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The concepts of nonextensive thermodynamics introduced in previous work can be used to show that
depression or elevation of melting points for a nanosolid �nanoparticles, nanowires, films, and embedded
particles� depends on the nanoparticle size according to power laws whose significance can be specified. The
Gibbs-Thompson relation seems to be a particular case of these relations. This approach is based on a ther-
modynamic description involving the introduction of an extensity � into the internal energy expression. � is an
Euler function of the particle mass with a homogeneity degree m, which can be other than 1; m is the
thermodynamic dimension of the system. Here, we show how various behaviors of nanosolids published in the
literature can be analyzed according to this theory.
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I. INTRODUCTION

The phenomenon of melting point depression for nanosol-
ids was first described at the beginning of the 20th century1

and has been formalized, for a spherical particle of radius r,
by the relation known as that of Gibbs-Thompson. This links
the difference between the melting point of the particle Tx
and the melting point of the material Tm, in its form of un-
limited phase2 �no size effect�, by

Tm − Tx = �T =
TmV�Tx�

�Hm

2�SL

r
. �1�

At temperature Tx, V�Tx� is the molar volume of the solid, �SL

is the surface tension between the solid and the liquid, and
�Hm is the melting molar enthalpy of the solid ��Hm�0,
endothermic�. This relation is copied from that of Kelvin,
established to describe liquid-vapor equilibrium for liquid
drops. It has been thoroughly discussed by Defay and Pri-
gogine in Ref. 3. The application of the Gibbs-Thompson
relation is not entirely straightforward because real particles
of nanosolid are not, in general, perfect spheres. This is the
case, for example, of mineral or organic crystals and their
assemblies, of polymer aggregates, and of films. For some
materials, like microporous materials, it is difficult to de-
scribe their spatial structure from the classical geometrical
variables of dimension �volume, surface, and length� and
some authors4–7 have suggested using fractal approaches. In
such conditions, the concept of liquid-solid interfacial ten-
sion �SL cannot apply. However, the phenomenon of melting
depression and elevation is an experimental reality observed
for numerous nanosolids of different sizes and forms.8–17

Christenson18 reviewed experimental work involving freez-
ing and melting in confinement and also considered the be-
havior of porous systems. Numerous authors have tried to
formalize this phenomenon from the relations of classical
thermodynamics,19 or by using molecular approaches.20–25

Most of these studies involve the precondition that �T in-
creases or decreases with decreasing particle size.

As a consequence, it would be interesting to tackle this
issue by applying relations of nonextensive thermodynamics

�NET� introduced in 2004.26 The basis is identical to that of
classical thermodynamics, with the same functions of state,
but supposes that these functions of state can be nonex-
tensive. This property is introduced by means of integer or
fractional thermodynamic dimensions. As a result, various
physicochemical behaviors can be described by power laws
without having recourse to the concept of fractality. This
approach is particularly adapted to the description of com-
plex systems �including porous systems, interpenetrated
phases, dispersed solutions, nanoparticles, and films�. To ex-
plain our approach, we will first describe some of the bases
of NET.26

II. THEORY

A. Conceptual bases of nonextensive thermodynamics

The description of the behavior of a system defined by its
content �n1, n2, ni moles� requires the usual variables S, V,
and ni, and a variable of extensity �. The internal energy can
then be written as

dU = TdS − PdV + � �idni + �d� , �2�

Where � is an intensive tension extent associated with �.
This relation is classical27 and in the case of interfacial sys-
tems, � is associated with an area and � with a surface ten-
sion. Classically, in thermodynamics, the variables of exten-
sity associated with tension extents are assumed to be
extensive variables, i.e., Euler’s functions of the system mass
of order m=1.28 We considered the possibility that they are
not extensive �m�1� and consequently that the properties of
� have to specified. In a system consisting of n1 moles of 1,
n2 moles of 2, and ni moles of i, the extensity � is a function
of the system mass

� = ��n1,n2, . . . ,ni� . �3�

By convention, this extent has the property of Euler’s func-
tion of order m. If the system content is multiplied by 	, then
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�	 = ��	n1,	n2, . . . ,	ni� = 	m� . �4�

The parameter m is the degree of homogeneity of the Euler
function, named by convention, the thermodynamic dimen-
sion of the system. Its value can be equal to 1, in which case
classical thermodynamics applies. The introduction of non-
extensive thermodynamics in the extensity magnitudes im-
plies that the functions of state of thermodynamics �U, S,
etc.� are not extensive. Consequently, the tension extents as-
sociated with the extensities may not be intensive. We chose,
by convention, to conserve this property for the temperature
T �Ref. 29� and for �. For consistency, the chemical poten-
tials and the pressures become nonintensive extents; this
means that they vary with the system mass. For a nonexten-
sive system constituted of n moles of compound, of volume
V, of extensity �, and of dimension m, there is a relationship
between the pressure of the nonextensive system NEP and the
pressure of the environment P,

�NEP − P� = �
d�

dV
= m

��

V
. �5�

This relation generalizes Laplace’s relationship for nonexten-
sive systems. It does not involve a radius of curvature or
precise geometrical borders of the nonextensive system but
is defined only from physicochemical parameters. This obvi-
ously allows the solution to be found if the geometry is
simple. In the case of liquid drop of interfacial tension �LV

and radius r, the pressure difference between the inside of
the drop �NEP= Pd� and the external pressure of the gaseous
atmosphere is obtained by introducing the interfacial param-
eters into Eq. �5�, �=�LV, �=ALV. Note that when the drop
volume is multiplied by 	, the area ALV is multiplied by 	2/3.
The area is then an extensity of dimension m=2/3 toward
the mass or the drop volume. The liquid drop is a nonexten-
sive phase with a thermodynamic dimension equal to 2/3.
We can write

�Pd − P� = m
��

V
=

2

3

�LVALV

V
= 2

�LV

r
, �6�

which corresponds to Laplace’s relationship.
We will apply these NET definition relations to the

change of melting point of a nanosolid, when the size and the
shape are modified. We will suppose that the solid constitutes
a nonextensive phase �Fig. 1�.

B. Melting point

The equilibrium between the nanosolid in the form of
nonextensive phase and the liquid at the melting point Tx is
expressed by writing the equality of the chemical potentials
of the compound under its two forms. The solid �S� is at the
pressure NEP of the nonextensive phase; the liquid �liq� is
subject to the external pressure P,

��Tx,NEP�
S

= ��Tx,P�
liq . �7�

At temperature Tx and constant content, the chemical poten-
tial of pure solid varies with the pressure P according to the
relation

� ���Tx�
S

�P
�

Tx,n
= V�Tx�, �8�

Where V�Tx� is the molar volume of pure solid at temperature
Tx. If its value varies slightly with the pressure, the integra-
tion of Eq. �8� gives

��Tx,NEP�
S

= ��Tx,P�
S + V�Tx��

NEP − P� . �9�

By considering the volume V which corresponds to the vol-
ume occupied by the nanosolid in the system, then

��Tx,NEP�
S

= ��Tx,P�
S + V�Tx�m�

�

V
. �10�

At the pressure P of the environment, the equilibrium con-
dition �Eq. �7�� can be written as

��Tx�
liq = ��Tx�

S + V�Tx�m�
�

V
. �11�

The pressure being constant �isobar condition�, we removed
P from the notation of the chemical potential for clarity. The
free energy of melting at temperature Tx, �Gm�Tx�, is linked
to the characteristic parameters of the nonextensive phase

��Tx�
liq − ��Tx�

S = �Gm�Tx� = V�Tx�m�
�

V
. �12�

At the melting temperature of the solid in the form of an
unlimited phase �Tm�, the melting free energy is null. The
integration of the Gibbs-Helmholtz relation between Tm and
Tx leads to

�Gm�Tx�

Tx
= − �

Tm

Tx

�Hm
dT

T2 , �13�

where �Hm is the melting molar enthalpy of pure solid at
ambient pressure P. As the melting enthalpy varies slightly
in the temperature range considered for integration, one can
write

liquid

m, �

solid,
nonextensive phase

Tx

liquid

m, �

solid,
nonextensive phase

Tx

FIG. 1. �Color online� Scheme of the considered system. The
nanosolid constitutes a nonextensive phase of dimension m and of
extensity �. This solid is in contact with the liquid phase at tem-
perature Tx.
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�Gm�Tx� = �Hm	1 −
Tx

Tm

 = V�Tx�m�

�

V
. �14�

Then, the melting temperature Tx of the nonextensive phase
can be easily linked to the melting point Tm of the unlimited
phase by the following equation which can be written in two
different ways:

Tm − Tx = �T = Tm

V�Tx�m�
�

V

�Hm
= Tm

M ° m�
�

M

�Hm
, �15�

where M° is the molecular weight and M the mass of the
solid.

III. APPLICATION TO THE MELTING TEMPERATURE
OF A NONEXTENSIVE PHASE

Consider first the case where the geometry of the nonex-
tensive phase is sufficiently well defined for the extensity �
to be identified with an area.

A. Extensity is an area

1. Gibbs-Thompson law

Consider a solid particle of spherical shape of radius r in
equilibrium with a molten liquid. In this case, dimension m is
equal to 2/3. If the extensity is identified with the solid-
liquid area ASL, the tension � with the surface tension �SL,
and the volume of the nonextensive phase to that of the
particle, the Gibbs-Thompson relation is then found to be

�T =
TmVi�Tx�

�Hm
	2

3
�SL4
r2

4
3
r3
 =

TmV�Tx�

�Hm

2�SL

r
. �16�

Note that this relation supposes that the solid-liquid surface
tension �SL is experimentally accessible, because the melting
temperature variations of a material in spherical particles of
known sizes can be accurately determined. The same is true
for the Ostwald-Freundlich expression which governs nano-
particle solubility.30,31 It is thus surprisingly simple to deter-
mine an extent which is generally calculated by semiempir-
ical approaches and wettability studies.32–34 However, in
addition to the experimental difficulties of determining the
particle size �and the particles must be spherical�, the intro-
duction of a solid-liquid interfacial tension supposes that the
interface is at equilibrium and of constant curvature: this can
only be an assumption in the case of a solid. The result is that
the validity of the determination of �SL by this method is
uncertain.

In our approach, this problem does not explicitly appear
because Eq. �15� is based on a property of the system’s re-
sponse to the variations of its mass �extensity�; neither the
interfacial area nor the use of Laplace’s relation is required.
Thus, it seems appropriate to express the previous equilib-
rium without identifying the tension � as the interfacial ten-
sion �SL in the Gibbs-Thompson law and to write the depres-
sion melting point in the form

�T =
TmV�Tx�

�Hm

2�

r
. �17�

We will proceed on this basis for the following cases.

2. Particle is not spherical

Equation �15� can be used to address the case of particles
of diverse forms and especially those corresponding to clas-
sical unit cells, for example, a cube of edge a and of volume
a3. Initially, the thermodynamic dimension of the system m
is determined by multiplying its mass by a number 	 and
leaving its form unchanged. In this operation, the volume
will also be multiplied by 	 �at constant density�, whereas
the surface area of the cube, 6a2, will be multiplied by 	2/3.
The thermodynamic dimension of the system is m=2/3.
Then,

�T = Tm

V�Tx�
2

3
�

6a2

a3

�Hm
=

TmV�Tx�

�Hm

4�

a
. �18�

The melting point depression of a cubic nanosolid is related
to the length of the cube edge. The depression is greater as
the edge length decreases.

Our approach has its limitations because the extensities of
some structures do not always display the properties of Eul-
er’s functions. Consider, for example, a cylindrical particle
of height h whose base is of diameter d �Fig. 2�. Suppose that
the particle grows without any change in base area but with
increasing height h. The cylinder volume is V= �
d2 /4�h and
the area A=2�
d2 /4�+
dh. If the cylinder mass is multi-
plied by 	, only h will be multiplied by 	, and consequently
the surface area of cylinder will become A	=2�
d2 /4�
+	
dh. In this case, the area is not an Euler function of the
mass and the relations of NET do not apply. For this reason,
it must be systematically verified that the extensity is an
Euler function of the mass before Eq. �15� can be applied.
However, for cylindrical particles that are sufficiently long
for the surface area of the base to be negligible relative to the
surface area of the sides �h�d /2�, the total surface area

a

d

M

��M

��M

M
h

a

d

M

��M

��M

M
h

FIG. 2. �Color online� Two kinds of geometrically defined par-
ticles are considered. Their mass is multiplied by 	. The cube in-
creases in size with no change in shape. The cylinder increases in
size with no change in base area.
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approximates to an Euler function of order 1 of the mass: the
dimension of the system is 1. Then,

�T = Tm

V�Tx��
4
dh


d2h

�Hm
=

TmV�Tx�

�Hm

4�

d
. �19�

In this case, the melting point depression of particles is de-
pendent on the cylinder diameter but is independent of its
length.

There are many examples which can be used to illustrate
the value of applying Eq. �15� to objects of various sizes and
forms. We will consider the case of real nanoparticles whose
spatial structure cannot be described simply from classical
dimensions �volumes, areas, and lengths�.

B. General case. Power laws: Consequence of the NET

Consider a given mass M of solid presumed to constitute
a nonextensive phase. The extensity � is a homogeneous
function of order m of the system mass, so the ratio between
� and M is a homogeneous function of order �m−1� of the
solid mass. This corresponds to

�

M
= kMm−1, �20�

where k is a characteristic constant of the nonextensive phase
considered. This condition combined with Eq. �15� leads to

�T = Tm
M ° m�k

�Hm
Mm−1. �21�

This can be written in logarithmic form

ln��T� = ln	Tm
M ° mY

�Hm

 + �m − 1�ln M . �22�

To simplify the notation, the product �k is replaced by Y. Y is
a characteristic extent of the solid. Its unit u depends on the
value of m, u=J kg−m. Thus, we show that the melting point
depression or elevation of a nanosolid follows a power law of
the particle mass.

For the melting point of the nanosolid Tx to find its value
Tm when the solid mass becomes large �unlimited phase�, it
is necessary that m�1. Equation �21� implies that for posi-
tive m and �, the melting point of the nanosolid must be
depressed as the particle size decreases: this is the classical
behavior. However, the theory does not require this behavior.
Indeed, situations in which m or � �Y� are negative can be
envisaged, leading to the opposite phenomenon, i.e., an in-
crease in the melting point as particle size decreases. Behav-
ior of this type has been observed, mostly for particles em-
bedded in a matrix35–37 and for Vycor glass as reported by
Christenson.18

1. Case of nanoparticles of dimension m and of mass Mp

Above, we considered a mass of solid without specifying
its state of division. We will now examine the behavior of a
solid in the form of identical nanoparticles, having the same
property of nonextensive phase of dimension m. The mass of

a particle is Mp, its volume Vp and its extensity �p. We will
assume that any addition of solid to the system will only
increase the number N of nanoparticles. This situation is de-
scribed by the following relations:

M = NMp,

� = N�p,

�

V
=

�p

Vp
= kMp

m−1, �23�

and then,

ln��T� = ln	Tm
M ° mY

�Hm

 + �m − 1�ln Mp. �24�

The depression or elevation of melting point then depends on
the nanoparticle mass according to a power law.

2. Applications to real systems

The validity of the previous relations is difficult to judge
because the data in the literature concerning melting point
depression are generally given according to the “particle
size.” Size may be described by a radius for presumed
spherical particles, a diameter for nanowires, or a thickness
for films. We thus modified the form of the previous equa-
tions so as to make them more generally applicable and take
into account all measurements reported in the literature with-
out considering particular forms for the nanosolids.

Our reasoning is as follows. Suppose that the nanosolid
size is characterized by a dimension �radius, diameter, and
thickness� which is noted . We will suppose that the exten-
sity � and the volume are Euler’s functions of  so

V = V�� = �q,

� = ��� = �p. �25�

The pressure difference between the nonextensive solid
phase and the solution is then written as

NEP − P = �
d�

dV
= �

�

�

p

q
p−q. �26�

Similar reasoning leads to the melting temperature variation
with the size  of the particles according to a power law

Tm − Tx = �T = Tm

V�Tx�
�

�
�

�Hm

p

q
p−q = Tm

M°Y

�Hm

p

q
�. �27�

By convention, we will note p-q=� and Y= �V�Tx� /M ° �
��� /���.

The form of the Gibbs-Thompson relation can be verified
by taking the radius as dimension =r, p=2, and q=3. In
this case, for a compound of density �, Y

=3�SL/��J m kg−1�.
We will now test the validity of Eq. �27� under its loga-

rithmic form for published data.

LETELLIER, MAYAFFRE, AND TURMINE PHYSICAL REVIEW B 76, 045428 �2007�

045428-4



ln��T� = ln	Tm
M°Y

�Hm

p

q

 + � ln�� . �28�

The plot of ln��T� against the logarithm of the dimension ,
chosen by the author of the study to characterize nanosolid
size, will only be a straight line if the extensities and the
masses are Euler’s functions of dimension and if variations
of the parameters Y, p, and q with the temperature are
small.

IV. ANALYSES OF PUBLISHED DATA

A. Nanoparticles

First, consider the case where the nanosolid is in the form
of nanoparticles. We will examine two series of data. In ex-
ample 1, we examined the results reported by Ben David
et al.38 and cited by Qi39 concerning ultrafine Pb particles.
Figure 3 shows ln��T� plotted against the logarithm of the
particle diameter �in nanometers�.

The line of correlation is excellent, with a y-axis intercept
of 7.11 and �=−1.41 which is higher �in absolute value� than
that corresponding to the Gibbs-Thompson relation ��=−1�.
The value of � takes into account both the nonextensivity of
the mass and the extensity with respect to the measured di-
mension. This value indicates that if the mass varies with 
�with q=3� as is generally the case, then the extensity � of
the nanoparticles would be of power p=1.59 with respect to
the nanoparticle diameter. This value is lower than 2 which
would be characteristic of an area. The result is that the
extensity � increases less quickly with  than an area would.

In example 2, we examined the work of Lai et al.40 on tin
nanoparticles. These particles are formed by thermal evapo-
ration. For the small amounts of Sn deposited, the films are
discontinuous and form self-assembled nanometer-sized is-
lands on the inert substrate. According to the authors, in
contrast to embedding metal particles in bulk matrix, this
type of sample preparation produces spherical Sn particles
with high purity and free surfaces; this system is thus ideal
for studies of melting of small metal particles. We plotted the
experimental ln��T� against the logarithm of the particle ra-
dius �in nanometers� in Fig. 4.

Once again, an excellent linear correlation is found; the
y-axis intercept is 5.995 and the slope is �=−1.20, lower
than −1 which corresponds to spherical particles. As for the
previous case, the extensity � increases less quickly than the
area with the particle radius: p=1.8.

B. Nanowires

Metal nanowires have attracted a great deal of research
interest in recent years because of their importance in funda-
mental low-dimensional physics research as well as for tech-
nological applications. The melting behavior of Zn nano-
wires with various diameters embedded in the holes of a
porous anodic alumina membrane has been studied by Wang
et al.41 These nanosolids are particularly interesting because
they are assumed to be composed of one-dimensional nano-
structures. Differential scanning calorimetry showed that the
melting temperature of the Zn nanowire arrays was strongly
dependent on nanowire size. We report the values of the
logarithm of melting point depression against the logarithm
of nanowire diameter �in nanometers� in Fig. 5.

An excellent linear correlation is obtained with a y-axis
intercept of 4.27 and a slope �=−0.57. This behavior is very
different from that observed for nanoparticles; indeed, if one
supposes that q=3 as above, then p is equal to 2.43. In this
case, the extensity increases more quickly than the particle
area and obviously does not follow the Gibbs-Thompson
law, contrary to the expectations of the authors.

C. Films

Films of nanometric thickness can be considered along-
side of nanoparticles: the dimension  is in this case the film
thickness. Two series of data extracted from the literature
will be analyzed.

In example 1, Olson et al.42 described bismuth films. The
particles were formed by evaporating bismuth onto a silicon
nitride substrate, which was then heated. The particles self-
assemble into truncated spherical particles. At mean film
thicknesses below 5 nm, mean particle sizes increased lin-
early with deposition thickness but for 10 nm thick films,
particle size increased rapidly. A plot of the logarithms of
melting point depressions against film thickness is given in
Fig. 6.

ln �T = -1.41 ln D + 7.11

1

2

3

4

5

1 2 3

ln �T

ln D

ln �T = -1.41 ln D + 7.11

1

2

3

4

5

1 2 3

ln �T

ln D

FIG. 3. Plot of ln��T� against ln�D� for Pb particles according
to the data in Ref. 39 The diameter D is expressed in nanometers.

2 3

ln �T = -1.20 ln r + 5.995

ln ��T

ln r
0

1

2

3

2 3

ln �T = -1.20 ln r + 5.995

ln ��T

ln r
0

1

2

3

FIG. 4. Plot of ln��T� against ln�r� for tin particles, from Ref.
40 �T is the melting point depression in °C and r is the particle
radius in nanometers.

0

1

2

3 4 5

ln �T = -0.57 ln D + 4.27

ln ��T

ln D
0

1

2

3 4 5

ln �T = -0.57 ln D + 4.27

ln ��T

ln D

FIG. 5. Plot of ln��T� against ln�D� for zinc nanowires in an
alumina matrix from data extracted from Ref. 41 �T is the melting
point depression in °C and D is the particle diameter in nanometers.
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A reasonable linear correlation is obtained. The y-axis in-
tercept is 2.78 and the slope is �=−0.94, which as for nano-
wires is greater than −1. Supposing that q=3, the extensity
varies more than the area with the increase of the nanopar-
ticle film thickness �p=2.06�.

In example 2, the melting point depression phenomenon
can also be considered for organic nanosolids. Unruh et al.43

described the behavior of films of triglyceride nanoparticles
�Fig. 7�.

The linear correlation is satisfactory. The y-axis intercept
is 4.16 and the slope is �=−0.71; this is greater than −1 as
was the case for mineral films. Supposing that q=3, the ex-
tensity varies more than the area with the increase of the
nanoparticle film thickness �p=2.29�.

The description of the behavior of films is worse than
those for the previous examples. This is probably because
films consist of nanosolids in juxtaposition.

D. Melting point elevation

The equations that we have developed can also be used to
consider melting point elevation. This situation is mainly
found for particles that are coated or embedded in a
matrix.36,37,44–47 There are many explanations proposed for
this phenomenon. All these explanations use the interfacial
energy between the liquid compound and the solid constitut-
ing the matrix. It is certain that for embedded particles, the
borders between the particle and its environment are very
badly defined geometrically; we show, below, that our ap-
proach can be used to overcome this problem. We analyzed
the values published by Lu and Jin37 concerning the varia-
tions of melting point with the particle size for nanoparticles
of In embedded in an Al matrix. Two kinds of In/Al nan-
ogranular samples were prepared by means of melt spinning
and ball milling. For melt-spun nanoparticles, the melting

point increased as the particle size decreased, whereas for
ball-milled nanoparticles, the melting point decreases with
particle size. We exploited these two data series. For the
melting point elevation series, we changed the sign in rela-
tion �28� such that extents were positive under the logarith-
mic terms

ln�Tm − Tx� = ln	Tm
M°Y

�Hm

p

q

 + � ln�� . �28��

The ln/ ln correlations are excellent for both melting point
elevation and depression data series. We plotted the experi-
mental data and the calculated values �Fig. 8� with the fol-
lowing parameters.

�a� For melting point elevation, �=−0.805 and the y-axis
intercept is 5.203.

�b� For melting point depression, �=−1.149 and the
y-axis intercept is 5.858.

For the melting point depression, if we take q=3 for the
volume dimension, then p=1.851. Thus, the extensity varies
less quickly than the area with the particle mass. In the case
of the melting point elevation, the value of � is negative. p is
equal to 2.195, taking, by convention, q=3. Thus, the exten-
sity varies more quickly than the area with the particle mass.
This approach allows description of the particle and its ma-
trix. According to the matrix structure or the particle shape,
one of these two behaviors is observed; the sign of � ex-
presses and formalizes this difference of behavior. Thus, un-
der constraint, the sign of � can be reversed.

Remark. To analyze the behaviors of embedded particles,
we considered only one extensity �. This seems sufficient in
the case examined to provide a good representation of the
experimental results. However, since the growth of a system
in contact with a support or a matrix is considered, other
dimensions can intervene. This is illustrated by Auer and
Frenkel in a recent article48 in which they show the impor-
tance of the line tension in the phenomenon of aggregation.
This raises the issue of the form of the relations we propose
in such a situation. In fact, these relations can easily be gen-
eralized and use several extensities. Equation �5� becomes

NEP − P = �
i

�i
d�i

dV
= �

i

mi�i
�i

V
. �29�

When one of these extensities is a triple line, then
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FIG. 6. ln��T� plotted against ln�h� for bismuth films. h is the
thickness of the film in nanometers. Data extracted from Ref. 42.
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FIG. 7. Plot of ln��T� against ln�h� for films of triglycerides.
h is the thickness of the film in nanometers. Data extracted from
Ref. 43.
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FIG. 8. Experimental �black points� and calculated �open
squares� values of melting point Tx against the particle size �diam-
eter D� for In nanoparticles embedded in an Al matrix prepared by
melt spinning �triangles� and ball milling �diamonds� �Ref. 37�.
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NEP − P = �
i−1

mi�i
�i

V
+ mline

�line�line

V
. �30�

In this case, the dimension mline is then equal to 1/3, �line is
the line tension, and �line is the length of the considered line.
The exploitation of this relation is possible only if the par-
ticle shape is known and if its interfaces with the matrix can
be characterized geometrically. An application of this will be
found in a paper concerning contact angles,49 in which we
show that for nanodrops, the term for line tension can be-
come dominant in Eq. �30�.

V. CONCLUSION

We analyzed data published in the literature and showed
that for all the experimental models considered, the melting
point depression of nanosolids follows a power law with re-
spect to their dimension, as do nanoparticles, nanowires, and
films. The NET relations provide a theoretical justification
for these behaviors and give a meaning to the various param-
eters implied in these laws. Note, however, that our develop-
ments have their limitations.

The first and undoubtedly most important is that the de-
velopments that we propose address only small particles,
without nuclearity being too weak �i.e., made of few atoms
or molecules�. Many authors suppose that for these systems,
there is a new state of matter, intermediate between the atom
and the crystal.50,51 Kubo, in 1962,52 thus suggests that an
isolated atom, or a few atoms linked together in a cluster, for
example, in a molecule, should be considered to possess dis-
crete electron levels, introducing a quantum-size effect. It has
been shown, indeed, that the thermodynamic properties of a
metallic cluster vary with the number of atoms n which it
contains in solutions53,54 or in the vapor phase.55,56

Concerning melting points, the calorimetric measure-
ments reported by Jarrold and co-workers57,58 indicate that
small clusters of tin and gallium—in the size range of 17–55
atoms—have higher than bulk melting temperatures �Tm
bulk�. A striking experimental result from the same group
showed extreme size sensitivity in the nature of the heat
capacity of Ga clusters of 30–55 atoms.59 Recently, Joshi
et al.60 presented a study of extensive ab initio molecular
dynamic simulations with Ga30 and Ga31, where they at-
tribute the origin of this size sensitivity of heat capacities to
the relative order in their respective ground state geometries.
It turns out that the addition of even one atom changes the
heat capacity dramatically.

The relations that we propose make sense if the aggre-
gates have sufficient nuclearity for average behaviors to ap-
pear, and this which supposes several hundreds of atoms, and
sizes higher than 1 nm �a spherical aggregate of silver of
2 nm comprises approximately 2000 atoms�. This condition
of size is not the only one which limits the application of the
relations we suggest. They can apply only if

�a� the system is at equilibrium,
�b� the extensities are Euler’s functions of the dimension,

and
�c� the variation of parameters p, q, Y, or their associa-

tion is largely independent of the temperature. This property
cannot be taken as a general condition.

Our analysis shows that for systems of a nanometric mag-
nitude, the laws of thermodynamics must be
reconsidered.61,62 This led us to consider a thermodynamic
approach based on nonextensive functions of state, but there
are undoubtedly other possible approaches. However, our ap-
proach allows simple and suitable description of the physi-
cochemical behaviors of many complex systems, including
those extracted from the literature and presented in this
work.
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