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Recently, it was predicted that if all one-electron states in a noninteracting disordered system are localized,
the interaction between electrons in the absence of coupling to phonons leads to a finite-temperature metal-
insulator transition. Here, we show that even in the presence of a weak coupling to phonons the transition
manifests itself �i� in the nonlinear conduction, leading to a bistable I-V curve, and �ii� by a dramatic enhance-
ment of the nonequilibrium current noise near the transition.
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Low-temperature charge transport in disordered conduc-
tors is governed by the interplay between elastic scattering of
electrons off static disorder �impurities� and inelastic scatter-
ing �electron-electron, electron-phonon, etc.�. In low dimen-
sions, an arbitrarily weak disorder localizes1 all single-
electron states,2,3 and there would be no transport without
inelastic processes. For the electron-phonon scattering, the
dc conductivity ��T� at low temperatures T is known since
long ago:4 in d dimensions,

ln ��T� � − 1/T�, � = 1/�d + 1� . �1�

What happens if the only possible inelastic process is
electron-electron scattering? The answer to this question was
found only recently:5 ��T�=0 identically for T�Tc, the tem-
perature of a metal-insulator transition. Here, we discuss ex-
perimental manifestations of this transition in real systems,
where both electron-electron and electron-phonon interac-
tions are present. We show that �i� the I-V characteristic ex-
hibits a bistable region, and �ii� nonequilibrium current noise
is enhanced near Tc.

The notion of localization was originally introduced for a
single quantum particle in a random potential.1 Subsequently,
the concept of Anderson localization was shown to manifest
itself in a broad variety of phenomena in quantum physics.
This concept can also be extended to many-particle systems.
Statistical physics of many-body systems is based on the
microcanonical distribution, i.e., all states with a given en-
ergy are assumed to be realized with equal probabilities. This
assumption means delocalization in the space of possible
states of the system. It does not hold for noninteracting par-
ticles; however, it is commonly believed that an arbitrarily
weak interaction between the particles eventually equili-
brates the system and establishes the microcanonical distri-
bution.

Many-body dynamics of interacting systems and its rela-
tion to Anderson localization have been discussed in the con-
text of nuclear6 and molecular7 physics. For interacting elec-
trons in a chaotic quantum dot, this issue was raised in Ref.
8, where it was shown that electron-electron interaction may
not be able to equilibrate the system. This corresponds to
Anderson localization in the many-body space. Recently, it
was demonstrated that in an infinite low-dimensional system
of �weakly� interacting electrons, subject to a static disorder,

Anderson transition in the many-body space manifests itself
as a finite-temperature metal-insulator transition.5 Numerical
evidence for many-body localization of interacting electrons
has been found recently.9

Let single-particle eigenstates be localized on a spatial
scale �loc �localization length�. The characteristic energy
scale of the problem is the level spacing within the localiza-
tion volume: ��=1/ �	�loc

d �, 	 being the density of states per
unit volume. According to Ref. 5, as long as electrons are not
coupled to any external bath �such as phonons�, a weak
short-range electron-electron interaction �of typical magni-
tude 
��, with the dimensionless coupling constant 
�1�
does not cause inelastic relaxation unless the temperature T
exceeds a critical value:

Tc �
��

�
 ln 
�
. �2�

The small denominator �
 ln 
� represents the characteristic
matrix element of the creation of an electron-hole pair. The
ratio Tc /�� is the number of states available for such a pair
�in other words, the phase volume� at T=Tc. Only provided
that this number is large enough to compensate the smallness
of the matrix element, the interaction delocalizes the many-
body states and thus leads to an irreversible dynamics. As a
result, the finite-temperature dc conductivity ��T� vanishes
identically if T�Tc, while ��T�Tc� is finite, i.e., at T=Tc, a
metal-insulator transition occurs. The overall dependence
��T� is summarized in Fig. 1. Here and below, we neglect
the dependence of 	, �loc, and �� on the energy , assuming

Tc
d�loc

d
� �loc, Tc

d	

d
� 	 . �3�

In any real system, the electron-phonon interaction is al-
ways finite. This makes ��T� finite even at T�Tc: ��T� is
either exponentially small �Eq. �1�� at T��� or follows a
power law11 at ���T�Tc. At the transition point, the
phonon-induced conductivity is not exponentially small, i.e.,
phonons smear the transition into a crossover. Are there any
experimental signatures of the many-body localization? In
what follows, we show that if the electron-phonon coupling
is weak enough, a qualitative signature of the metal-insulator
transition can be identified in the nonlinear conduction.
Namely, in a certain interval of applied electric fields E and
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phonon temperatures Tph, both metallic and insulating states
of the system turn out to be stable. As a result, the I-V curve
exhibits an S-shaped bistable region �Fig. 2�. Moreover, we
show that the many-body character of the electron conduc-
tion dramatically modifies the nonequilibrium noise near the
transition �Eq. �13��.

Our arguments are based on two observations. First, in the
absence of phonons, a weak but finite electric field cannot
destroy the insulating state—it rather shifts the transition

temperature. Let us neglect the effect of the field on the
single-particle wave functions, representing it as a tilt of the
local chemical potential of electrons. Then, at T=0, the role
of the field in the insulating regime is to increase the energy
of the electron-hole excitation of a size L by eEL. This pro-
vides in additional phase volume of the order of eEL /��.
However, for L��loc, the matrix element for creation of such
an excitation quickly vanishes. In the diagrammatic language
for the effective model of Ref. 5, this means that each
electron-electron interaction vertex must be accompanied by
tunneling vertices which describe coupling between localiza-
tion volumes and whose number is �i� at least 1 in order to
gain phase volume �in contrast to the finite-T case when
tunneling had to be included only to overcome the finiteness
of the phase space in a single grain5�, and �ii� not much
greater than 1, otherwise the diagram is exponentially small.
As a result, at T=0, the insulator state is stable provided that
E�Ec�Tc / �e�loc�.

In the same way, one can analyze the finite-temperature
correction to the critical field, and the finite-field correction
to the critical temperature can be found by taking into ac-
count the extra phase volume in the calculation of Ref. 5.
One obtains ��T�=0 for T�Tc�E�, where

Tc�E� = Tc − c1eE�loc, �4�

with a model-dependent factor c1�1, weakly dependent on
E �here and below Tc without the argument E is the zero-field
value given by Eq. �2��. As a consequence, at T�Tc�E�, the
nonlinear transport, as well as the linear one, has to be pho-
non assisted.

The second observation is that when both � and E are
finite, there is Joule heating. The thermal balance is qualita-
tively different in the insulating and the metallic phases.
Deep in the insulating phase �T�Tc�, each electron transi-
tion is accompanied by a phonon emission and/or absorption,
i.e., electrons are always in equilibrium with phonons whose
temperature Tph�Tc we assume to be fixed. On the contrary,
in the metallic phase, electrons gain energy when drifting in
the electric field, i.e., they are heated. Due to this Joule heat-
ing, the effective electron temperature Tel deviates from the
bath temperature. The role of phonons is then to stabilize Tel.
For weak electron-phonon coupling, Tel and Tph can differ
significantly. A self-consistent estimate for Tel follows from

Tel − Tph � eELph�Tel� , �5�

Lph�Tel� = �D�Tel��ph�Tel� . �6�

Here, �ph�Tel� is the time it takes an electron to emit or ab-
sorb a phonon, Lph�Tel� is the typical electron displacement
during this time, and D�Tel�=��Tel� / �e2	� is the electron dif-
fusion coefficient.

We sketch in Fig. 3 �Tel−Tph� / �eE� and Lph�Tel� for dif-
ferent electron-phonon coupling strengths as functions of Tel.
It is taken into account that �i� Lph coincides with variable
range hopping length at Tel���, �ii� Lph��loc at ���Tel
�Tc�E�, �iii� D�Tel� quickly rises to its large metallic value
D�����loc

2 near Tc�E�, and �iv� �ph�Tel� decreases as a power
law with increasing Tel. The peak of the curve rises with

Tc δζ/λ δζ/λ
2 T

σ(T )

Insulator
Metal

σ∞

FIG. 1. Schematic temperature dependence of the dc conductiv-
ity ��T� for electrons subject to a disorder potential localizing all
single-particle eigenstates, in the presence of weak short-range
electron-electron 
��, 
�1, established in Ref. 5. Below the point
of the many-body metal-insulator transition, T�Tc��� / �
 ln 
�, no
inelastic relaxation occurs and ��T�=0. At T��� /
2, the high-
temperature metallic perturbation theory �Ref. 10� is valid, and cor-
rections to the Drude conductivity �� are small. In the interval
�� /
�T��� /
2, electron-electron interaction leads to electron
transitions between localized states, and the conductivity depends
on temperature as a power law.

eEζloc

∼ Tc∼ (ζloc/L
∗
ph)Tc

Tc

Tph

eEζloc
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FIG. 2. �a� Sketch of the bistable I-V curve for a fixed value of
Tph; �b� �E ,Tph� plane with the bistable region schematically shown
by shading. The dashed line represents the crossover between the
metallic state at high electric field E or high phonon temperature Tph

and the insulating state at low E and low Tph.
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decreasing electron-phonon coupling strength, and eventu-
ally the curve crosses the straight line. After that, in addition
to Tel=Tph, Eq. �5� acquires two more solutions, both with
Tel�Tc�E�, of which only the rightmost solution is stable.
The maximum of Lph can be estimated as Lph

* ��D��ph�Tc�,
so three solutions appear when Tc�E�−Tph�eELph

* . As seen
from Eq. �4�, electric field is unable to break down the insu-
lator as long as eE�loc�Tc−Tph. Thus, the interval of electric
fields, where both regimes are stable, is determined by

Tc�E� − Tph

eLph
* � E �

Tc − Tph

e�loc
. �7�

The two conditions are compatible provided that

Lph
* � �loc. �8�

In the bistable region �7�, for a given value of E, one finds
two stable solutions for Tel, giving two possible values of the
conductivity and the current, which corresponds to an
S-shaped current-voltage characteristic,12 the third �unstable�
solution corresponding to the negative differential conductiv-
ity branch. Macroscopic consequences of such behavior de-
pend on the dimensionality, boundary conditions, and his-
tory. In a 2d sample, the two phases of different electronic
temperature and current density can coexist, separated by a
boundary of the width �Lph

* , parallel to the direction of the
electric field.

Near the critical point, conduction is dominated by corre-
lated many-electron transitions �electronic cascades�. Each
cascade is triggered by a single phonon. As Tel→Tc�E�, the
typical value n̄ of the number n of electrons in a cascade
diverges together with the time duration of a cascade. The
results of Ref. 5, adapted for a finite electric field, give the
probability for an n-electron transition to go with the rate �:

Pn��� =� �̄n

4�

e−�̄n/�4��

�3/2 , �̄n � �Tel + c1eE�loc

Tc
	2n

, �9�

which determines the divergence of n̄:

1/n̄ � ln�Tc/�Tel + c1eE�loc�� . �10�

The divergence in n̄ is cut off when electron-phonon cou-
pling is finite. The largest n̄ is such that the phonon broad-

ening of the single-electron levels, 1 /�ph�Tc�, is comparable
to n̄-particle level spacing �in other words, time duration of a
cascade cannot exceed �ph�:

1

�ph�Tc�
� �����/n̄

�d

Tc
	4n̄

⇒ n̄max �
1

4

ln����ph�
ln�Tc/���

, �11�

with logarithmic precision; n̄� represents the divergent spa-
tial extent of the cascade �correlation length�.13

Each many-electron transition can be characterized, be-

sides its rate �, by the total dipole moment d� it produces. The
corresponding backward transition produces the dipole mo-

ment −d� and goes with the rate �e−�E� ·d��/Tel.14 The average
current 
I�t�� is determined by the difference between for-
ward and backward rates; obviously, it vanishes for E=0.
The noise power S2��
I�t�I�t���− 
I�t��
I�t����dt� is deter-
mined by the sum of the forward and backward rates; at E
=0, it is given by the equilibrium Nyquist-Johnson expres-
sion.

Equilibrium noise carries no information about the nature
of conduction. To see a signature of many-electron transi-
tions, it would be natural to analyze the shot noise, whose
power is proportional to the charge transferred in a single
event. Many-electron cascades would then correspond to
“bunching” of electrons, thus increasing the shot noise.
However, shot noise is observed in the limit when transitions

transferring charge only in one direction �namely, d� ·E� �0�
are allowed, i.e., Tel�eE�loc, which is impossible to satisfy
in the insulating state, as Tel�max�Tph ,eE�loc�.15 Thus, S2

inevitably has both equilibrium and nonequilibrium contribu-
tions, which are difficult to separate.

To see the bunching effect unmasked by a large thermal
noise at low fields, one should study the third Fano factor S3
of the current fluctuations.16 Indeed, being proportional to an
odd power of the current, it vanishes in equilibrium, so it is
not subject to the problems described above for S2. In a wire
of length L, the ratio S3 / 
I� is given by

S3


I�
=

L−3

�d3��
L−1

�d��

. �12�

The double angular brackets on the right-hand side mean the
sum over all allowed transitions. For nearest-neighbor
single-electron transitions with d= ±e�loc, Eq. �12� gives
S3 / 
I��e2��loc /L�2, which is analogous to the Schottky ex-
pression reduced by the effective number of tunnel junctions
in series, L /�loc, for S2.17

Since d3 diverges stronger than d as n̄→�, we expect a
divergence in Eq. �12�. The critical index of d depends on the
order of limits: d��ne�loc �the sum of randomly oriented
dipoles� if the linear response limit E→0 is taken prior to
n̄→�, while d�ne�loc�eE�loc /Tc� for a small but finite E. As
a result,

S3


I�
� � e�loc

L
	2

max�n̄,� n̄eE�loc

Tc
	2�, n̄ � n̄max, �13�

where n̄ is given by Eq. �10�, and the saturation of the diver-
gence is determined by Eq. �11�. Upon further increase of the

TelTph Tc(E)

(Tel − Tph)/eE ,
Lph(Tel)

FIG. 3. Sketch of the dependences �Tel−Tph� / �eE� �dashed line�
and Lph�Tel� �solid lines, electron-phonon coupling strength being
weaker for higher curves�. The actual value of Tel is determined by
their crossing.
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temperature, the system crosses over to the metallic state,
and n̄ starts to decrease. This decrease is governed by the
same equation �11� with the phonon inelastic rate substituted
by the typical value of the electron-electron inelastic rate,
which grows with temperature. As the critical behavior of �
on the metallic side of the transition is unknown, we cannot
give any quantitative estimate of S3 above Tc.

In conclusion, we have shown that the finite-temperature
metal-insulator transition, predicted theoretically in Ref. 5,
can manifest itself on the macroscopic level as an S-shaped
current-voltage characteristic with a bistable region. In fact,
the hysteretic I-V curve in YxSi1−x �Ref. 18� at T�0.05 K
�for these samples ���0.2 K� is a possible candidate for the
discussed effect.

Besides, we have shown that the many-body nature of the

conduction near the transition manifests itself in the dramatic
increase of the nonequilibrium current noise: the noise de-
pends on the total charge transferred in each random event,
while the number of electrons, involved in such an event,
increases as one approaches the transition.

Our arguments are based on two main conditions, Eqs. �3�
and �8� �weak energy dependence of single-particle param-
eters and weakness of electron-phonon coupling�. They are
not very stringent and can be easily checked for each par-
ticular system �typically, it is reasonable to assume the inter-
action parameter 
�1�.
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