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At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and
fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for
polymers in wide optical traps.
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Present-day laser techniques make it possible to build op-
tical traps, and lattices of traps, in which one can host a
variety of atoms or molecules and study their behavior at
very low temperatures. Gases of bosons, fermions, and their
simple bound states have been investigated in this way with
interesting insights into the quantum physics of many-body
systems.1 In this Brief Report, we would like to propose the
use of these traps for the study of the quantum behavior of
stiff polymers. The low temperatures can be reached by
buffer gas cooling with He, which permits reaching tempera-
tures of the order of millikelvins. This should be possible, for
example, with carbohydrates or polyacetylene. We shall as-
sume the traps to be much wider than the length of the poly-
mer, so that we may ignore the distortions coming from the
trap potential.

The end-to-end distribution PL�R� of a polymer of length
L contains information on various experimentally observable
properties, in particular, the moments

�Rm� = SD�
0

�

dRRD−1RmPL�R� , �1�

where SD=2�D/2 /��D /2� is the surface of a unit sphere in D
dimensions. The classical temperature behavior of these mo-
ments is well known.2,3 Here, we shall calculate the modifi-
cations caused by quantum fluctuations.

Let us briefly recall the calculation of the classical end-
to-end distribution in the Kratky-Porod chain with N links of
length a in D dimensions.2,3 Its bending energy is

Ebend
N =

�a

2 �
n=1

N−1

��un�2, �2�

where � is the stiffness, un are unit vectors on a sphere in D
dimensions specifying the directions of the polymer links,
and �un��un+1−un� /a is the difference between neighbor-
ing un’s. The initial and final link directions have a distribu-
tion

P�u2,u1�L� � �ubL�ua0� =� DDue−�Ebend
N

, �3�

where DDu is the product of integrals over the unit spheres
of un �n=2, . . . ,N−1�, and ��1/kBT �T is the temperature
and kB is the Boltzmann constant�. The normalization is ir-
relevant and will be fixed at the end.

If L denotes the length of the polymer, the bending energy
reads Ebend

L =�	0
Lds��su�2 /2. Then the probability �3� coin-

cides with the Euclidean path integral of a particle on the
surface of a unit sphere. The end-to-end distance in space is
R=	0

Ldsu�s�, and its distribution is given by the path integral

PL�R� �� DDu��D��R − Lu0�exp
− �̄�
0

L dsu�2�s�
2 � ,

�4�

where �̄��� and u0�L−1	0
Ldsu�s�. Introducing the dimen-

sionless vectors qT transverse to R, we parametrize u as
�q ,�1−q2� and see that the � function enforces

�
0

L

dsq�s� = 0, R = L − �
0

L

ds
q2�s�
2

+ . . . � . �5�

At large stiffness, the distribution can be calculated from
the one-loop approximation to the path integral, which leads
to the Fourier integral3,4

PL,��R� �
small �

�
−i�

i� dk2

2�i
e��k2�L−R�FL,0�k2L2� , �6�

where FL,0�k2L2� is the partition function

FL,0�k2L2�

� �
NBC

D�D−1qT exp− ���a

2
��

n=1

N

���q�n
T2 + k2qn

T2��
� � �

n=1

�

�Kn�2

�
n=1

�

��Kn�2 + k2��
�D−1�/2

= �N sinh k̃a

sinh k̃L
��D−1�/2

, �7�

with k̃ defined by sinh k̃a=ka.5 The symbol NBC indicates
that the open ends of the path integral may be accounted for
by Neumann boundary conditions.6

For a classical polymer, we may use the model in the
continuum limit where a→0. Then un is replaced by the
tangent vector u�s�=�sx�s� of the space curve x�s� of the
polymer, where s is the distance of the link from one of the
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end points measured along the polymer. In this limit, k̃L

coincides with kL� k̄, and the right-hand side of Eq. �7� can

be expanded as a power series of k̄:

FL,0�k̄ 2� = 1 −
D − 1

223
k̄ 2 +

�D − 1��5D − 1�
25325

k̄ 4 + . . . . �8�

Inserting this into Eq. �6� and setting r�R /L, we may cal-
culate the unnormalized moments �rm�=	drrD−1+mPL,� from
the integrals

�rm� =� dz�1 + z�D−1+mf�k̂ 2���z� , �9�

where k̂ 2L2 is the differential operator −�L /����z

= �−2l / �D−1���z, and l��D−1�L /�� is the flexibility of the
polymer. From this we find

�r0� = N
1 −
D − 1

6
l +

�5D − 1��D − 2�
360

l2 + . . . � ,

�r2� = N
1 −
D + 1

6
l +

�5D − 1�D�D + 1�
360�D − 1�

l2 + . . . � ,

�r4� = N
1 −
D + 3

6
l +

�5D − 1��D + 2��D + 3�
360�D − 1�

l2 + . . . � ,

�10�

where N is some constant. Dividing these by �r0�, we arrive
at the normalized moments7

�r2� = 1 −
1

3
l +

13D − 9

180�D − 1�
l2 + . . . , �11�

�r4� = 1 −
2

3
l +

23D − 11

90�D − 1�
l2 + . . . . �12�

Quantum effects are now taken into account by adding for
each mass point of the polymer at xn a kinetic action

Akin �
M

2
�

0

��

dt�ẋn�t��2, �13�

where M is the mass. Since un�t�=�xn�t�, the Euclidean ac-
tion with time 	= it reads

A =
�a

2
�

0

��

d	�
n=1

N

�g−2��	�
−1un�2 + ��un�2� , �14�

where g���a /M, and FL,0�k̄ 2� is replaced by FL,��k̄ 2�
=e−�D−1��L,��k̄ 2�, with

�L,��k̄ 2� =
1

2
Tr log�− g−2�	

2���̄�−1 − ��̄ + k2� . �15�

The eigenvalues of i�	 are the Matsubara frequencies

m=2�m /�� �m=0, ±1, ±2, . . . �, leading to the finite-
temperature generalization of Eq. �7�:

FL,0�k̄ 2� = � �
m,n

�g−2
m
2 + �Kn�4�

�
m,n

�g−2
m
2 + �Kn�4 + k2�Kn�2��

�D−1�/2

. �16�

Performing the product over the m’s, we arrive at

FL,��k� = �
n=1

� 
 sinh Kn
2�g�/2

sinh �Kn
4 + k2�Kn�2�g�/2

�D−1

. �17�

In the product �17�, we perform an expansion in powers

of k̄�kL and find

FL,��k̄� = exp��D − 1��f1k̄ 2 + f2k̄ 4 + . . . �� , �18�

where

f1�b� = −
b

4�2 �
n=1

�

coth
n2b

2
, �19�

f2�b� =
b2

32�4 �
n=1

� 
 2

bn2 coth
n2b

2
+ �coth2 n2b

2
− 1�� .

�20�

The parameter b is the reduced inverse temperature b
��2�g /kBTL2.

As a cross-check of the above results, we go to the high-
temperature limit, where coth�n2b /2�→2/n2b and, thus,
f1�b�→−1/12, f2�b�→1/360. Inserting these into Eq. �18�,
we recover Eq. �8�.

Quantum behavior sets in if b becomes larger than unity.
To estimate when this happens, we measure the lengths a, L
in Å, the mass M in units of the proton mass, the temperature
T in mK, and the constant g in units of Å2/s; we find that
b�7.380�106��a /A /TL2, where A is the atomic number
M. In these natural units, �, a, and T are of order unity,
experimentalists should be able to observe the quantum be-
havior for not too long chains.

At very low temperatures, where quantum effects become
most visible, we find the asymptotic behavior

f2�b� →
b

16�4 �
n=1

�
1

n2 =
b

96�2 . �21�

In this regime, the sum in f1�b� diverges linearly. It is made
finite by remembering that we are dealing with the con-
tinuum limit of a discrete polymer with N=L /a links. Hence
we must carry the sum only to n=N, and obtain

f1�b� → −
b

4�2 �
n=1

N

1 = −
b

4�2N . �22�

Setting r−1�z, we replace �k̄ 2�n in Eq. �18� by
�−2l / �D−1��n�z

n��z� and insert the resulting expansion into
the integral 	dz�1+z�D−1+m to find the unnormalized mo-
ments of r0, r2, and r4 at zero temperature. From their ratios
we obtain the normalized moments:
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�r2� = 1 + 4lf1 + l2�4f1
2 + 8

2D − 1

D − 1
f2� + . . . , �23�

�r4� = 1 + 8lf1 + l2�24f1
2 + 16

2D + 1

D − 1
f2� + . . . . �24�

From these we find

�1 − r� = − 2lf1 − 8l2f2 + . . . , �25�

��1 − r�2� = l2�4f1
2 +

8

D − 1
f2� + . . . , �26�

and the cumulant

��1 − r�2�c = l2 8

D − 1
f2 − 32l3f1f2 − 64l4f2

2 + . . . . �27�

Hence, we find in the zero-temperature limits

�r2� � 1 −
bl

�2N, �r4� = 1 − 2
bl

�2N , �28�

where bl��D−1��c /�. For large c, the polymer at zero tem-
perature may appear considerably shorter than expected from
the linear extrapolation of the high-temperature behavior to
zero temperature.

The quantum effect can be studied most easily by mea-
suring for a polymer of high stiffness � the peak value of
1−r, which behaves like

�1 − r� � − 2lf1�b� = − 2�D − 1�
�c

�

1

b
f1�b� . �29�

One may plot the function C�b��6� / �D−1��c�1−r�, for
which our result implies the behavior shown in Fig. 1 for
various link numbers N.

We challenge experimentalists to detect this behavior.
Further quantum effects can be observed if the links of the

polymer contain a spin S=1/2 ,1 ,3 /2 ,2 , . . ., the link direc-
tion. This can be taken into account by adding the kinetic
action �30�, a Berry phase. For each link un�	�, it corre-
sponds to the interaction of the particle on the surface of a
unit sphere in u space with a magnetic monopole of quan-
tized charge q lying at the center of the sphere:8

A0 = �S�
n=1

N−1 �
0

��

d	
n � un�	�

1 − n · un�	�
· u̇n�	� . �30�

The irrelevant Dirac string is chosen to export the magnetic
flux of strength S along the n direction to infinity. This action
creates a radial magnetic field B=−Sun on the surface of the
sphere. If we assume R to run along the positive z direction,
the small transverse fluctuations qT in Eq. �7� will take place
near the north pole of the sphere and receive an additional
magnetic interaction �S�n=1

N−1	0
��d	qn

T� q̇n
T /2a. This will

change each factor in the product �17� to a product of two
square roots9


 sinh KnKn
+�0��c�/2

sinh KnKn
+�k��c�/2

�1/2
 sinh KnKn
−�0��c�/2

sinh KnKn
−�k��c�/2

�1/2

,

�31�

where

Kn
±�k� � �Kn

2 + k2 + kS
2 ± kS, kS �

�cS

2�a
, �32�

the stretched poylmer. For arbitray temperatures, this
changes Eqs. �19� and �20� to

f1�b� = −
b

8�2 �
n=1

�
n

nS
�coth

nnS
+b

2
+ coth

nnS
−b

2
� , �33�

f2�b� =
b2

64�4 �
n=1

� 
 2n

bnS
3�coth

nnS
+b

2
+ coth

nnS
−b

2
�

+
n2

nS
2�coth2 nnS

+b

2
+ coth2 nnS

−b

2
− 2�� , �34�

where nS
±=nS±�S, nS��n2+�S

2, and �S��cSL /2��a
=kSL /�. At high temperatures, these become

f1
S�b� → −

1

4�2 �
n=1

�
1

nS
� 1

nS
− +

1

nS
+� = −

1

12
, �35�

f2
S�b� →

1

16�4 �
n=1

�  1

nS
3� 1

nS
− +

1

nS
+� +

1

nS
2
 1

�nS
−�2 +

1

�nS
+�2��

=
1

360
. �36�

The classical limit is independent of �S, as could have been
anticipated.

At low temperatures, we obtain for small �S, to lowest
order,

f1
S�b� → −

b

4�2 �
n=1

N
n

nS
= −

b

4�2�N −
�2�S

2

12
� , �37�
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FIG. 1. Temperature behavior of C�b��6� / �D−1��c�1−r� for
various link numbers N. The classical limit of these curves are their
straight-line asymptotes starting out at the origin with slope
�6/�2��n=1

N n−2.
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f2
S�b� →

b

16�4 �
n=1

�
n

nS
3 =

b

96�2�1 −
�2�S

2

10
� . �38�

Thus, f1�b� depends only very weakly on �S, so that the
curves in Fig. 1 are practically unchanged by an extra spin S
along the links. The spin dependence becomes visible only in
measurements of f2�b�, which can be extracted from suitable
combinations of the moments �1−r� and ��1−r�2�c, obtained
by solving Eqs. �25� and �27�.

Our discussion has shown that, at low temperatures, quan-

tum fluctuations cause observable effects in polymers. We
have calculated these effects for the lowest moments �r2� and
�r4� of the end-to-end distribution for ordinary polymers as
well as for polymers in which each link carries a spin S. In
the latter case, the polymers are flexible one-dimensional
quantum Heisenberg ferromagnets. With the presently avail-
able traps and cooling techniques, experimentalists should be
able to detect these effects.
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