parameter sets for all the
metals can be found in the Appendix. No satisfactory fit
could be found for Cr that described well both its bulk equi-
librium properties and its defect energies.

The inclusion of the thermal expansion coefficient within
the physical database results in higher than second order de-
rivative information now being included within the fitting
procedure. This is arguably an essential requirement for the
development of empirical potentials based on a range of ac-
curate DFT defect data since such an approach begins to
include anharmonic information—phonon-phonon
interactions—an increasingly important aspect when thermal

entropy effects of strongly distorted defect structures are to
be modeled. These considerations, along with the dynamical
weight adjustments during the fitting procedure, constitute
important new developments in the construction of modern
empirical potentials.

Figures 8�a�–8�e� display the pairwise density and the re-
pulsive potential radial functions for all the five metals con-
sidered here. We see that the corresponding functions are all
qualitatively similar, where the pairwise density function
monotonically increases as a function of decreasing distance
and exhibits a plateau region between the first and the second
nearest-neighbor shells. In the case of the repulsive potential,
all the metals exhibit an outermost attractive part. These
qualitative features are also seen in a magnetic potential for
bcc Fe,83 which used a similar fitting procedure with a dif-
ferent embedding function that also included a magnetic en-
ergy contribution. As one moves, within a group, down the
periodic table, both radial functions appear harder at a
shorter range. The exception to this trend is tantalum, whose
optimal fit always converged to a “softer” shorter range func-
tional dependence. In the present work, we consider only
interstitial defect migration and, therefore, presently do not
include a short-range correction to the potentials, which is
necessary in studying high-energy collision dynamics. Thus,

FIG. 8. �Color online� ��a�–�e�� Plot of pairwise density and
repulsive potential radial functions of optimized fits. Note that the
pairwise density is multiplied by a factor of 10. �f� Plots the DFT-
derived second moments of the density of states as a function of the
product of the empirical potential parameter A and the square root
of the effective density �0�=1� corresponding to the equilibrium
lattice constant for bcc crystal lattice.
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the potentials presented here are currently not suitable for
simulating high-energy collision cascades.

Figure 8�f� displays the square root of the second moment
of the DFT derived d-band density of states �shown in Fig. 3�
plotted for each metal as a function of the empirical fitting
parameter A multiplied by the square root of the equilibrium
density �0, where the latter has been chosen to equal unity
for all elements. We remind the reader that within the Finnis-
Sinclair approximation, the latter quantity represents the
electronic band contribution to the cohesive energy and is
assumed to be proportional to the square root of the second
moment of the DOS. In this context, the quantity A	�0 de-
pends partly on the number of d electrons and partly on the
shape of the density of states for each corresponding ele-
ment. That a relatively good linear relationship is seen in Fig.
8�f� indicates that the empirical fits are, to a certain degree,
systematic across the series of metals considered in this
study. This result also demonstrates that the much larger
bandwidth associated with the long range s electrons can be
well absorbed into the repulsive pair potential term, resulting
in the longer range attractive tail seen for all elements in
Figs. 8�a�–8�e�.

Figure 9�a� displays the predicted first- and second-
nearest-neighbor divacancy binding energies using the pres-
ently developed empirical potentials. For comparison, the
DFT calculated values from Table I are also shown. We also
include similar data for bcc-Fe using the magnetic
potential.83 For the empirical potential calculations, a 10
�10�10 supercell was used. Inspection of this data reveals
that for all empirical potentials, the binding energy is posi-
tive and is in reasonable agreement with DFT. In particular,
the group 6B elements reproduce the first- and second-
nearest-neighbor ordering, as predicted by DFT. Figure 9�b�
now plots the predicted monovacancy migration energy us-
ing the nudged elastic band method calculated by the empiri-
cal potentials84 as a function of the corresponding DFT val-
ues from Table I. We see a good systematic agreement with
all elements, where the empirical potential values slightly
overestimate the DFT values. The exception is tantalum,
which slightly underestimates the corresponding DFT value.
When comparing the predictions of such empirical potential
models with DFT, it must be remembered that the former
constitutes a significant simplification of the bonding physics
between atoms, and thus the accuracy of such models cannot
and should not be expected to be more than approximately
0.1 eV.

IV. DYNAMICS OF DEFECTS AT ELEVATED
TEMPERATURES

In the previous sections, we described how density-
functional calculations provided a foundation for construct-
ing a family of semiempirical many-body potentials for mod-
eling equilibrium properties and defect configurations in
several nonmagnetic bcc metals, including tungsten. We now
investigate the dynamics of single interstitial crowdion de-
fects at elevated temperatures, using tungsten as a case study.
We choose tungsten because of its relevance to applications
in fusion as a plasma-facing material and also because of its
position at the bottom of group 6B of the Periodic Table.
Since an extensive study of the dynamical behavior of de-
fects in vanadium was already performed in Ref. 38, by in-
vestigating the dynamics of defects in tungsten, we hope to
be able to identify common generic features characterizing
the thermally activated migration of defects in the two bcc
metals. Since vanadium and tungsten are situated at the op-
posite ends of the “spectrum” of nonmagnetic bcc metals,
similarities between the types of dynamical behavior of de-
fects in vanadium and tungsten found in simulations will
likely apply to all the other nonmagnetic bcc metals.

Figures 10–13 show examples of trajectories of migration
of a crowdion defect in tungsten simulated using molecular
dynamics. The position of the center of a crowdion was fol-
lowed over intervals of time of the order of 1 ns at a constant
temperature using a thermally equilibrated simulation cell
containing approximately 60 000 atoms.

In the case of a very low temperature �T=100 K�, illus-
trated in Fig. 10, the defect spends most of its time in one of
the shallow local minima of the Peierls potential and per-
forms occasional hops between the adjacent minima in this
potential. The Peierls potential models the effect of discrete-
ness of the lattice on the translational motion of defects in
the �111� direction. The fact that the curves describing the
Cartesian coordinates of the center of the defect, X�t�, Y�t�,
and Z�t�, in Fig. 10 are identical confirms that the migration
of the crowdion at this temperature only involves translation
of the defect along its axis in the �111� direction.

At a higher temperature T=400 K, the pattern of migra-
tion shown in Fig. 11 becomes more random and the pres-
ence of the Peierls potential is no longer significant. The
migration of a crowdion at T=400 K remains one dimen-
sional, and the defect performs stochastic longitudinal

FIG. 9. �Color online� �a� Plot
of predicted first nearest and sec-
ond nearest divacancy binding en-
ergies and �b� vacancy migration
energies using the current empiri-
cal potentials and DFT data ob-
tained from Table I.
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Brownian motion in the direction of its axis. At an even
higher temperature T=800 K �see Fig. 12�, we observe the
infrequent occurrence of a type of dynamical event, namely,
the transformation of the �111� crowdion into one of the three
alternative crystallographically equivalent configurations:

�1̄11�, �11̄1�, or �111̄� type. For example, Fig. 12 shows that
a crowdion that initially moves in the �111� direction then

undergoes a transition into a �1̄11� configuration at t
�320 ps.

In the limit of very high temperatures illustrated in Fig.
13, the Brownian motion of the defect becomes effectively
three dimensional, with the axis of the crowdion changing its
orientation approximately once every 10 ps.

Figure 14 shows the frequency of events of the virtual
formation of the �110�-type configurations during the migra-
tion of a crowdion in tungsten at elevated temperatures.
Since a �110�-type configuration is an intermediate configu-
ration for the event of rotation of the axis of a crowdion
between two crystallographically equivalent �111� directions,
the frequency of occurrence of the �110� configurations is a
convenient measure of the frequency of rotations of the axis
of a migrating crowdion. We observed no virtual �110� con-
figuration on the time scale of molecular dynamics simula-
tions performed in this work for temperatures below 500 K.
However, by extrapolating the high-temperature data we find
that even at room temperature, a crowdion defect changes the
orientation of its axis approximately 1.35�106/s. Observing
this in a molecular dynamics simulation at T=300 K would
require extending the simulation time to several hundred
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FIG. 10. The trajectory of the center of a �111� crowdion in
tungsten at T=100 K simulated using the semiempirical many-body
potential described in the Appendix.
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FIG. 11. Same as in Fig. 10 but for T=400 K.
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FIG. 12. Same as in Fig. 10 but for T=800 K.

-50

0

50

X
co

or
di

na
te

(A
)

T=1100K

-50

0

50

Y
co

or
di

na
te

(A
)

0 200 400 600 800

time (10
-12

s)

-50

0

50

Z
co

or
di

na
te

(A
)

FIG. 13. Same as in Fig. 10 but for T=1100 K.
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nanoseconds �i.e., by more than 2 orders of magnitude�.
The effective activation energy �Er characterizing the

temperature dependence of the frequency of rotations found
in simulations is �Er�0.38 eV. The 0.4 eV activation en-
ergy for rotations, which is very similar to the energy found
in molecular dynamics, was also found using the nudged
elastic band method for a pathway linking two crystallo-
graphically equivalent ‘rotated’ crowdion configurations.

The prefactor �0 in the Arrhenius formula for the fre-
quency of rotations of the axis of the crowdion

�r�T� = �0 exp
−
�Er

kBT
� = 6.59 � 1012 exp
−

0.385 eV

kBT
�

is approximately equal to 0.16 of the Debye frequency of
tungsten �D=4.05�1013/ s. Similarly, the prefactor �0 in the
expression for the frequency of rotations of crowdions in
vanadium �0=1.3�1013/ s found in Ref. 38 also approxi-
mately equals one-quarter of the Debye frequency of vana-
dium �D=5.1�1013/ s. Since the Debye frequency equals
2� divided by the period � of vibrations of atoms in the
lattice, the attempt frequency �0=1/� in the limit of high
temperatures can be estimated as �0=�D /2��0.16�D. This
estimate agrees with the attempt frequency factor found in
our simulations.

To investigate the statistical properties of the Brownian
motion of crowdions, we evaluated the coefficient of diffu-
sion of crowdions using trajectories of defects similar to the
ones shown in Figs. 10–13. Following Guinan et al.,85 for
each temperature, we used a single long trajectory R�t� and
divided it into smaller time intervals, which were treated as
statistically independent realizations of the stochastic
Brownian motion. To improve the convergence of the algo-
rithm, we ensured that the average position of the particle on

any chosen time interval satisfied the condition R�t�=0. This
was achieved by subtracting the local “drift” term Rdrift�t�
=R�t0�+Vdrift�t− t0� from the actual time-dependent position
of the defect R�t�. The magnitude of the drift velocity was
determined by the condition that the stochastic process
R�t�−Rdrift�t� had zero mean. By following this approach,
we ensured that only local fluctuations of the position of the
defect contributed to the coefficient of diffusion. In the limit
t→�, our treatment satisfies the condition that is implicit in
any treatment of Brownian motion, namely, that on average
the Brownian particle remains at the origin R�t�=0, see, for
example, Refs. 86 and 87.

To show the mathematical equivalence between our
method and the conventional approach to evaluating the dif-
fusion coefficient, we consider the definition of D �see, e.g.,
Refs. 85 and 88�,

D = lim
t→�

R2�t�
6t

, �11�

where the bar denotes taking the statistical average over an
ensemble of realizations of the stochastic trajectory of the
defect R�t�. The definition �11� is subject to a condition that
the Brownian motion is random, i.e., that for any t�0

R�t� = 0. �12�

The latter condition implies that, on average, a Brownian
particle does not drift away from its initial position R�t=0�,
which we take as the origin of the Cartesian system of coor-
dinates. In a typical molecular dynamics simulation, the
above condition �12� is not satisfied, and, on average �even if
taking the average involves subdividing a trajectory of the
defect into independent segments�, the defect drifts away
from its initial position. The evaluation of the diffusion co-
efficient involves taking the square of the coordinate of the
defect �Eq. �11�� and the occurrence of this drift contributes
to the statistical error in the calculated value of D. How do
we eliminate the effect of this systematic drift? Combining
the ergodic hypothesis and Eq. �12�, we equate the ensemble
and the time average coordinates of the defect,

R̄ = lim
t→�

1

t


0

t

R�t��dt� = 0. �13�

This condition means that in the limit t→�,


0

t

R�t��dt� = o�t� . �14�

Now, if instead of a real trajectory R�t� of a defect found in
a molecular dynamics simulation, we construct a function

R�t� −
2t

�2
0

�

R�t��dt�, �15�

which has zero mean on the interval 0	 t	�, and substitute
it into definition �11�, we arrive at
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FIG. 14. The frequency of the �111�↔ �110� transformation ob-
served in molecular dynamics simulations and plotted as a function
of absolute temperature T. The dashed line corresponds to �r�T�
=6.59�1012 exp�−�0.385 eV� /kBT� / s. The Debye temperature TD

of tungsten is TD=310 K. This corresponds to 1/kBTD

=37.43 eV−1.
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lim
t→�

�R�t� −
2t

�2
0

�

R�t��dt��2

6t

= lim
t→�

�R�t� −
2

t


0

t

R�t��dt��2

6t
= lim

t→�

�R�t� −
o�t�

t
�2

6t

= D . �16�

In other words, by subtracting the local drift motion from
realizations of Brownian trajectories of a defect on finite in-
tervals of time, we do not alter the calculated value of the
diffusion coefficient in comparison with the original formula
�11�. Numerical simulations show that the use of Eq. �15�
reduces the statistical uncertainty of the calculated value of
D and improves the numerical convergence of the method.

The coefficient of diffusion of crowdions determined from
trajectories of defects simulated for several temperatures in
the range 50 K	T	1100 K is shown in Fig. 15. The diffu-
sion coefficient exhibits three different types of behavior as a
function of absolute temperature. In the low-temperature re-
gion T�200 K, diffusion is thermally activated. The activa-
tion energy is fairly small Ea�0.013 eV. In the region
200 K�T�600 K, crowdions migrate one dimensionally,
and the character of diffusion resembles that of a free particle
moving in a viscous medium under the influence of a random
thermal force. For temperatures higher than approximately
600 K, we start seeing the effect of rotations of the axis of
the migrating crowdion defect. This involves the formation
of virtual saddle-point �110�-like configurations that effec-
tively slow the diffusion down. For temperatures higher than
600 K, diffusion of crowdions is no longer one dimensional,
and the change of the slope of function D�T� at T�600 K

indicates the transition to the more three-dimensional diffu-
sion of defects that involves intervals of rapid one-
dimensional migration in the �111� directions and occasional
reorientations of the axis of crowdions occurring with a fre-
quency that increases as a function of temperature. Soneda
and Diaz de la Rubia89,90 found a similar pattern of diffusion
for the case of clusters of interstitial defects in iron, but not
for single interstitial atom defects.

The coefficient of diffusion as a function of temperature
shown in Fig. 15 is entirely different from that found by
Guinan et al.85 for tungsten �see, e.g., Fig. 4 of Ref. 85�. The
origin of the difference is traced to the fact that the semi-
empirical potential used by Guinan et al. predicted the �110�
rather than the �correct� �111� configurations as the lowest-
energy structure of a self-interstitial atom defect. Since the
migration of a �110� dumbbell is characterized by a high
activation energy barrier Ea�0.365 eV, the diffusion coeffi-
cient found in Ref. 85 is many orders of magnitude smaller
than that found in our simulations. Similarly, in simulations
of interstitial defects in tungsten performed by Carlberg et
al.,91 the fact that the semiempirical potential predicted the
�110� rather than the �correct� �111� configuration as the
lowest-energy defect structure makes it difficult to take the
values found in Refs. 91 as reliable estimates for the diffu-
sion coefficient of a self-interstitial atom defect.

The Debye temperature of tungsten TD is 310 K. Hence,
the statistics of thermal excitations at temperatures signifi-
cantly lower than TD is dominated by quantum-mechanical
effects, which are not adequately reproduced in a classical
molecular dynamics simulation. The first of the three inter-
vals of temperatures that we identified on the D�T� curve
shown in Fig. 15 lies entirely below TD. Hence, the predicted
behavior of the diffusion coefficient in this temperature range
is unreliable. On the other hand, the part of the curve corre-
sponding to T�TD is classical; hence, we can safely apply a
classical analysis to the interpretation of simulations.

For T�TD, we neglect the presence of the Peierls poten-
tial and assume that a defect performs classical Brownian
motion described by the one-dimensional Langevin
equation92

m*dv
dt

= − �v�t� + f�t� . �17�

Here, we take that rotations of the axis of the defect can be
neglected, and v�t� is the projection of the velocity of the
defect on the direction of its axis. m* is the effective mass of
the defect and � is the coefficient of dissipative friction. The
stochastic thermal force f�t� in the right-hand side of Eq.
�17� has zero mean f�t�=0. The solution of Eq. �17� has the
form

v�t� =
1

m*
−�

t

d� exp�−
�

m* �t − ��� f��� . �18�

Using this equation, we find the average kinetic energy of a
migrating defect
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FIG. 15. Coefficient of diffusion of crowdions found using mo-
lecular dynamics simulations and plotted as a function of the abso-
lute temperature T. The dashed line is given by an analytical for-
mula D�T�= �1.9�10−4�T exp�−�0.013 eV� /kBT� m2/s. The Debye
temperature TD of tungsten is TD=310 K.
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m*v2�t�
2

=
1

2m*
−�

t

d�
−�

t

d�� exp�−
�

m* �t − ���
�exp�−

�

m* �t − ���� f���f���� . �19�

Since the correlation time of the stochastic thermal force is
many times shorter than the correlation time tmigr�m* /� of
velocity of the migrating crowdion, in Eq. �19� we may as-
sume that the thermal force is delta correlated,

f���f���� = f2��� − ��� . �20�

Applying the equipartition principle m*v2�t� /2=kBT /2, from
Eqs. �19� and �20� we find that

m*v2�t�/2 = kBT/2 =
f2

2m*
−�

t

d� exp�−
2�

m* �t − ��� =
f2

4�

�21�

and arrive at a condition relating the amplitude of stochastic
fluctuations of the thermal force and the coefficient of dissi-
pative friction �, namely,

f2 = 2�kBT . �22�

This relation constitutes a general example of the
fluctuation-dissipation theorem. Extending this approach to
the treatment of the position of the defect x�t�=�−�

t v���d�,
and defining the coefficient of one-dimensional diffusion as

D = lim
t→�

x2�t�/2t ,

we find that the coefficient of dissipative friction � and the
diffusion coefficient are related by

� =
kBT

D
. �23�

Using formula �23� and the data shown in Fig. 15, we find
how the coefficient of dissipative friction of the crowdion
defect varies as a function of absolute temperature. Figure 16
shows the friction coefficient ��T� plotted as a function of
absolute temperature using the data for the diffusion coeffi-
cient D�T� taken from Fig. 15. Figure 16 shows that in the
range of relatively high temperatures T�TD �i.e., in the
range of temperatures where the Brownian motion of crow-
dions can actually be approximated by the classical Langevin
equation �Eq. �17���, the effective friction coefficient is al-
most independent of absolute temperature. This agrees with
molecular dynamics simulations performed by Zepeda-Ruiz
et al.,38 who also found that the diffusion coefficient was
well approximated by a linear function of absolute tempera-
ture, implying that the friction coefficient was independent of
T.

The finding that the thermal friction coefficient is inde-
pendent of temperature is not obvious. Indeed, a single crow-
dion defect represents a limiting case of a small �111� pris-
matic edge dislocation loop �see, e.g., Refs. 35, 39, 42, and
93�, and hence it may seem that there should be no concep-
tual difference between the meaning of the coefficient of
dissipative friction � entering Eq. �17� and the meaning of

the coefficient of phonon drag B describing the resistive
force acting on a moving edge dislocation. For example, if
instead of a fluctuating random force we introduce a time-
independent quantity �f�t�= f� in the right-hand side of Eq.
�17�, the stationary solution will take the form

v�t� = f/� ,

similar to a solution for a uniformly moving dislocation.
In the interval of temperatures T�TD, the phonon drag

coefficient Bph characterizing the motion of an edge disloca-
tion in a material, according to calculations, varies linearly as
a function of absolute temperature.94,95 The fact that the tem-
perature dependence of the friction coefficient found in our
simulations ���const� differs from that found in simulations
of a moving edge dislocation,94,95 is interesting and requires
further analysis. One possible line of reasoning that may ex-
plain the observed differences uses the fact that a linear edge
dislocation forms a part an infinitely large dislocation loop
and, hence, has an infinitely large effective mass.96 We will
not investigate this issue further in this paper. Instead, we
well develop a microscopic analytically tractable model that
will rationalize the behavior of the thermal friction coeffi-
cient of migrating crowdions found in our simulations

V. FRENKEL-KONTOROVA MODEL FOR DISSIPATIVE
FRICTION

How do we evaluate the coefficient of dissipative friction
for the Brownian motion of a crowdion in a crystal lattice at
a finite temperature? To answer this question, we first define
the notion of a crowdion as an object, characterized by its
position in the crystal lattice. We then derive an equation of
motion for the crowdion, taking into account the interaction
between the defect and its thermal environment, and investi-
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FIG. 16. The coefficient of dissipative thermal friction of a
crowdion �=kBT /D plotted as a function of absolute temperature.
The dashed curve corresponds to the analytical formula for the dif-
fusion coefficient shown by the dashed line in Fig. 15. The coeffi-
cient of thermal friction is almost independent of temperature for
T�TD, where thermal displacements of atoms in the lattice can be
approximately treated as uncorrelated.
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gate solutions of this equation. We address the problem using
the multistring Frenkel-Kontorova model.35 In this model,
the defect is treated as a linear structure characterized by the
orientation of its axis. The entire crystal lattice of atoms is
described as an ensemble of linear strings of atoms running
in the direction parallel to the axis of the crowdion. For
example, the bcc lattice can be represented exactly as an
ensemble of atomic strings running parallel to the �111� di-
rection. The distance between neighboring atoms in each
string is a=	3a0 /2, where a0 is the lattice constant, and in a
plane normal to the �111� direction the atomic strings form a
staggered hexagonal lattice. The position of an atom in the
lattice is defined by two indices, namely, a two-dimensional
vector index of a string j and the index of an atom in the
string n. The Lagrangian of the model defined in terms of
displacements uj,n�t� of atoms in the direction of the strings
has the form

L = �
j

�
n=−�

� �mu̇j,n�t�
2

−
�

2
�uj,n+1�t� − uj,n�t��2�

−
m�2a2

2�2 �
j,h

�
n=−�

�

sin2���uj,n − uj+h,n�
a

� , �24�

where m is the mass of an atom, � is the parameter of elastic
interaction between nearest-neighbor atoms belonging to the
same string, and �2 characterizes the strength of interaction
between atoms belonging to adjacent strings. In other words,
� gives the strength of the bond stretching term while �2 is
a parameter characterizing the magnitude of the bond bend-
ing term, i.e., the term associated with the displacement of
adjacent atomic strings relative to each other. The Lagrang-
ian equations of motion

d

dt

�L
�u̇j,n�t�

=
�L

�uj,n�t�

have the form

m
d2uj,n

dt2 = ��uj,n+1 + uj,n−1 − 2uj,n�

−
m�2a

�
�
h

sin�2��uj,n − uj+h,n�
a

� . �25�

The field of atomic displacements uj,n�t� entering this equa-
tion consists of two terms: a regular term describing the field
of a defect migrating in the lattice and the random field of
phonon excitations. Since the defect migrates in the direction
of its axis and remains in the same atomic string, we repre-
sent the field of displacements as

uj,n�t� = Uj�n − Z�t�/a� + �j,n�t� , �26�

where Z�t� is the time-dependent position of the center of the
defect in the lattice. Here, we assume that the strain field of
the defect is translated coherently together with the core of
the defect. The motion of the defect is assumed to be non-

relativistic; i.e., the velocity of the center of the defect Ż�t� is
small in comparison to the speed of sound in the material.
�j,n�t� denotes the field of phonon excitations.

The time derivatives of the displacement field of the de-
fect have the form

d

dt
Uj�n − Z�t�/a� = Uj��n − Z�t�/a��−

1

a

dZ�t�
dt

� ,

d2

dt2Uj�n − Z�t�/a� = − Uj��n − Z�t�/a�
1

a

d2Z�t�
dt2

+ Uj��n − Z�t�/a�
1

a2�dZ�t�
dt

�2

.

�27�

Substituting these expressions into Eq. �25�, we find

m

a2 �Z��t��2Uj��n − Z�t�/a� −
m

a
�Z��t��Uj��n − Z�t�/a� + m

d2

dt2�j,n�t� = �Uj���n − Z�t�/a�� + ���j,n+1�t� + �j,n−1�t� − 2�j,n�t��

−
m�2a

�
�
h

sin�2�

a
�Uj�n − Z�t�/a� + �j,n�t� − Uj+h�n − Z�t�/a� − �j+h,n�t��� . �28�

In the absence of the defect, the phonon displacements sat-
isfy the equations

m
d2�j,n

dt2 = ���j,n+1 + �j,n−1 − 2�j,n�

− 2m�2�
h

��j,n − �j+h,n� . �29�

On the other hand, in the absence of phonons, the field of

displacements of the defect satisfies the equation

�Uj��n − Z�t�/a� =
m�2a

�
�
h

sin�2�

a
�Uj�n − Z�t�/a�

− Uj+h�n − Z�t�/a��� . �30�

Equation �30� is valid for an arbitrary position of the center
of the defect Z�t�. Expanding the last term in Eq. �28� in the
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Taylor series, performing the summation over n, and taking
into account the sum rules,

�
n=−�

�

Uj��n − Z�t�/a� = 
−�

�

Uj��n − Z�t�/a�dn

= Uj���� − Uj��− �� = 0,

�
n=−�

�

Uj��n − Z�t�/a� = 
−�

�

Uj��n − Z�t�/a�dn

= Uj��� − Uj�− �� = − a�j,0, �31�

we arrive at the equation of motion for the crowdion defect

m
d2Z
dt2 = 4m�2�

n,h
��n,0�t� − �n,h�t��sin2��

a
U0�n − Z�t�/a�� .

�32�

Since U0�n−Z�t� /a� describes the field of displacements in
the central string of the crowdion defect, we approximate it
by the soliton solution of the single-string Frenkel-
Kontorova model,35

U0�n − Z�t�/a� =
2a

�
arctan�exp�na − Z�t�

Na
�� , �33�

where N is the dimensionless width of the crowdion solu-
tion. Formula �33� approximates the field of atomic displace-
ments in the crowdion defect very well, compared to the
DFT and empirical potential values.35

By substituting Eq. �33� into Eq. �32�, we arrive at

d2Z

dt2
= 4�2�

n,h

�n,0�t� − �n,h�t�

cosh2��n −
Z�t�

a
� � N� . �34�

This simple and compact equation describes the effect of
stochastic thermal displacements of atoms on the one-
dimensional motion of a crowdion in the lattice.

Equation �34� does not include the effect of rotations of
the axis of the crowdion on its migration in the lattice. The
mathematical formalism that makes it possible to include the
effect of rotation of the direction of migration of a crowdion
in the treatment of diffusion of defects was developed in Ref.
97.

The right-hand side of Eq. �34�, multiplied by the effec-
tive mass of the defect, gives the stochastic force acting on
the crowdion

f�t� = 4m*�2�
n,h

�n,0�t� − �n,h�t�

cosh2��n −
Z�t�

a
� � N� . �35�

This equation shows that it is the difference between pho-
non displacements of atoms in adjacent strings that gives rise
to the force randomly accelerating or decelerating the defect.
Phonon displacements of atoms in the same string have

much weaker effect on the motion of the crowdion than the
relative displacements of two neighbouring strings. Also, Eq.
�35� shows that only phonon displacements of atoms near the
core of the defect make a significant contribution to the sto-
chastic force driving the Brownian motion of the defect.

The mean value of f�t� given by Eq. �35� is zero f�t�=0,
and the correlation function of fluctuations of this force is
approximately given by

f�t�f�t�� = 16�m*�2�4�
n,h

�n,0�t��n,0�t�� + �n,h�t��n,h�t��

cosh4��n −
Z�t�

a
� � N� .

�36�

In this equation, we neglected correlations of thermal dis-
placements of different atoms in the lattice. This approxima-
tion works well in the high-temperature limit T�TD and is
equivalent to the Einstein model of thermal displacements.
Since in the bcc lattice the statistics of thermal displacements
of atoms is independent of the lattice site, Eq. �36� can be
further simplified as

f�t�f�t�� = 256�m*�2�4N��t���t�� . �37�

Here, we used the formula


−�

� dn

cosh4�n/N�
= 4N/3

and the fact that each �111� string of atoms is surrounded by
six neighboring strings. The correlation function of thermal
displacements of atoms in the limit of high temperatures has
the form

��t���t�� =
kBT

m�D
2 cos��D�t − t��� �

kBT

m�D
3 ��t − t�� .

�38�

Comparing Eqs. �37� and �38� with Eq. �22�, we arrive at an
analytical estimate for the coefficient of thermal friction

� = 256
�m*�2�4N

m�D
3 . �39�

Substituting numerical values of parameters in this formula,
we find that the magnitude of the friction coefficient is of the
order of 10−11 kg/s. This estimate is close to the values
found using molecular dynamics simulations in the limit T
�TD. What is even more significant is that, according to Eq.
�39�, in the classical limit T�TD the coefficient of thermal
friction is independent of absolute temperature, and the dif-
fusion coefficient D�T� varies linearly as a function of abso-
lute temperature, D�T��T. This conclusion agrees with mo-
lecular dynamics simulations of the Brownian motion of
crowdions described in this paper, and it also agrees with
earlier studies of migration of crowdions in vanadium carried
out in Ref. 38.
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VI. SUMMARY

In this paper, we presented a density-functional theory
study of the electronic structure of self-interstitial atom and

vacancy defects in all the bcc transition metals, developed
parametrized forms of the Finnis-Sinclair many-body poten-
tials for five of those metals, and investigated the statistics of

TABLE III. Group V empirical potentials.

Vanadium Niobium Tantalum

A 5.439922189462638 A 9.292960445740691 A 10.01248520934047

rn
f fn rn

f fn rn
f fn

3.190000000000000 1.890275993289541 3.463800000000000 1.315820563897800 3.469100000000000 1.411466249903413

3.040000000000000 −2.575125966545582 3.300933333333333 −1.553583145488597 3.305966666666666 −1.742457130439156

2.890000000000000 −2.333619727690528 3.138066666666667 −1.863852095850426 3.142833333333333 −2.163310282516732

2.740000000000000 5.468040512088823 2.975200000000000 2.642548215724037 2.979700000000000 3.122206593519948

2.632600000000000 −0.9366477843821801 2.858500000000000 −0.1538514822429389 2.862900000000000 7.8873075878678840�10−2

2.500970000000000 1.880297597456256 2.719755000000000 −1.088525289528290 2.719755000000000 −0.2086354380181568

2.369340000000000 0.6100939173059921 2.572650000000000 8.448251111154777 2.576610000000000 0.6939195820784342

rn
V Vn rn

V Vn rn
V Vn

4.100000000000000 −0.9989201728470961 4.451900000000000 −0.9712655459247255 4.458600000000000 −1.010535357881566

3.828000000000000 2.508315506019401 4.156560000000000 2.546718802733285 4.162820000000000 2.905987065650308

3.556000000000000 −3.762034795839844 3.861220000000000 −3.877555625741159 3.867040000000000 −5.053535078225670

3.284000000000000 11.30374353457620 3.565880000000000 12.49074179239876 3.571260000000000 15.11704171653469

3.012000000000000 −19.12920476121472 3.270540000000000 −21.25877974460241 3.275480000000000 −26.10466457022816

2.740000000000000 18.33316600617811 2.975200000000000 10.47543658678679 2.979700000000000 15.45408459383589

2.632600000000000 4.485535455224519 2.858500000000000 17.73776069701092 2.862900000000000 12.48335338054882

2.500970000000000 −0.3765517276879735 2.719755000000000 −36.10313653693880 2.719755000000000 −8.751933980136855

2.369340000000000 1.148339795860195 2.572650000000000 90.15287081731522 2.576610000000000 4.580222062018542

TABLE IV. Group VI empirical potentials.

Molybdenum Tungsten

A 7.709236888883772 A 10.84238200368439

rn
f fn rn

f fn

3.302700000000000 1.601365370271091 3.321600000000000 1.677334871575606

3.147366666666667 −1.627314671935321 3.165333333333333 −1.673137509507131

2.992033333333334 −3.873039838840650 3.009066666666667 −4.737051994974169

2.836700000000000 5.863098272130567 2.852800000000000 7.870789420780674

2.725500000000000 1.062058443655675 2.741100000000000 −3.7924230525563378�10−4

2.589225000000000 2.690089456866705 2.604045000000000 6.190816158916646

2.466990000000000 −0.9565713891199151

rn
V Vn rn

V Vn

4.244700000000000 −0.6022171729570738 4.268900000000000 −0.1036435865158945

3.963100000000000 1.637778152210674 3.985680000000000 −0.2912948318493851

3.681500000000000 −4.443742707968704 3.702460000000000 −2.096765499656263

3.399900000000000 16.37678840233729 3.419240000000000 19.16045452701010

3.118300000000000 −28.09191863719095 3.136020000000000 −41.01619862085917

2.836700000000000 22.82129576675600 2.852800000000000 46.05205617244703

2.725500000000000 21.13598549564144 2.741100000000000 26.42203930654883

2.589225000000000 9.417069069515332 2.604045000000000 15.35211507804088

2.466990000000000 14.12806259323987
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the thermally activated migration of self-interstitial atom
crowdion defects in tungsten. By investigating the logical
connection between the electronic, atomistic, and mesos-
copic aspects of the problem, we highlighted the pivotal role
played by the electronic structure of defects, the use of con-
trolled approximations in deriving the semiempirical poten-
tials, and the essential part played by solvable analytical
models in rationalizing the information provided by atomis-
tic simulations. In all the bcc metals except Fe, a self-
interstitial atom defect adopts a linear �111� crowdion con-
figuration, which at a finite temperature migrates in the
direction of its axis, occasionally switching between equiva-
lent crystallographic orientations. The diffusion coefficient of
crowdions found in our simulations for tungsten is many
orders of magnitude higher than the diffusion coefficient
found for the same metal in earlier simulations, where the
semiempirical interatomic potential did not agree with the
formation energies of point defects predicted by density-
functional theory. This highlights the significance of the pa-
rametrization of the semiempirical potentials given in this
paper. We expect that the potentials, constructed in such a
way as to be able to retain a sufficiently high accuracy over
a range of strongly distorted atomistic configurations, will
help understand the nature of atomistic processes responsible

for the changes in microstructure occurring in materials un-
der irradiation.
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APPENDIX: EMPIRICAL POTENTIAL
PARAMETRIZATIONS

Tables III and IV contain the complete parametrization of
the semiempirical interatomic potential for the five bcc non-
magnetic metals considered in this study. For accuracy, all
digits printed in the tables should be employed. We remind
the reader that these potentials are currently unsuitable for
modeling high-energy collision dynamics involving, for ex-
ample, the early stages of cascade simulation evolution.
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