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We discuss the stability of large polarons in anisotropic media taking into account small-polaron narrowing
of the electron band. It was shown that electron-phonon interaction may cause an additional anisotropy of the
electron overlap integrals. Large-polaron stability in realistic substances is interpreted in terms of these results.
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Electron- �exciton-, etc.� phonon interaction in many
quasi-one-dimensional �1D� substances is rather strong. For
these reasons it has been argued that the large polarons or
solitons may have a crucial role in charge and energy transfer
in highly conducting organic salts �TTF-TCQN, etc.� �Ref. 1�
and linear conjugated polymers �trans-polyacetylene
�trans-�CH�x��,2 and biological macromolecules ��-helix and
DNA� �Refs. 3–6�. This belief is founded upon the quite
general theoretical arguments which imply that the self-
trapping �ST� in higher dimensional systems with short-
ranged electron-phonon interaction qualitatively differs from
that in pure 1D where polarons will always be formed.7–11 Its
radius depends on system parameters and stable, mobile
large polarons arise when electron bandwidth exceeds small-
polaron binding energy. However, these predictions were
based upon the idealized 1D models which may be unsatis-
factory for realistic systems. Namely, as shown some time
ago,12,13 even very small anisotropy of electronic subsystem
may violate large-polaron stability. In particular, Pertzsch
and Rössler12 found, employing the continuum model, that,
irrespectively of the degree of anisotropy, there is no sub-
stantial difference between ST in anisotropic and isotropic
media so that the existence of the stable large polaron may
be just the artefact of the 1D models. Later, Emin13 examined
the ST in molecular chains taking into account interchain
coupling. Employing similar continuum theory he found that
pure 1D behavior requires the ratio of the anisotropy of
transfer integrals at least three orders- of magnitude. How-
ever, according to band structure calculations,1,2 degree of
the anisotropy of transfer integrals ranges from 10 to 102

which is considerably lower than that required by Emin’s
criterion, so it seems that large polarons cannot be formed in
realistic quasi-1D solids.

Nevertheless, experiments including the infrared
absorption,14 charge carrier mobility measurements,15 and
resonant Raman spectra16 of conjugated polymers strongly
support polaron presence in these materials.

This could be the consequence of the fact that the exis-
tence of chain endings, conjugation breaks, and defects can
stabilize polarons.17

Moreover, electron-phonon interaction may cause an ad-
ditional anisotropy of electron bands due to the exponential
reduction of the electronic transfer integrals.18 This effect is
maximal in the nonadiabatic limit, when electron bandwidth
is small as compared with the characteristic phonon fre-

quency, and determines small-polaron properties. Neverthe-
less, recent studies19–21 have shown that it may emerge even
in the adiabatic regime and therefore could give rise to a
large polaron stability. This possibility will be examined in
the present paper.

In what follows we shall restrict ourselves to electron in-
teracting with the dispersionless optical phonon through the
short-ranged interaction and therefore our analysis will be
carried on upon Holstein’s molecular crystal model Hamil-
tonian which reads as follows:8

H = − �
n,g

J�g�An
†An+g + �

q
��qbq

†bq

+
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	N
�
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Fqeiq·RnAn
†An�bq + b−q
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Here n ,g labels lattice sites while the summation over g
extends to adjacent sites in each direction. As usual, J�g� de-
notes the intersite transfer integral, operator An

†�An� describes
the presence �absence� of the electron on the nth lattice site;
bq

†�bq� creates �annihilates� phonon quanta with the fre-
quency �q
�0; Fq
F=const denotes the electron-phonon
coupling parameter.

To achieve the above proposed goal we shall utilize the
variational method of Brown and Ivić20 which enables for
accounting of quantum effects on large-polaron properties.
Thus we choose the normalized trial state in the form of

��� = �
n

�nAn
†�0�e � ��n�, �

n
��n�2 = 1. �2�

Here �n denotes electron wave function while ��n�
=exp��q��q,nbq

† −�q,n
* bq�� �0�ph corresponds to a phonon

part of trial state. In order to examine quantum effects
we decompose �q,n into slow �frozen� and fast components
as follows: �q,n=�q− 1

	N
fqeiq·Rn. This yields ��n�

=exp � exp��q���q− 1
	N

fq�bq
† −H.c.�� �0�ph. Here coherent

phonon amplitude �q characterizes the classical, slow or
“frozen,” part of lattice distortion which dominates in the
adiabatic limit. In the opposite limit the electron is
surrounded with short-ranged lattice distortion which
follows electron motion instantaneously and causes known
exponential narrowing of the electron band. This is charac-
terized by the magnitude of fq which in the strict antiadia-
batic limit approaches

Fq

��q
while �q→0. Finally, �
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= �1/2��q�q
1

	N
fq

*e−iq·Rn −c.c. denotes phase factor introduced
here to eliminate the dependence of the band narrowing fac-
tor on coherent phonon amplitude. We shall treat �q and fq
as variational parameters which will be determined demand-
ing stationarity of the functional H= �� �H ���. Here we first
eliminate �q by virtue of equation �H

��q
=0,
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Here Eb= F2

��0
denotes small-polaron binding energy; g

= �aex ,bey ;bez� is the vector connecting neighboring lattice
sites.

We are considering a anisotropic crystal consisting of a
collection of linear chains oriented along the x axis. Easy
transfer along the chains is associated with the nearest-
neighbor transfer integral Ja
J�; the interchain transfer is
associated with the transverse transfer integral Jb
J� and
the interchain distance b. Finally, the electron-band-
narrowing factor reads

W�g� =
1

N
�
q

�fq�2�1 − cos q · g� . �4�

Its evaluation and consequences for polaron dimensions is
our main goal hereafter.

Character of ST states is determined by the “dressing”
parameter fq. For the particular set of system parameters one
must find the optimized value for fq by minimizing the above
functional. In the adiabatic limit, dressing vanishes �fq→0�
and a large polaron may arise if a small polaron binding
energy does not exceed electron bandwidth. Maximal dress-
ing arises in the opposite limit when fq�

Fq

��q
and the nonlin-

ear term in �3� vanishes so that ST results in the creation of
small-polaron band states. In the practical calculation we
shall disregard the dependence of the nonlinear term on
dressing parameter since its inclusion20 only weakly modifies
the results of the prior linear polaron theories.8,9 Therefore,
the kernel in �3� may be safely approximated as follows:
Km,n�Eb�m,n.

Passing to the continuum limit functional H attains the
following form:

H = 	 + a2J�e−W� � dr

V
��x�r��2 − Eb� dr

V
���r��4

+ b2J�e−W�� dr

V
���y�r��2 + ��z�r��2� . �5�

Here V=ab2 denotes the volume of the elementary cell, in-
dex x ,y ,z in the subscript refers to derivative with respect to
Cartesian coordinates; 	=− 1

N�q�Fq�fq+ f−q
* �−��q � fq�2�

−2�gJ�g�e
−W��g�� stands for the polaron shift of the bottom of

the electron band. Labels W� 
Wa, W�
Wb stand for the
narrowing of the intrachain and interchain overlap integrals,
respectively.

If ��r� is an exact ground-state �GS� function, H would
be an exact GS energy. However, we do not know an explicit
expression for ��r� and therefore we shall try to understand
the effects of anisotropy qualitatively employing variational
calculations. For that purpose we presume that ��r�
is spatially separable and confined in a spatial region
with the longitudinal extent of the length l� and width
l�. Next, we introduce the norm-preserving scale change
��r�→ 1

R�
1/2R�

��x /R� ;y /R� ,z /R�� in which scaling param-
eters R� = l� /a and R�= l� /b have the meaning of dimension-
less longitudinal and transverse polaron radius, respectively.
They are constrained to be larger or equal to unity because of
the validity of the continuum approximation.

In such a way, functional �5� attains the following form:

H�R�,R�� = 	 +
Ek

�

R�
2 +

Ek
�

R�
2 −

Ep

R�R�
2 . �6�

Here we have introduced the appropriate abbreviations for
the integrals in �5�. Thus, Ek

� and Ek
� stand for the first and

third integral and have the meaning of the kinetic energies of
longitudinal and transverse motion, respectively. Ep stands
for the second integral in �5� and corresponds to a potential
energy. For the explicit evaluation of these integrals we took
��r�= 1

	2 cosh x/a
e−�y2+z2�/2b2

.
GS energy �6� has no stable minimum with respect to R�

and R� both exceeding unity. This means that the stable
large-polaron state which spreads over the region exceeding
both interchain separation and lattice constant along the
chain does not exist for any set of system parameters.

Let us now examine stability of the large polaron in the
anisotropic system �J��0� confined to a single chain so that
polaron transverse radius approaches unity R�=1. Under
these circumstances GS energy �6� has a minimum at
R� =4J�e−W� /Eb which is 2 times the extent of the 1D polaron.
Moreover, in contrast to pure 1D systems where such mini-
mum always exists and corresponds to a stable large polaron
for EB�2J�e−W�, GS energy H�R�

min� is increased by an
amount E�

k =J�e−W� associated with confining the particle to
the chain. Therefore, stability of this state relative to the
three-dimensional quasifree state �dressed small polaron� re-
quires that it does not exceed the energy gained by the
large-polaron formation, Eb

2 / �48J�e−W��. This yields
Eb

2
48J�J�e−W�e−W�. For practical purposes it is more con-
venient to express this condition in terms of polaron size
along the chain �R� =4J�

eff /Eb; J�
eff=J�e−W�� as follows:

J�
ef f

J�
ef f 
 3R�

2. �7�

This condition is equivalent to Emin’s criterion and for po-
laron extended over 10 lattice sites it demands approximately
three orders of magnitude of the anisotropy of the effective
transfer integrals. This condition may be fulfilled, in contrast
to expectations on the basis of pure semiclassical analysis,13

if quantum corrections cause different narrowing of the ef-
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fective transfer integrals, i.e., if W�
W�. For the proper un-
derstanding of the role of quantum lattice fluctuations in
large-polaron stability on the basis of the above criterion, one
must evaluate W� and W�. For that purpose one must find the
optimal value of fq minimizing the GS energy. Note, how-
ever, that the potential and longitudinal kinetic energy term

are of the same order and �
J�e−W�

R�
2 so that the main contribu-

tion comes from 	 and Ek
�. This yields

fq =
F

��0

1

1 + �
g

2�gJ�g�

��0
e−W�g�sin2q · g

2

. �8�

Here �a=1,�b=1/2. Substitution of the last expression into
�4� results in

W�g� = 2S
1

N�
q

sin2q · g

2

�1 + �
g

2�gJ�g�

��0
e−W�g�sin2q · g

2 �2 . �9�

Here S= �F /��0�2
Eb /��0 denotes the coupling constant
introduced in Ref. 8. The above expression represents the set
of coupled self-consistent equations for small-polaron
screening parameters. It cannot be solved explicitly in terms
of W� and W� as a function of system parameters. However,
at this stage we may obtain, in accordance with the assump-
tion about high anisotropy of the electronic system, some
reliable approximate results expanding W�g� in powers of the
anisotropy parameter J� /J�. Adopting this approximation
and substituting the summation over q by an integration in
accordance with the aforementioned rule we obtain

W� � S�1 + 2B�e−W��−3/2 + 4SB�B�e−W�e−W�,

W� � W��1 + B�e−W�� . �10�

Here B����=
2J����

��0
represent longitudinal �transverse� adiabatic

parameters. This system of equations does not admit explicit
solutions in terms of W� and W�. However, it is possible to
express S as a function of W� taking B� and B� as parameters.
Desired dependence of W� on system parameters follows
simply by inverting the so-obtained solution. Finally,
W��S ;B� ,B�� is found combining this result with the second
equation in �10�.

Our results are visualized in Fig. 1 where we have plotted
the set of “adiabatic” curves which explicitly display the de-
pendence of the small-polaron narrowing factors in aniso-
tropic media �W� =W��S� and W�=W��S�� and in pure 1D
systems on the coupling constant for a few fixed values of
adiabatic parameters and degree of anisotropy �=J� /J�. Our
primary goal is the problem of the large-polaron stability in
anisotropic media. Therefore, we must choose B��1 while
the allowed values of the coupling constant are restricted to
the region in which the condition for the applicability of the
continuum approximation, R��1⇔S�B� is satisfied. Thus
we plot these curves for B� =10,20; and �=10,100. This is
consistent with the estimated values of physical parameters
for the number of realistic substances: trans-�CH�x

�J� �2.5 eV, ��0�0.175 eV�;2 DNA and �–helix-intrachain
transfer integral is of the order of a few tenths of eV,
0.2–0.4 eV �Refs. 4 and 6�, while �0�1013 s−1 so that
B� �20–30. We finally note that our consideration may be
relevant for organic conductors such as TTF-TCQN and re-
lated substances since some recent findings22 have shown
that the intrachain transfer integral is comparable with that of
conducting polymers, i.e., 10 times larger than that usually
quoted �J� �0.13–0.25 eV� which is of the same order of
typical phonon energies.1,18

Both screening factors display qualitatively the same de-
pendence on the coupling constant as in the pure 1D systems.
The only difference is in their magnitudes which are notice-
ably larger than those in the 1D case. Note also that W� is
always larger than W� which increases slowly with the rise of
coupling constant. The deviation from the 1D result is deter-

FIG. 1. Longitudinal �full lines� and transverse �dotted lines�
polaron screening parameters versus coupling constant for B� =10
and 20, and J� /J�=10 �thin lines�, and J� /J�=100 �thick lines�.
The dashed-dotted line represents the small-polaron screening fac-
tor in pure 1D systems.
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mined by the degree of anisotropy and by the value of B�.
With the increase of B� this deviation gradually disappears
and fully vanishes in the extreme adiabatic limit. The influ-
ence of anisotropy is noticeable for not too high values of the
adiabatic parameter. It is manifested through the increase of
the magnitude W� with the decrease of the degree of aniso-
tropy, i.e., when J� tends to J�. Behavior of W� is similar to
that of W� but its magnitude is significantly larger in the
practically whole region of parameter space of interest.
Moreover, its increase in the weak coupling regime is much
steeper than that of W�, which causes a sharp drop of the
effective intersite transfer integral even for the system pa-
rameters for which J�

eff�J�. This is determined by the mag-
nitude of B�. For very large values of B� magnitude of W�

does not exceed 0.3. In the same time W� suddenly jumps
approaching large values even in the weak coupling limit.
This causes significant reduction, up to 20 times, of the ef-
fective transverse transfer integral and provides the fulfill-
ment of the large-polaron stability condition �7�.

Our analysis clearly shows that quantum lattice fluctua-
tions may considerably enhance the prospects for large-
polaron existence in anisotropic media in contrast to previ-
ous predictions.13 This is the consequence of the additional
anisotropy of electronic bands caused by the small-polaron
effect. Besides that, we also observe the screening of the
intrachain transfer integral. Its reduction is small as com-
pared with the reduction of the transverse term but notice-
ably larger than that calculated within pure 1D models. This
points to the necessity of the accounting of quantum effects
in the analysis of the possible role of large polarons in vari-
ous contexts in realistic conditions. Thus, for example, for
the values of system parameters employed here, effective
intrachain overlap integral may be reduced up to 23% for
�=100 and 30% for �=10. These estimates hold for both
values of B� and for values of the coupling constant S
�B� /5 which provide the applicability of the continuum ap-
proximation. For these reasons the large-polaron effective

mass in realistic substances may considerably differ from
that calculated within pure 1D models and should be ac-
counted for in the analysis of the large-polaron motion. At
this stage we must stress that the direct application of the
present results, which were obtained within the static limit,
does not introduce any substantial error in the analysis of the
features of a moving large polaron. This follows from the
comprehensive analysis of Ref. 20, where the results ob-
tained by means of the present method within the static limit
are in substantial agreement with quantum Monte Carlo
simulations �QMC�.23

We finally note that our estimates of the additional aniso-
tropy of electron bands are far below that of Gogolin.18 This
discrepancy is the consequence of the fact that Gogolin used
the Lang-Firsov24 method which is satisfactory in the strong
coupling nonadiabatic limit while our analysis concerns quite
the opposite case, i.e., adiabatic weak coupling limit: the
region of parameter space where one can expect formation of
a large polaron.

In conclusion we point out that the variational nature of
our method imposes certain reserves on the validity of our
conclusions. Unfortunately, at present, in the absence of the
reliable numerical studies on the subject, we are not in the
position to estimate the validity of our approach in the whole
parameter space of the system. However, for the values of
system parameters where large-polaron existence is ex-
pected, adiabatic �B�1� “weak” coupling case �S�B�, we
believe that our results are reliable enough to give further
insight in the issue of the stability of large polaron in chain-
like structures in the highly anisotropic case. We base such
belief upon the aforementioned agreement of the QMC simu-
lations and results of the present variational method in pure
1D systems.
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