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Deformation of the superconductor crystal lattice caused by Abrikosov vortices is formulated as a response
of the elastic crystal lattice to electrostatic forces. It is shown that the lattice compression is linearly propor-
tional to the electrostatic potential known as the Bernoulli potential. Possible consequences of the crystal lattice
deformation on the effective vortex mass are discussed.
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During the transition from a normal to a superconducting
state, metals change their specific volumes.1,2 In a mixed
state, would it be the Abrikosov vortex lattice or a structure
of lamellae, the superconductivity is locally suppressed and
the specific volume is inhomogeneous. The mixed state is
thus accompanied by strains and stresses, which enter the
balance of total energy.

In general, the energy of strains is much smaller than the
energy of the superconducting condensation and the energy
of the magnetic field. Its contribution becomes appreciable
only under special conditions. For example, experiments on
single crystals of Pb alloys3,4 and Nb alloys4–6 revealed that
the orientation of the vortex lattice is influenced by its angles
to the main crystal axes. Since the gap of alloyed samples is
quite isotropic, purely electronic models have failed and this
effect has been explained with the help of strains induced by
vortices.7

In the 1990s, a different structural effect has been ob-
served on NbSe2. If the magnetic field is tilted away from the
c axes, the Ginzburg-Landau �GL� theory predicts a state in
which rows of vortices are aligned with the parallel compo-
nent of the tilted magnetic field,8 while experiments9–12 show
them aligned in the perpendicular direction. Again, the inter-
action of vortices with the crystal strain explains the ob-
served alignment.13

Finally, we would like to mention phenomena which are
predicted but not yet fully confirmed experimentally. Per-
haps, one of the most interesting predictions is a sizable con-
tribution of the lattice deformation to the mass of vortex.14–17

Besides, there are a number of phenomena due to strains at
surfaces which are discussed in Ref. 18. It is also argued that
the strain can mediate an attractive long-range interaction
between vortices.19

As far as we know, all theoretical studies of deformable
superconductors use a phenomenological model, which as-
sumes that the superconducting condensate interacts with the
lattice density directly via a strain dependence of material
parameters. This model dates back to the 1960s, when it was
used to describe vortex pinning.20,21 The strength of the in-
teraction is deduced from changes of the specific volume in
the phase transition �see also Ref. 14�.

In this Brief Report, we assume that the condensate inter-
acts with the crystal lattice via electrostatic forces created by

the so-called Bernoulli potential. We show that this mecha-
nism results in the interaction based on the specific volume.
In addition to known theories, we obtain gradient corrections
and demonstrate that they are important for the motion of the
vortex lattice in niobium.

In an isotropic continuum, the displacement field u obeys
the equation22

�K + 4
3�� � �� · u� − � � � � � u = F , �1�

where K and � are the bulk and the shear modulus, and F is
the volume density of force acting on the lattice. Some au-
thors prefer to express the coefficients on the left hand side
in terms of the Poisson ratio �= �3K−2�� / �6K+2�� and the
Young modulus E=3K�1−2��. In the basic approximation,
K and � are constants. Their small change in the supercon-
ducting state was assumed in Ref. 23.

The inhomogeneous superconductivity results in the force
F. The present theory differs from previous approaches in the
approximation adopted for F. Let us first outline the ap-
proach based on the specific volume. The reader can find
more details in Ref. 15.

In the phase transition from the normal to the supercon-
ducting state, the system shrinks by a volume difference
�V=Vn−Vs=�TV. A typical value of �T is about 10−7. The
density of the atomic lattice therefore increases, �nlat=nlat

s

−nlat
n =�Tn.
The strain coefficient �T depends on the temperature via

the fraction � of electrons which become superconducting,
�T=��. Here, � is the strain coefficient at zero temperature.
In the spirit of the GL theory, we express the superconduct-
ing fraction in terms of the GL function �=2���2 /n, i.e.,
�nlat=2����2.

In the region of surface currents and especially in the
vortex core, the GL wave function varies in space. As can be
seen, e.g., in Fig. 1 of Ref. 24, the superconducting fraction
vanishes in the vortex core. The lattice then tends to be in-
homogeneous, which causes internal stresses. These stresses
lead to a density of force

FSim = K� �
2���2

n
�2�

proposed by Duan and Šimánek15 in their study of the vortex
mass. The phenomenological formula �2� provides us with a
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density of forces irrespective of how the superconducting
electrons are coupled to the lattice.

Let us try to express such force on the lattice in a semim-
icroscopic way. Diamagnetic currents, either flowing along
the surface or circulating around the vortex core, always
cause inertial and Lorentz forces, which are balanced by an
electrostatic field E=−�	 �see Ref. 25�. This electric field
transfers the Lorentz force from electrons to the lattice;
therefore, one can expect that it also causes lattice deforma-
tions. Accordingly, we suppose that the electrostatic field
force

F = en � 	 �3�

is playing the role of the force F in Eq. �1�. For simplicity of
notation, we assume singly ionized atoms, e is the charge of
an electron, so that the ionic charge density is −en.

The electrostatic potential 	 is known as the Bernoulli
potential. It has been derived in a number of
approximations.24–27 Here, we will use the formula of Ref.
24,

e	 = −
1

2m*n
�̄�− i
 � − e*A�2� +

��con

�n

2���2

n

+
T2

2

��

�n
��1 −

2���2

n
− 1� . �4�

The space profile of the potential 	 is shown in Fig. 1, and
the individual terms to the potential are compared in Fig. 2.
The first term in Eq. �4� is the quantum kinetic energy and
represents the gradient corrections. In the London limit, it

reaches the form of the classical Bernoulli law, �̄�−i
�
−e*A�2� /2m*n→e*2A2� /4m*=�mv2 /2, which gave the
name to the entire potential. The superconducting fraction �
multiplying the kinetic energy accounts for the fact that the
Lorentz and inertial forces act exclusively on the superelec-
trons, while the balancing electrostatic force acts on all
electrons.26 This force being proportional to the square of the

magnetic field has been used to calculate the shape distortion
by flux-pinning-induced magnetostriction.28

The second term of the Bernoulli potential �4� is the
dominant one and we will focus our discussion on it. This
second term is identical to the potential derived by Khomskii
and Kusmartsev27 from the effect of the BCS gap on the
local density of electronic states. We call the third term of
Eq. �4� the entropic correction.

It is worth noting that Eqs. �4�, �3�, and �1� resulted from
Gibbs variational principle if the free energy used in Ref. 24
is extended by the ionic lattice deformation energy.

Let us link the deformation caused by the electrostatic
field with the standard theory of magnetostriction. At zero
temperature, the Gibbs energies of the normal and supercon-
ducting states differ by the condensation energy,2 Gs=Gn
−V�con, where �con=�Tc

2 /4=Bc
2 /2�0. Since the pressure de-

rivative of the Gibbs energy determines the sample volume,
Vs,n=�Gs,n /�p, one finds Vs=Vn−V��con/�p, i.e., �
=��con/�p. This relation allows us to show that the force
FSim from Eq. �2� equals the electrostatic force caused by the
second term of the Bernoulli potential �4�.

To proceed, we use the fact that the pressure modifies the
condensation energy indirectly by an increase of the electron
density,

� =
��con

�p
=

��con

�n

�n

�p
=

��con

�n

n

K
. �5�

In the rearrangement, we have employed the definition of the
bulk modulus K=−V / ��V /�p�=n / ��n /�p�. Substituting Eq.
�5� into the force �2�, one finds

FSim = n
��con

�n
�

2���2

n
. �6�
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FIG. 1. The electrostatic potential for the triangular Abrikosov
vortex lattice. We assume niobium with the GL parameter increased
by nonmagnetic impurities to 
=1.5, the temperature T=0.7Tc, and

the mean magnetic field B̄=0.24Bc2.
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FIG. 2. Cuts through the electrostatic potential from Fig. 1. The
thick full line represents the total potential �4�, and the dotted line is
the Khomskii-Kusmartsev approximation. One can see that the cor-
rections to this approximation are small. The thin full line is the
gradient correction given by the “kinetic energy” term of Eq. �4�,
and the dashed line is the entropic correction given by the last term
of Eq. �4�.
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Comparing Eq. �6� with Eq. �3�, one can see that the force
introduced by Šimánek equals the electrostatic force due to
the second term of the Bernoulli potential �4�. In this sense,
the approximation used within the theory of deformable su-
perconductors is equivalent to the approximation of the elec-
trostatic potential derived by Khomskii and Kusmartsev. The
gradient and entropic corrections of the Bernoulli potential
�4� provide us with corresponding corrections to the force of
Šimánek.

More interesting is the gradient correction. From formula

�4�, it follows that far from the vortex core, where �̄�→ �1
−T4 /Tc

4�n /2, the gradient correction is proportional to the
square of the local current. For an isolated vortex, the gradi-
ent correction thus decays on the scale of the London pen-
etration depth and so has a long range in high 
 materials.

The effect of the gradient correction is traceable also for a
conventional material assumed here. To be specific, consider
a niobium rod parallel to the magnetic field. The GL coher-
ence length of niobium is reduced by nonmagnetic impurities
so that the GL parameter is increased to 
=1.5, while the
other material parameters remain close to the values of pure

niobium. All plots are for T=0.7Tc and B̄=0.24Bc2. In this
case, the magnetic field is not split into separated unit fluxes
but it is nearly homogeneous with amplitude fluctuations of

about 20% around the mean field B̄. The vortex cores are
well separated, however, as the superconducting fraction �
reaches its nonmagnetic value in the out-of-core region.

Let us analyze the three contributions to the electrostatic
potential from the point of view of the forces they cause.
According to the position of the inflection point of the
Khomskii-Kusmartsev potential seen in Fig. 2, one can esti-
mate that the maximum of the Šimánek force occurs at about
x ,y�0.1a. This is quite close to the center of the vortex
core. The gradient correction oscillates rapidly in space, with
magnitude much smaller than the Khomskii-Kusmartsev po-
tential. Its gradient, however, is rather comparable to the gra-
dient of the dominant term, which shows that the gradient
contribution to the force can appreciably modify the
Šimánek force. In the heart of the vortex core, the gradient
correction to the force acts against the Šimánek force, while
in the skin of the vortex core, it points in the same direction.
As a result, the maximum of the total force is shifted out-
ward to x ,y�0.2a.

Naturally, gradient corrections modify the vortex mass.
Figure 3�a� shows how individual regions in the Abrikosov
vortex lattice contribute to the vortex mass for the Šimánek
force; in Fig. 3�b�, the gradient and the entropic corrections
are included. The plotted function is the density of kinetic
energy of lattice ions driven by vortices moving with veloc-
ity V in the x direction,14

Ekin =
1

2
V2nM�� �ux

�x
�2

+ � �uy

�x
�2	 , �7�

where M is the mass of a single ion.
In most places of the Abrikosov vortex lattice, the ionic

kinetic energy is lowered by the correction terms �see Fig. 3�.
From the integral over the elementary cell, one obtains the
vortex mass per unit length. Keeping both corrections, the

ion contribution to the vortex mass is reduced by a factor of
0.83 as compared to the Šimánek result. If one neglects the
gradient correction keeping only the entropic correction, the
reduction factor is 0.70. The gradient correction thus leads to
a small enhancement of the vortex mass.

Comparing relative amplitudes of the kinetic energy in-
side and between the cores, one can see that the corrections
have increased the share of the out-of-core region. Since the
entropy term merely reduces the amplitude of the Šimánek
force, this redistribution of distortions is exclusively due to
the gradient correction. According to Cano et al.,19 the out-
of-core lattice deformations are important for the strain-
mediated interaction of vortices. We suggest that the theory
of this interaction should be reexamined with the gradient
correction included.

In summary, we have expressed the forces deforming the
atomic lattice of a superconductor in terms of the electro-
static force. From experience gained with the theory of the
so-called Bernoulli potential, one directly obtains the gradi-
ent corrections. We suggest that the value of vortex mass
should be reconsidered taking these gradient corrections into
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FIG. 3. The density of kinetic energy of lattice ions created by
vortices moving in the x direction for the parameters of Fig. 1. The
kinetic energy due to �a� the Šimánek force �6� and �b� the electro-
static force �3�. The plotted function is proportional to the bracket in
Eq. �7�.
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account. The vortex mass is of importance for high fre-
quency vortex dynamics, and we expect that with applica-
tions in the terahertz frequency region, its fundamental role
will be experimentally proven. The present theory is re-
stricted to homogeneous isotropic materials. Its extension to
layered materials will be discussed elsewhere.
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