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Recent investigations address transport through ballistic charge-neutral graphene strips coupled to doped
graphitic leads. This paper shows that identical transport properties arise when the leads are replaced by
quantum wires. This duality between graphitic and metallic leads originates in the selection of modes with
transverse momentum close to the K points, and can be extended to a wide class of contact models. Among this
class, we identify a simple, effective contact model, which provides an efficient tool to study the transport
through extended weakly-doped graphitic systems.
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I. INTRODUCTION

Since the recent breakthrough in its fabrication,1–4

graphene, the atomically thin two-dimensional hexagonal ar-
rangement of carbon atoms, has caught the excitement of
experimentalists and theoreticians alike because it possesses
unique electronic properties which originate from the two
conical points of its Fermi surface located at the K points of
the hexagonal Brillouin zone. In a simple model, a clean
graphene sheet is described by a tight-binding Hamiltonian
H=−���ij�ci

†cj, in which next neighbors �ij� on the hexago-
nal lattice �with lattice constant a� are connected by a hop-
ping matrix element �. The lattice supports Bloch waves
with wave numbers kx, ky and dispersion relation E= ±� �1
+2ei3kxa/2 cos��3kya /2��. At the Fermi energy E=0 of un-
doped charge-neutral graphene, the Fermi surface shrinks to
two inequivalent points �kx ,ky�= � 2�

3a , ± 2
3

�
�3a

�. In the vicinity
of these points, the dispersion relation can be linearized and
then becomes conical with slope �dE /dk � =3�a /2. The ensu-
ing low-energy theory is described by a Dirac Hamiltonian.5

By varying the Fermi energy via a gate voltage across the
charge-neutrality point, graphene offers the unique possibil-
ity to switch the doping of the system from n to p, where the
doped charge density can be changed continuously. The first
graphene-based field-effect transistor was demonstrated in
Ref. 1. The mobility of carefully fabricated graphene flakes
already exceeds 50 000 cm2/V s.4 Motivated by the ensuing
prospect of graphitic electronic devices with properties very
much different from semiconductor-based technology, a
number of recent works have explored the phase-coherent
transport properties of finite segments of graphene, con-
nected via leads to electronic reservoirs. This resulted in the
discovery of a modified quantum Hall effect2,3 with a half-
integer sequence of Hall conductance plateaus. It was fur-
thermore predicted that weak-localization corrections to the
conductance depend sensitively on symmetries preserved or
broken by the disorder.6,7 Clean graphitic samples exhibit a
finite conductivity of the order of the conductance
quantum1–3,8–10 and a shot noise identical to a disordered
quantum wire.8 Transport across p-n junctions was theoreti-
cally studied in Ref. 11. A similar but modified set of unique
transport phenomena is found for graphene bilayers, which
furthermore offer the possibility to open up a controllable
gap by an electric field effect �see Ref. 12 and references
therein�.

A problem untouched by the recent transport investiga-
tions is the role of the leads connecting the graphitic sample
to the electronic reservoirs. Some of the recent theoretical
transport studies model the leads as strips of doped graphene.
This type of lead supports distinctively different sets of
modes than a conventional quantum wire—for the same
transverse mode profile, propagating modes in a conven-
tional quantum wire often correspond to evanescent modes
in a graphene strip, and vice-versa. Therefore, it could be
argued that a detailed modeling of the leads is critical for the
understanding of transport in graphitic systems.

The objective of this paper is to show that to the contrary,
transport through a sufficiently large and only weakly-doped
graphene sample often does not critically depend on most
details of the leads. For the particular case of quantum wire
and graphitic leads, this insensitivity manifests itself in an
explicit duality, which can be formulated in terms of a shift
of the gate potentials that control the charge density in the
leads. This duality originates in a mode-selection mecha-
nism, which dictates that the transport in extended only
weakly-doped samples of graphene is dominated by the
small part of the mode space in the vicinity of the conical
points. Using this universal mechanism, one is naturally led
to formulate an effective contact model, which is param-
etrized by a single complex number �. This effective model
can be applied to a much larger class of leads which are
amenable to the mode-selection mechanism. The main re-
quirement is that the leads are sufficiently wide, and provide
a dense set of propagating modes with transverse wave num-
ber close to the conical points �leads that do not possess any
propagating modes at these transverse wave numbers exhibit
a very large contact resistance and, hence, do not provide a
good electronic coupling�.

In striking contrast to universal transport through semi-
conductor quantum dots,13 the effective contact model pro-
vides a unified description of leads that support a different
number of propagating modes �but share the same width�.
Numerical computations confirm that the effective contact
model provides an efficient and reliable tool to study the
transport through extended weakly-doped graphitic systems.

This paper is organized as follows. Section II formally
poses the problem of the lead sensitivity of transport in me-
soscopic systems. In Sec. III, I calculate the conductance and
Fano factor of a rectangular graphene sample which is con-
nected to quantum wires or graphitic leads. The rectangular
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graphene sample is held at the charge-neutrality point, while
the charge density in the leads is controlled by gate poten-
tials. At a finite charge density in the leads, this delivers the
duality of both contact models. In Sec. IV, I describe the
effective contact model which represents a large class of
leads, encompassing quantum wires and doped graphitic
strips. Section V describes how the complex number � could
be extracted from the conductance and shot noise, and tests
the applicability of the effective contact model via numerical
computations for rectangular and circular graphene samples.
Conclusions are presented in Sec. VI. The appendixes con-
tain technical details of the calculations.

II. FORMULATION OF THE PROBLEM

At low bias, the phase-coherent transport properties of a
mesoscopic system probed in a two-terminal geometry are
encoded in the scattering matrix13,14

S = �r t�

t r�
	 , �1�

which contains the transmission �reflection� amplitudes t, t�
�r ,r�� of charge carriers incident from the source or drain
contact, respectively. Two characteristic transport properties
are the Landauer conductance

G = �2e2/h�tr t†t �2�

and the shot-noise Fano factor

F = 1 −
tr t†tt†t

tr t†t
. �3�

In general, the transmission matrix t is determined by match-
ing the propagating modes in the leads to the modes in the
mesoscopic system, and hence depends on the properties of
both of these constituents. This paper considers the case that
the mesoscopic system is an extended only weakly-doped
sample of graphene with a specified geometry, and asks the
questions how the transport properties change when the
sample is contacted by different types of leads �keeping the
width and position of the leads fixed�.

III. DUALITY OF METALLIC AND GRAPHITIC
CONTACTS

It is instructive to first explore the potential relevance and
eventual insensitivity to most details of the leads by calcu-
lating the conductance for a specific example, a rectangular
undoped graphene sample of width W=�3aW and length
L=3aL, where W ,L�1 are integers �see Fig. 1�. The strip is
connected to leads of the same width, either formed by
doped graphene or by a quantum wire, which are modeled in
a tight-binding approach on a hexagonal or square lattice,
respectively. The electronic density in the leads is controlled
by a gate potential, inducing an on-site potential energy de-
noted by Vg. For � /W� �Vg���, the transport of this system
connected to graphitic leads has been investigated earlier in
the framework of the Dirac equation.8 It was found that the
conductivity �= L

WG= 4e2

�h is of the order of the experimen-

tally observed value, while the Fano factor F=1/3 coincides
with the universal value of a disordered quantum wire.

A unified description of square- and hexagonal-lattice
leads can be achieved when the hexagonal sublattices A and
B, which differ in the orientation of the bonds, are indexed
by two numbers l and m, which are either both integer or
both half-integer �see Fig. 1�. On the square lattice, the indi-
ces l and m are both integer. For both types of lattice, the
transverse wave functions of the modes in the lead are then
given by

�nm =� 2

W + 1
sin

nm�

W + 1
, �4�

where n=1,2 ,3 , . . . ,W is the mode index. Associated with
each transverse mode are two extended Bloch waves with
longitudinal wave numbers ±kn, which are real for propagat-
ing modes and complex for evanescent modes. The wave
numbers are fixed by the dispersion relation, which for the
hexagonal lattice is given by

Vg = ��fn,kn
fn,−kn

, � = sgn Vg = ± 1, �5a�
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FIG. 1. A graphene sample, modeled as a hexagonal lattice �lat-
tice constant a�, is attached to leads formed either by doped
graphene �top� or by a quantum wire, modeled as a commensurably
matched square lattice with lattice constant �3a �bottom�. The
charge carrier density in the leads is controlled by a gate potential
Vg, while the central graphitic region is held close to the charge-
neutrality point. The paper demonstrates that both leads are equiva-
lent when the gate potential is suitably adjusted and further extends
this duality to a broad class of leads and contacts, which all share
the properties of a simple effective contact model.
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fn,kn
= � + 2�ei3kna/2 cos

n�

2�W + 1�
, �5b�

while for the square lattice,

Vg = 2� cos��3akn� + 2� cos
n�

W + 1
. �6�

Because of the different dispersion relations, the sets of
transverse-mode indices n supporting propagating modes on
the two types of lattice are not the same. Hence, for ordinary
mesoscopic systems �such as a semiconducting quantum dot,
a quantum wire, a metallic nanoparticle, and a hybrid struc-
ture with superconducting or ferromagnetic properties�, one
would obtain distinctively different transport properties when
quantum wire leads would be replaced by graphitic leads.

In order to obtain the transmission amplitudes tn�n when
these leads are coupled to the undoped rectangular graphene
sample, the modes in the leads have to be matched to modes
in the graphene strip, which follow from Eq. �5� by setting
Vg=0. For the present quasi-one-dimensional geometry, the
mode index n is conserved,8 and a straightforward calcula-
tion �see Appendix A� delivers

tn�n = 	n�n
�n,+ − �n,−

�n,+e−
nL − �n,−e
nL
, �7�

where the moduli of


n =
2

3a
ln
2 cos

n�

2�W + 1�� �8�

denote the decay constants of the modes in undoped
graphene. The lead dependence of the transmission coeffi-
cients is encoded in the self-energies �n,± of the in- and
outgoing modes given by

�n,±
�h� = − ��

fn,±�kn

�fn,kn
fn,−kn

�hexagonal lattice� , �9a�

�n,±
�s� = − �e±i�3kna �square lattice� . �9b�

The effective contact model developed in Sec. IV arises from
the observation that the detailed lead dependence embodied
in these numbers becomes irrelevant when the leads are
coupled to a sufficiently large graphitic region. According to
Eq. �8�, all modes in this region decay rapidly, with the ex-
ception of modes with index n�2�W+1� /3
 ñ, which have
transverse wave numbers in the vicinity of the conical points.
For a sufficiently large sample, we hence only require to
know the complex number �
�ñ,+=�ñ,−

* , which for a
hexagonal-lattice lead is given by

��h��Vg� = −
1

2
�Vg + i�4�2 − Vg

2� , �10�

while for a square-lattice lead

��s��Vg� = −
1

2
�Vg + � + i�4�2 − �Vg + ��2� . �11�

Before we describe the general consequences of this ob-
servation, we first proceed to explore the consequences for
the rectangular graphene sample. To make contact to Ref. 8,
let us further assume that the strip is very wide, W�L�a.
The conductance can then be calculated in a saddle-point
approximation, which is described in Appendix B. For
hexagonal-lattice leads, this gives

G =
4e2

�h

W
L

�4�2 − Vg
2

Vg

arcsin
Vg

2�
, �12�

which for Vg→0 recovers the result G= 4e2

�h
W
L derived from

the Dirac equation.8 For square-lattice leads, one finds

G =
4e2

�h

W
L

�4�2 − �Vg + ��2

Vg + �
arcsin

Vg + �

2�
. �13�

A similar calculation yields the Fano factor

F =
2�2

Vg
2 −

�4�2 − Vg
2

2Vg arcsin�Vg/2��
�14�

for the hexagonal-lattice leads and

F =
2�2

�Vg + ��2 −
�4�2 − �Vg + ��2

2�Vg + ��arcsin��Vg + ��/2��
�15�

for the square-lattice leads. For a numerical validation of
these results, see Sec. V.

Equations �12� and �14� for the hexagonal-lattice leads
and Eqs. �13� and �15� for the square-lattice leads coincide
when the gate potential is shifted by �. In particular, for the
square-lattice leads, the values G= 4e2

�h
W
L of the conductance

and F=1/3 for the Fano factor are now recovered for Vg
→−�. This is a direct consequence of the relation

��s��Vg� = ��h��Vg + �� �16�

between the characteristic self-energies � �Eqs. �10� and
�11��, which describe the coupling of the leads to the conical
points. This relation does not hold for the self-energies �Eq.
�9�� away from the conical point, but this is not detected in
the transport as long as the leads support sufficiently many
propagating modes around n= ñ. Surprisingly, Eq. �16� en-
tails that the point of half-filling of the hexagonal-lattice
leads �the charge-neutrality point Vg=0� corresponds to the
point of three-quarter filling in the square-lattice leads.

IV. EFFECTIVE CONTACT MODEL

In order to elucidate the generality of this duality between
hexagonal- and square-lattice leads, we now liberate our-
selves from the strip geometry of the graphene sample and
hence, consider samples of more arbitrary geometry in which
different transverse modes can be mixed by the transport. In
this case, the matrix of transmission amplitudes tn�n is no
longer diagonal and, in general, can be obtained from the
Fisher-Lee relation16

S = − 1 + i�v�†P†�E − H − ��−1P��v . �17�

The leads are represented by their self-energy �
=P� diag��n,+��†P†, where P is a coupling matrix of the
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leads to the contact region. The diagonal matrix v
=diag�−2 Im �n,+� contains factors proportional to the propa-
gation velocity of the modes in the leads. The matrix � now
accounts for the transverse modes in all leads.

According to Eq. �9�, the modes in the hexagonal- and
square-lattice leads, in general, have different propagation
velocities and self-energies. As a consequence, when these
leads are connected to an arbitrary system, described by the
internal Hamiltonian H, the resulting transport properties
will generally differ. When H represents a sufficiently large
weakly-doped graphitic system, however, the localization of
the Fermi surface near the conical points guarantees that only
the lead modes coupling to this part of the Brillouin zone
will contribute significantly to the transport. This also applies
to other types of leads, different from the two specific cases
considered so far, and then yields the universality among
contact models advertised in the Introduction.

Assuming that the leads support a large number of propa-
gating modes whose properties depend smoothly on the qua-
sicontinuous mode index n, we hence can equip all modes in
the lead with the same constant �n,+→�
�ñ,+ characteristic
of the modes coupling to the conical points. Since the
transverse-mode profiles form an orthogonal set, ��†=1,
the self-energy then simplifies to �=�PP†. For optimally
matched leads, P= P is just a projector of the internal system
space onto the contact region. A unitary transformation S
→�S�† �which does not affect the conductance and the
Fano factor� then results in a simplified Fisher-Lee relation
for the scattering matrix,

S = − 1 − �2i Im ��PT�E − H − �PPT�−1P . �18�

This form of the scattering matrix defines an effective con-
tact model, which is parametrized by a single complex num-
ber �.

For hexagonal-lattice or square-lattice leads, � is given by
Eq. �10� or Eq. �11�, respectively. However, our argumenta-
tion entails that the simple effective model Eq. �18� can be
applied to a much larger class of leads, which share the same
mode-selection principle when coupled to graphene. �An ex-
ample would be a square lattice with a reduced lattice con-
stant �3a /q, where q is an integer.� Within this class of leads,
� is still given by the self-energy �ñ,+. Depending on the
contacts, the matrix PP† may not be uniform over the con-
tact region and may also account for a contact tunnel-barrier
resistance. Assuming that the coupling strengths pn
= ��n

†PP†�n� / ��n
†PPT�n� �where �n is the column vector

associated with the nth transverse mode� do not depend
strongly on the mode index, the effective contact model �Eq.
�18�� still holds with �= pñ�ñ,+.15 Ideal coupling into the
graphitic modes near the conical points is realized for a self-
energy �=−i�.

V. APPLICATIONS

This section describes some consequences of the effective
contact model �Eq. �18�� and compares its predictions to the
results of numerical computations.

A. Transport in a wide, long graphitic strip and the
reconstruction of �

Within the effective contact model �Eq. �18��, the conduc-
tance of a wide and long graphene strip �as considered in
Sect. III� is given by

G =
4e2

�h

W
L

Im �

Re �
arcsin

Re �

���
, �19�

while the Fano factor is given by

F =
���2

2�Re ��2 −
Im �

2 Re � arcsin�Re �/����
�20�

�for the derivation, see Appendix B�. These formulas gener-
alize Eqs. �12�–�15�, which are recovered when � is taken
from Eq. �10� �for hexagonal-lattice leads� or Eq. �11� �for
square-lattice leads�. For other types of leads, the two trans-
port characteristics deliver two independent numbers which
can be used to infer the complex number �.

B. Numerical results

The validity of the effective contact model can be asserted
by numerical computations. The gate-voltage dependence of
the conductivity � and the Fano factor F for a sample of
width W=152�3a and length L=30a is shown in Fig. 2.
Results of numerical computations obtained by the method
of recursive Green’s functions17 are compared to the theoret-
ical prediction of the effective contact model resulting from
Eq. �10� or �11�, as well as to the analytical expressions
�12�–�15�. A good agreement is found in the range �Vg+� �
�2� for the square-lattice leads, and � /W
 �Vg � �2� for
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FIG. 2. Gate-voltage dependence of the conductivity �
= �L /W�G �in units of e2 /h� and the shot-noise Fano factor F of an
undoped graphene strip of width W=152�3a and length L=30a.
The open data points are obtained by numerical computations for
square-lattice leads �left� and hexagonal-lattice leads �right�. The
solid curves are the prediction of the effective contact model �Eq.
�18�� with � given by Eq. �10� and �11�, respectively. The dashed
curves are the analytical expressions �12�–�15� obtained within the
saddle-point approximation.
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the hexagonal-lattice leads, corresponding to the condition
that the modes in the vicinity of ñ are propagating.

As an additional example, Fig. 3 shows the conductance
and the Fano factor of a weakly-doped circular graphitic re-
gion �EF=0.1��, calculated for hexagonal- and square-lattice
leads and within the effective contact model �Eq. �18��,
where � is again given by Eqs. �10� and �11�. With the ex-
ception of the region �Vg � �� /W, where the hexagonal-
lattice lead does not support many propagating modes, the
predictions of the effective contact model again agree nicely
with the results for the two types of leads. This shows that
the effective contact model remains applicable for graphitic
samples where modes are mixed in the transport �so that the
transmission matrix is no longer diagonal�.

VI. SUMMARY

This paper critically assesses how sensitively the transport
through extended samples of weakly-doped graphene de-
pends on the details of the leads and contacts connecting the
sample to the electronic reservoirs. The starting point is the
observation that there exists a duality between doped gra-
phitic leads and quantum wires, which result in the same
transport properties if a gate voltage is suitably adjusted.
This duality is not based on similarities of the two types of
wires �which would result in very distinct transport proper-
ties if attached to a conventional material�, but is rooted in a
unique mode-selection mechanism which originates from the
conical points of undoped graphene. Maybe most strikingly,
the duality holds even though both types of leads support a
different number of propagating modes.

Since the mode-selection mechanism is a universal prop-
erty of weakly-doped graphene, the duality described above

can be generalized into an effective contact model, which
applies to a broad class of leads. The effective model is pa-
rametrized by a single complex number �, which can be
determined by a measurement of the conductance and the
shot noise of a rectangular undoped graphene strip.

In the present paper, this effective model has been derived
using the technical requirement that the leads provide a
densely spaced set of propagating modes which couple
smoothly to the conical points. This requirement is fulfilled
for the typical leads considered in past and present
mesoscopic-transport studies and, especially, for ballistic,
wide contacts which provide a good electronic coupling to
the graphitic sample �so that a transport measurement probes
the sample, and not merely the contact resistance�.

One potential mechanism to violate the specific technical
assumptions used to derive the effective contact model is
strong interface disorder, so that the propagating modes in
the leads are mixed by the interface. For an ordinary meso-
scopic system, such a diffusive interface changes the specific
transport properties decisively �these changes cannot be de-
scribed by a simple tunnel barrier�. For weakly-doped
graphene, it is conceivable that even such a drastic modifi-
cation of the contacts does not completely violate the effec-
tive contact model. In a transfer description of the contact,
the crossing of the diffusive interface from the graphitic
sample to the lead results in a translation of the transverse-
mode profile of the modes close to the conical points into a
random superposition of the modes in the lead. It is conceiv-
able that self-averaging in these random superpositions
merely renormalizes the effective self-energy � into the av-
erage self-energy of the propagating modes in the lead. This
question goes beyond the scope of the techniques used in the
present paper, and is left for further consideration.
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APPENDIX A: MODE MATCHING FOR AN UNDOPED
RECTANGULAR GRAPHENE STRIP

This appendix provides details of the derivation of the
transmission eigenvalues �Eq. �7�� for an undoped rectangu-
lar graphitic strip coupled to square-lattice or hexagonal-
lattice leads.

A unified description of both cases in real space is facili-
tated by the discrete coordinate system �l ,m�, shown in Fig.
1. Analogously, Fig. 4 shows a convenient choice of the Bril-
louin zones, which facilitates a unified description in k space.
For the square lattice with lattice constant �3a, the Brillouin
zone is given by the standard square �kx� , �ky��

�
�3a

. Using the
periodicity of the band structure, the conventional hexagonal
Brillouin zone for the honeycomb lattice is rearranged into
the rectangle �kx��

2�
3a 
qx, �ky��

�
�3a


 3
2qy, where �kx�=qx,

�ky�=qy denotes the position of the conical points. With this
choice, both Brillouin zones have the same extent in the ky
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FIG. 3. Gate-voltage dependence of the conductance G �in units
of e2 /h� and the shot-noise Fano factor F for a weakly-doped cir-
cular graphene sample �EF=� /10� of radius R=100�3a, connected
to leads of width W=60�3a. The data points are obtained by nu-
merical computations for square-lattice leads �left� and hexagonal-
lattice leads �right�. The curves are the predictions of the effective
contact model �Eq. �18�� with � given by Eq. �10� or �11�,
respectively.
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direction. Moreover, the boundary conditions of the tight-
binding model select the same transverse wave numbers
ky,n= n�

W+�3a
. The transverse-mode profile �nm is then uniform

throughout the system and is given by Eq. �4�.
For fixed transverse wave number ky,n, the longitudinal

wave numbers kn follow from the dispersion relations �5� and
�6�. For each transverse wave number, there are two solu-
tions of opposite signs.

In the undoped central graphene regions, the longitudinal
wave numbers are complex, and the modes are evanescent
with a decay constant Im kn=
n given in Eq. �8�. The wave
functions �A and �B on the A and B sites are determined by
the Schrödinger equation, which delivers

�A
�n��l,m� = �e−3al
n+2�il�nm, �A1a�

�B
�n��l,m� = �e3al
n+2�il�nm, �A1b�

respectively, where � and � are constants.
The Landauer approach requires us to match these wave

functions to the propagating modes in the lead. These modes
are characterized by real longitudinal wavenumbers ±kn,
where for definiteness kn�0 is taken to be the solution in the
right half of the Brillouin zone.

On the hexagonal lattice, modes with a positive longitu-
dinal wave number kn�0 are right propagating when
sgn Vg=��0 �so that the Fermi energy lies below the coni-
cal point�, while these modes are left propagating for ��0
�since the band structure above the conical point has the
opposite curvature�. For a particle incident from the left, the
solution of the Schrödinger equation in the left lead takes the
form

�A,L
�n� �l,m� = C��fn,−�kn

/fn,�kn
�1/4e3i�knal�nm

+ Crnn��fn,−�kn
/fn,−�kn

�1/4e−3i�knal�nm,

�A2a�

�B,L
�n� �l,m� = C�fn,�kn

/fn,−�kn
�1/4e3i�knal�nm

+ Crnn�fn,−�kn
/fn,�kn

�1/4e−3i�knal�nm,

�A2b�

while in the right lead, it is given by

�A,L
�n� �l,m� = Ctnn��fn,−�kn

/fn,�kn
�1/4e3i�kna�l−L��nm,

�A2c�

�B,L
�n� �l,m� = Ctnn�fn,�kn

/fn,−�kn
�1/4e3i�kna�l−L��nm.

�A2d�

Here, C is an arbitrary coefficient, while rnn and tnn are the
reflection and transmission coefficients, respectively.

On the square lattice, positive longitudinal wave numbers
kn�0 are always associated with right-propagating modes.
The wave function in the left lead can hence be written as

�L
�n��l,m� = Ce�3ikna�l+1/2��nm + Crnne−�3ikna�l+1/2��nm,

�A3a�

while in the right lead,

�R
�n��l,m� = Ctnne�3ikna�l−L−1/2��nm. �A3b�

Using the fact that the wave functions �A1�, �A2�, and
�A3� all satisfy the Schrödinger equation when the graphitic
strip or the leads formally extend beyond the interface, the
matching conditions take the simple form of continuity re-
quirements

�A
�n��0,m� = �A,L

�n� �0,m� , �A4a�

�B
�n��0,m� = �B,L

�n� �0,m� , �A4b�

�A
�n��L,m� = �A,R

�n� �L,m� , �A4c�

�B
�n��L,m� = �B,R

�n� �L,m� �A4d�

for the hexagonal-lattice leads and

�A
�n��0,m� = �L

�n��− 1,m� , �A5a�

�B
�n��0,m� = �L

�n��0,m� , �A5b�

�A
�n��L,m� = �R

�n��L,m� , �A5c�

�B
�n��L,m� = �R

�n��L + 1,m� �A5d�

for the square-lattice leads.
The resulting linear systems of equations deliver the

transmission coefficient tnn in the form �7�, where for each
lattice the self-energy is defined in Eq. �9�.

APPENDIX B: CONDUCTANCE AND FANO FACTOR FOR
WIDE AND LONG GRAPHENE STRIPS

This appendix describes the saddle-point approximation,
which is used to obtain the conductance �Eq. �19�� and the

3 a

π 2

2

34

43
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2 π
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π
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π 3 a

π
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π
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FIG. 4. �a� Brillouin zone for a square lattice with lattice con-
stant �3a. �b� Hexagonal Brillouin zone for a honeycomb lattice
with lattice constant a �dashed� and its rearrangement into a rectan-
gular Brillouin zone �solid�. The numbered triangles denote regions
which are transported with reciprocal lattice vectors. The solid dots
denote the K points.
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Fano factor �Eq. �20�� of an undoped graphene strip of width
W�L�a. The conductance �Eqs. �12� and �13�� and the
Fano factor �Eqs. �14� and �15�� for hexagonal-lattice and
square-lattice leads follow when these expressions are evalu-
ated with Eqs. �10� and �11�, respectively.

Let us start with a detailed account for the conductance,
which in general is related to the transmission coefficients
tnm via the Landauer formula �2�. The transmission matrix �7�
of the graphene strip is diagonal; hence, G= �2e2 /h��n�tnn�2.
Since the strip is wide, W�L�a, the transverse wave num-
bers are closely spaced and the transmission coefficients �Eq.
�7�� depend quasicontinuously on the mode index n, so that
the sum can be replaced by an integral,

G =
2e2

h
� � �n,+ − �n,−

�n,+e−
nL − �n,−e
nL�2

dn . �B1�

For L�a, all transmission coefficients decay rapidly with
the exception of modes with index n�2�W+1� /3
 ñ, which
have transverse wave numbers in the vicinity of the conical
points and hence a small decay coefficient 
n, given in Eq.
�8�. Hence, the integrand in Eq. �B1� has a pronounced maxi-
mum at n� ñ. Away from this maximum, for n= ñ+	, the
integrand decays rapidly because of the finite decay constant

n�	� /W and attains very small values on a scale on which
the self-energies �n,+=�n,−

* barely change. One can hence

approximate the self-energy by the value �n,+��ñ,+
� at
the conical point. Furthermore, the integration limits can be
extended to ±�. The resulting integral

G =
2e2

h
�

−�

� 2�Im ��2

���2 cosh�2	�L/W� − �Re ��2 + �Im ��2d	

�B2�

can be calculated exactly, and this results in Eq. �19�.
For the Fano factor �Eq. �3��, one is led to calculate a

similar integral I
��tnn�4dn, which can be evaluated using
exactly the same steps as for the conductance. The integral is
then approximated as

I = �
−�

� 4�Im ��4

����2 cosh�2	�L/W� − �Re ��2 + �Im ��2�2d	 ,

�B3�

which again can be evaluated exactly,

I =
W
�L

�Im ��2

�Re ��2 −
W
�L

Im ���Im ��2 − �Re ��2�
�Re ��3 arcsin

Re �

���
.

�B4�

The final result for the Fano factor is given in Eq. �20�.
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