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The nanoscopic structure and the stationary propagation velocity of (1+ 1)-dimensional solid-on-solid inter-
faces in an Ising lattice-gas model, which are driven far from equilibrium by an applied force, such as a
magnetic field or a difference in (electro)chemical potential, are studied by an analytic nonlinear-response
approximation [P. A. Rikvold and M. Kolesik, J. Stat. Phys. 100, 377 (2000)] together with kinetic Monte
Carlo simulations. Here, we consider the case that the system is coupled to a two-dimensional phonon bath. In
the resulting dynamic [K. Saito et al., Phys. Rev. E 61, 2397 (2000); K. Park and M. A. Novotny, Comput.
Phys. Commun. 147, 737 (2002)], transitions that conserve the system energy are forbidden, and the effects of
the applied force and the interaction energies do not factorize (a so-called hard dynamic). In full agreement
with previous general theoretical results, we find that the local interface width changes dramatically with the
applied force. However, in contrast with other hard dynamics, this change is nonmonotonic in the driving force.
Results are also obtained for the force dependence and anisotropy of the interface velocity, which also show
differences in good agreement with the theoretical expectations for the differences between soft and hard
dynamics. However, significant differences between theory and simulation are found near two special values of
the driving force, where certain transitions allowed by the solid-on-solid model become forbidden by the
phonon-assisted dynamic. Our results show that different stochastic interface dynamics that all obey detailed
balance and the same conservation laws nevertheless can lead to radically different interface responses to an
applied force. Thus, they represent a significant step toward providing a solid physical foundation for kinetic

Monte Carlo simulations.
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I. INTRODUCTION

Moving internal boundaries or interfaces separating dif-
ferent regions are present in many problems in nature, and
the challenge of understanding the dynamics of such pro-
cesses has become increasingly important. In recent years,
considerable efforts have been made toward understanding
the large-scale structures of growing interfaces.!? In contrast,
there has been little work related to the microscopic and
nanoscopic scales. This is surprising since the nanoscopic
interface structure plays a crucial role in important interface
properties such as mobility and catalytic and chemical activ-
ity. Technologically, as the sizes of the smallest man-made
structures decrease, interfacial properties become essential
and even dominant. Nanoscale assemblies with highly or-
dered building blocks, such as quantum dots** and quantum
wires, must be fabricated on a surface or through an inter-
face.

The basic mechanisms of interface growth are complex
and often unknown. A standard way to deal with this prob-
lem is constructing a stochastic model that reproduces essen-
tial features. However, extreme care has to be taken with this
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approach. Recent studies indicate that different stochastic dy-
namics, even when they have the same conserved quantities
and satisfy detailed balance, lead to important differences in
the nanostructure of field-driven interfaces.>™ Surfaces
driven by hard dynamics (in which the single-site transition
rates cannot be factorized into one term that depends only on
the interaction energies and a second term that depends only
on the field energies, in contrast with soft dynamics for
which this factorization is possible“)), such as Glauber, Me-
tropolis, and the two-step transition dynamics approximation
(TDA),'12 have a strong dependence on the applied field.
For all hard dynamics studied so far, the average step height
increases dramatically with increasing field. In contrast, in-
terfaces driven by soft dynamics, such as the soft Glauber®
and the one-step dynamics (OSD),>!'3!# are at most only
weakly dependent on the field and relatively smooth. Fur-
thermore, interfaces driven by hard dynamics, such as
Glauber’ and TDA,® display significant asymmetry between
the spin populations on their leading and trailing edges,
while interfaces moving under soft dynamics either display
no (soft Glauber®) or only weak (OSD?) anisotropy.

©2007 The American Physical Society
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In this paper, we study by kinetic Monte Carlo (MC)
simulation and a dynamic mean-field approximation the
motion of a Burton-Cabrera-Frank solid-on-solid (SOS)
interface'” that evolves under a nonconservative dynamic re-
sulting from coupling the system to a phonon heat bath. SOS
interfaces belong to the Kardar-Parisi-Zhang (KPZ) dynamic
universality class,"!® in which the macroscopic, stationary
distribution for moving interfaces is Gaussian, corresponding
to a random walk with independent increments. The phonon-
assisted dynamic is obtained by introducing a weak, linear
coupling between a square-lattice Ising quantum ferromagnet
and a phonon (i.e., bosonic) heat bath attached to the spin
system. The transition rates have been calculated using the
quantum-mechanical density matrix equation'’?! and most
recently also by the lattice-frame method.?> Both methods
give consistent results. The resulting dynamic is quite differ-
ent from the Glauber dynamic, which can be similarly de-
rived from coupling to fermionic baths.?® In particular, for
phonon baths of dimension greater than 1, the phonon-
assisted dynamic prohibits transitions that conserve the sys-
tem energy, even if they are allowed by the SOS restriction.
As a result, the model becomes nonergodic near special val-
ues of the driving field, and the interfaces can get stuck in
long-lived, metastable, or permanently “frozen” states. The
average step height and propagation velocity therefore be-
come nonmonotonic functions of the field. Phonon-assisted
dynamics are relevant in a great variety of physical phenom-
ena, ranging from the nonlinear optical response of
semiconductors®® to the dynamics of quantum dots.>* The
derivation of a phonon-assisted stochastic dynamic is a sig-
nificant step toward putting kinetic MC on a solid physical
foundation.

In this paper, we derive analytic, approximate expressions
for the interface propagation velocity as a function of field,
temperature, and interface orientation. Our approach is based
on a mean-field approximation that assumes that individual
steps on the interface are statistically independent,’® i.e.,
short-range correlations are neglected. This limitation be-
comes apparent when we compare the analytical and simu-
lated results.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the SOS interface model and give the
transition rates for the phonon-assisted dynamic. Also in this
section, we summarize the mean-field approximation for the
time evolution of the single-step probability density function
(pdf), as well as its stationary form. We further give expres-
sions for the spin-class populations and interface velocity in
terms of the applied field, the temperature, and the angle of
the interface relative to the lattice axes. In Sec. III, we com-
pare simulations and analytical predictions for the detailed
stationary interfacial nanostructure, including the asymmetry
of the simulated nonequilibrium interfaces. Summary and
conclusions are provided in Sec. IV.

II. MODEL AND DYNAMICS

The SOS interfaces are described by the nearest-neighbor
S=1/2 Ising Hamiltonian with anisotropic, ferromagnetic in-
teractions J, and J, in the x and y directions, respectively,
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FIG. 1. A short segment of an SOS interface y=h(x) between a
positively magnetized phase (or “solid” phase in the lattice-gas pic-
ture) below and a negative (or “fluid”) phase above. The step
heights are 8(x)=h(x+1/2)—h(x—1/2). Interface sites representa-
tive of the different SOS spin classes (see Table I) are marked with
the notation jks, explained in the text. Sites in the uniform bulk
phases are 00— and 00+. This interface was generated with a sym-
metric step-height distribution, corresponding to ¢=0.

H:_Zsx,y(stx+l,y+]ysx,y+] +H)’ (1)

X,y

where s, ,=+1, 2, | runs over all sites, and the applied field
H is the driving force. The interface is introduced by fixing
sy,y=+1 and —1 for large negative and positive y, respec-
tively. Without loss of generality, we take H=0, such that
the interface on average moves in the positive y direction.
This Ising model is equivalent to a lattice-gas model with
local occupation variables ¢, , €{0,1}.3% Specifically, we
identify s=+1 with c=1 (occupied or “solid”) and s=-1
with ¢=0 (empty or “fluid”).

The SOS model considers an interface in a lattice gas or
S=1/2 Ising system on a square lattice of unit lattice con-
stant as a single-valued integer function A(x) of the x coor-
dinate, with steps 8(x)=h(x+1/2)—h(x—1/2) at integer val-
ues of x. A typical SOS interface configuration is shown in
Fig. 1. In this paper, the two possible states of the site (x,y)
are denoted by the two Ising spin values s, ;== 1. (In order
that the step positions and the interface heights be integer as
stated above, we place the spins at half-integer values of x
and y, i.e., at the centers of the unit cells separated by dotted
lines in Fig. 1.)

The interface is made to evolve under the phonon-assisted
dynamic, a single-spin-flip (nonconservative) set of transi-
tion rates that satisfies detailed balance for the allowed tran-
sitions. In most cases, this ensures the approach to equilib-
rium, which in this case is a uniformly positive phase with
the interface pushed off to positive infinity (for exceptions,
see below). The dynamic is defined by the single-spin tran-
sition rates, W(s, ,——s,,)=W(BAE). Here, $ is the inverse
of the temperature 7 (Boltzmann’s constant is taken as
unity), and AE is the energy change corresponding to a suc-
cessful spin flip. The detailed-balance condition (valid for
transitions between allowed states) is expressed as
W(BAE)/W(-BAE)=¢"PAE,

The transition rates for the phonon-assisted dynamic are
defined as'®!?
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FIG. 2. (Color online) (a) The transition rates for the
d-dimensional phonon-assisted dynamic, Wpg, shown scaled by 7¢
vs the energy difference AE scaled by 7. (b) The transition rates for
the standard Glauber dynamic, W, shown vs AE/T.
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Wpp(T,AE) =

where d € {1,2,3} is the dimension of the bosonic heat bath.
Physically, this rate is the product of three factors: the pho-
non occupation number (eA2E/—1)~!, the phonon density of
states, proportional to |AE|?!, and the magnetoelastic spin-
phonon coupling, proportional to |AE[.'®?2 For d=2 and 3,
Wps(T,AE=0)=0, while for d=1, the transition rate is non-
zero and smooth at AE=0. These transition rates are plotted
in Fig. 2(a). For comparison, we also plot the transition rates
for the Glauber dynamic in Fig. 2(b). In the present work,
with the exception of Fig. 7, we use d=2, ie, a two-
dimensional heat bath. Thus, the transition rates vanish lin-
early with |AE| near |AE|=0. It should, however, be empha-
sized that the derivations of Eq. (2) are based on a weak,
linear coupling of the phonon bath to the spin system. It is
therefore possible that nonlinear and/or multiphonon effects
may set a lower bound on physical transition rates for AE
near zero and thus restore the ergodicity of the spin model.
However, we note that recent experiments on phonon-
mediated spin relaxation in a quantum dot shows a signifi-
cant decrease in the relaxation rate for transitions involving
AE near zero.*

Notice that the phonon-assisted transition rates cannot be
factorized into one part that depends only on the interaction
energy and another that depends only on the applied field;
thus, it belongs to the class of dynamics defined as hard.5!0
In order to preserve the SOS configuration at all times, flips
are allowed only at sites which have exactly one broken
bond in the y direction.
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TABLE I. The spin classes in the anisotropic square-lattice SOS
model. The first column contains the class labels, jks. There are two
other classes, 10s and 20s, that also have nonzero populations in the
SOS model but are not included because flipping a spin in any of
them would produce an overhang or a bubble and is therefore for-
bidden. The second column contains the change in the total system
energy resulting from reversal of a spin from s to —s, AE(jks). The
third column contains the mean spin-class populations for general
tilt angle ¢, with cosh y(¢) from Eq. (6).

Class, jks AE(jks) (n(jks))
2
Ols 2SH+4JX 1-2X cosh 7(¢)+X
(1-x%)?
11s 25H 2X[(1+X?)cosh ¢(¢p)-2X]
(1-x%)?
21s 25H-4J, X?[1-2X cosh Y(¢) +X*]

(1-X%)?

With the Ising Hamiltonian, there are only a finite number
of different values of AE. The spins can therefore be divided
into ten classes,?’3? labeled by the spin value s and the num-
ber of broken bonds between the spin and its nearest neigh-
bors in the x and y directions, j and k, respectively. The spin
classes consistent with the SOS model are denoted jks with
j€10,1,2} and ke{0,1}. They are shown in Fig. 1 and
listed in Table I. At H=0, AE=0 for transitions between 11
— and 11+ (diffusion of steps of unit height). Thus, these
transitions are forbidden for d=2 and 3. At H=2J,, the tran-
sitions forbidden for d=2 and 3 are between 01— and 21+
[nucleation or elimination of a knob of stable (+) phase on a
smooth, horizontal interface]. For other values of (non-
negative) H, no transitions allowed by the SOS condition are
forbidden.

In the SOS model and our analytical approximation, the
heights of the individual steps are assumed to be statistically
independent and identically distributed. This assumption is
exact for H=0."> The step-height pdf is given by the inter-
action energy corresponding to the |8(x)| broken J, bonds
between spins in the columns centered at (x—1/2) and (x
+1/2) as

pL8(x)] = Z( ) XIWlgn P00, 3)

The factor X determines the width of the pdf, and y(¢) is a
Lagrange multiplier which maintains the mean step height at
an x-independent value, (S(x))=tan ¢, where ¢ is the overall
angle between the interface and the x axis. Z(¢) is a partition
function that will be discussed below. In equilibrium, X is
simply the Boltzmann factor, e~>#’x, which is independent of
H. In previous papers,>’ an expression for a field-dependent
X(T,H) was obtained, based on a dynamic mean-field ap-
proximation for the equation of motion for the single-step
pdf together with a detailed-balance argument for the station-
ary state. This improved nonlinear-response approximation
gives (see Ref. 7 for details of the calculation)
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X(T,H) = e-zﬁfx{

which is independent of y(¢). The dependence on the spe-
cific dynamic is evidenced here by the presence of the tran-
sition rates associated with the reversal of a single spin,
W(BAE). For H=0, X is reduced to its equilibrium value,
X(T,0)=¢2Fx. For soft dynamics, where the field and the
interaction terms factorize, the H dependence in Eq. (4) can-
cels out, while for hard dynamics, X has a nontrivial depen-
dence on H. Early results indicated that the SOS interfaces
generated with the soft Glauber dynamic are indeed indepen-
dent of H.° However, interfaces generated with the OSD dy-
namic, which is also soft, show a weak dependence on the
interface structure of the field.’
The partition function for the interface is

4000

1-X?
7(d) = xlolpMd)d , 3
() 5:2_00 ¢ 1 —2X cosh y(¢) + X> )
where y(¢) is given by
1+ Xt 1= X% tan® ¢+ 4x%]"2
o (X000 (1 =Xt e )2

2X(1 + tan ¢)

(see details in Refs. 5 and 7). The mean spin-class popula-
tions, (n(jks)), are all obtained from the product of the inde-
pendent pdfs for 8(x) and S(x+1). Symmetry of p[&(x)] un-
der the transformation (x, @, 8) — (-x,—¢,—05) ensures that
(n(jk—=))=(n(jk+)) for all j and k. Numerical results illus-
trating the breakdown of this up-down symmetry for large H
are discussed in Sec. III. The general expressions for the
class populations are given in the third column of Table I;
details of the calculation can be found in Ref. 7.

Whenever a spin flips from —1 to +1, the corresponding
column of the interface advances by one lattice constant in
the y direction. Conversely, the column recedes by one lat-
tice constant when a spin flips from +1 to —1. The corre-
sponding energy changes are given in the second column in
Table I. Since the spin-class populations on both sides of the
interface are equal in this approximation, the contribution to
the mean velocity in the y direction from sites in the classes
jk— and jk+ becomes

(vy(jk)) = WL BAE(jk - )] - W BAE(jk +)]. )

The mean propagation velocity perpendicular to the interface
becomes

(v, (T,H,$)) = cos ¢, (n(jks)Xv,(jk)), (8)
J.k

where the sum runs over the classes included in Table I. It
was shown in Ref. 7 that Eq. (8) reduces to the results for the
single-step?’!3 and the polynuclear growth3!'**35 models
at low temperatures for large and small ¢, respectively. The
spin-class populations listed in Table I can be calculated ex-

PHW[ B(- 2H — 4],)] + ezﬁHM/s(zH—Mx)]}m W
WLB(= 2H—47,)]+ WIBQH - 41,)] ’

plicitly by replacing X with its corresponding value from Eq.
(4).

In the next section, we show that the nonlinear-response
approximation gives good agreement with MC simulations
of driven SOS interfaces evolving under the phonon-assisted
dynamic for a wide range of fields and temperatures. The
main deviations between theory and simulations are seen for
H/J,=0 and 2, where some transitions allowed by the SOS
restrictions have AE=0 and thus are forbidden by the two-
dimensional phonon-assisted dynamic, Eq. (2).

III. COMPARISON WITH MONTE CARLO SIMULATIONS

We calculated the step-height distributions, propagation
velocities, and spin-class populations, analytically and by ki-
netic MC simulations, for the phonon-assisted dynamic in
the isotropic case, J,=J,=J. The details of our particular
implementation of the n-fold way rejection-free MC
algorithm?®2° are described in Refs. 5 and 7. The extension
to continuous time, which is necessary to handle transition
rates greater than unity, was introduced in Ref. 9.

The numerical results presented here are based on MC
simulations mostly at the two temperatures, 7=0.27, and
0.6T, [T,=—2J/In(y2—1) =~2.269/ is the critical temperature
for the isotropic, square-lattice Ising model®®], with L,
=10 000 and fixed ¢ between 0 and 45°. (The tilt angle ¢
was fixed by imposing helical boundary conditions in the x
direction.) In order to ensure stationarity, we ran the simula-
tion for 10* n-fold way updates per updatable spin (UPS) for
thermalization before taking any measurements. Unless oth-
erwise noted, the initial condition before thermalization was
a microscopically flat interface. The initial condition only
makes a difference near H=0. Stationary class populations
and interface velocities were averaged over 10° UPS. For the
stronger fields at 7=0.27,, we used ten times as many UPS.
Adequate statistics for the step-height pdfs were ensured by
the large L,.

A. Stationary single-step probability densities

Stationary single-step pdfs were obtained by MC simula-
tion at 7=0.2T,. and 0.6T, for ¢»=0 and several values of H.
The simulation data and the theoretical results for p[ ] are
shown in Fig. 3. The theoretical results are calculated with
Eq. (3), with X(T,H) from Eq. (4). The agreement between
theoretical and simulated results is quite good, particularly at
the lower temperature.

Another way to compare the analytical and simulation
results is by calculating {|5|) by averaging over the simu-
lated step-height pdf and comparing these values with the
theoretical ones obtained from Eq. (3), {|8])=2X/(1-X?),
with X from Eq. (4). The results are shown in Fig. 4 for ¢
=0 at T=0.2T, and 6.0T,, calculated theoretically (solid
lines) and by MC simulation (symbols). The agreement be-
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FIG. 3. (Color online) MC (data points) and analytical (solid
lines) results for the stationary single-step pdf, shown on a logarith-
mic scale vs &, for ¢=0 and the values of H/J given in the legend.
(a) T=0.2T, and (b) T=0.6T,. The symbols (and colors) have the
same interpretations in (a) and (b). Note the nonmonotonic field
dependence near H/J=2.

tween both results is reasonable. However, the theoretical
data present a smoother dependence on the field than ob-
tained from the simulation.

In Fig. 4, the behaviors of {|d]) near H/J=0 and 2 are of
particular interest. At H/J=0, the system should be in equi-
librium, and the theoretical results are exact.'” The discrep-
ancy between theory and simulation at this field, especially
at T=0.6T,, therefore means that the system simulated with
the phonon-assisted dynamic, starting from a microscopi-
cally flat initial state, does not equilibrate completely. This is
not due to a too short thermalization time. Rather, the reason
is the aforementioned suppression by Eq. (2) near H=0 of
transitions between states 11+ and 11—, which correspond to
diffusion of steps along the interface and represent an impor-
tant mechanism for equilibration. However, when {|4]), near
H/J=0 at T=0.6T,, is obtained by the phonon-assisted dy-
namic starting from the thermalized interface generated with
the standard Glauber dynamic, there is excellent agreement
with the theoretical result, as can also be seen in Fig. 4. As
H/J is increased from zero, the effect of the initial condition
rapidly vanishes.

In Fig. 5(a), we show together snapshots of stationary
interfaces at H/J=0 for T=0.6T,, generated in three different
ways: using the standard Glauber dynamic, with the phonon-
assisted dynamic starting from the equilibrated interface ob-
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FIG. 4. (Color online) Average stationary step height {|d|) vs
H/J for ¢=0 at T=0.2T,. and 0.6T.. The curves represent the the-
oretical results. Curve with circles (black): 7=0.27,. Curve with
squares (gray, red online): 7=0.67.. These data refer to interfaces
that started from a microscopically flat initial state. We also include
values near H/J=0, calculated by the phonon-assisted dynamic,
using as a starting state the thermalized interface obtained with the
standard Glauber dynamic. Black asterisks: T7=0.27. Gray asterisks
(red online): T=0.6T,. The differences are evident only near H/J
=0. In this and all the following figures, the statistical uncertainty is
much smaller than the symbol size. The inset shows a magnified
view of the region around H/J=2. Note the disagreement between
the theoretical and the simulation values at 7=0.67,. when H/J=2.

tained by the Glauber dynamic, and with the phonon-assisted
dynamic starting from a microscopically flat interface. Due
to the fact that energy-conserving moves (horizontal or ver-
tical step diffusion) are prohibited by the phonon-assisted
dynamic, the interface that started from the equilibrium in-
terface is highly correlated with the latter, and both have
(|8])=0.49, the equilibrium value. For the same reason, the
phonon-assisted interface that started from a microscopically
flat interface configuration does not fully equilibrate but
settles into a metastable configuration with (|8])=0.41, as
seen in Fig. 4.

At H/J=2, MC simulations give a value of (|d]) strictly
zero for T=0.2T, and very close to zero for 7=0.67T,, while
the theoretical value is very small but nonzero at 7=0.27.,
and clearly larger at T=0.6T. (see inset in Fig. 4). For strong
values of the field, the step height is only weakly dependent
on the temperature. These results are quite different from
those obtained with the standard (hard) Glauber dynamic
[see Fig. 5(a) of Ref. 7]. However, the strong H dependence
of the step heights is characteristic of hard dynamics.

In Fig. 5(b), we show together snapshots of stationary
interfaces at H/J=2 and T=0.6T,, one thermalized with the
standard Glauber dynamic, and the other generated by the
phonon-assisted dynamic, using the Glauber interface as its
starting state. The interface obtained with the phonon-
assisted dynamic is almost entirely microscopically flat, with
a very small density of “backward” (21-) notches that are
created at a rate «cexp(—8J/T) and annihilated almost imme-
diately. In fact, for H/J=2, the interface gets stuck as it can
never progress beyond the absolute maximum of the starting
configuration (and is thus nonergodic) due to the vanishing
rate of the transition 01 — —21+. One possible way to over-
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FIG. 5. (Color online) Short segments of thermalized interfaces
for ¢=0. (a) H/J=0, T=0.6T,. The three graphs show an equilib-
rium interface created with the standard Glauber dynamic over 10*
UPS (medium gray, red online), an interface created by the phonon-
assisted dynamic over 10® UPS, using the equilibrium interface as a
starting state (dark gray, blue online), and an interface created by
the phonon-assisted dynamic over 10' UPS, using a microscopi-
cally flat interface as starting state (black). (b) H/J=2, T=0.6T,.
The jagged interface (medium gray, red online) is in the statistically
stationary state, propagating in the direction of the arrow under the
standard Glauber dynamic. At a given time, the dynamic is switched
to the phonon-assisted transition rates, using the Glauber interface
as initial state. The lagging parts rapidly catch up with the absolute
maximum of the Glauber interface, where the interface gets perma-
nently stuck in an almost perfect, microscopically flat configuration
with a very small density of “backward” 12— notches (circled). At
this field, the transition forbidden by the phonon-assisted dynamic
is the nucleation of “forward” 12+ notches, which are needed to
nucleate propagation of a microscopically flat interface.

come this situation is to give the interface alternative paths to
reach equilibrium. This could possibly be done by relaxing
the SOS constraint to allow overhangs and bubbles.>® In
contrast, the Glauber interface at the same field and tempera-
ture propagates at a nonzero velocity and is microscopically
quite rough, with (|8])=1.79.

B. Stationary interface velocities

In Fig. 6, we show the mean propagation velocity perpen-
dicular to the interfaces vs H/J for ¢=0, obtained with the
analytical approximation, Eq. (8), and by simulations. In
general, there is good agreement between the MC results and
the nonlinear-response theory. However, there is a significant
discrepancy at H/J=2. At this field, the simulated velocities
are zero, independent of the temperature, while the theoreti-
cal value is small but nonzero and increases with tempera-
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FIG. 6. (Color online) The average stationary normal interface
velocity (v ) vs H/J for ¢=0. The MC results are shown as data
points, circles for 7=0.27, and squares for 7=0.67, and the theo-
retical results as solid curves. The inset shows a magnified view of
the region around H/J=2. Note again the disagreement between the
theoretical and the simulation values at 7=0.67, when H/J=2.

ture. This is perfectly consistent with the microscopically flat
interface structure at H/J=2, discussed above. In fact, the
knob-nucleating transition 01— — 21+, which is forbidden at
this field, is precisely the transition needed to nucleate the
advance of a microscopically flat interface. When H/J>2,
the velocity increases rather rapidly with H. This behavior is
very different from the one obtained for other hard dynamics
such as the standard Glauber and the TDA, where the veloc-
ity is bounded by unity [see Fig. 6 of Ref. 7 and Fig. 6(a) of
Ref. 9].

In contrast to the results discussed above, Fig. 7 shows the
velocity for the case in which the dimension of the phonon
bath is unity, i.e., d=1, which has a transition rate that de-
creases smoothly and monotonically with AE/T (in contrast
with the d=2 and 3 cases in which the transition rates vanish
for H=0 and H/J=2). The agreement between theory and
simulation is excellent over the whole range of H/J and tilt
angles, except for very large angles at higher fields. (This is
also the case for step-height distributions and other charac-
teristic quantities.)

The dependence of the normal velocity on the tilt angle ¢
is shown in Figs. 8(a) and 8(b) for several values of H/J at
T=0.2T, and T=0.6T,, respectively. The agreement between
the theoretical results and the simulations is very good ex-
cept at higher fields, where the agreement is only good at
intermediate values of ¢. The results are qualitatively similar
to those obtained with other hard dynamics (see Refs. 7 and
9). At T=0.2T,, in weak fields the velocity increases with ¢,
in agreement with the polynuclear growth model at small
angles and the single-step model for larger angles. For strong
fields, the behavior changes gradually to the reverse aniso-
tropy of Eden-type models.’’-® This is essentially the same
behavior observed for the TDA dynamic.” At T=0.6T,, the
velocity is nearly isotropic for weaker fields, while becoming
Eden-like for stronger fields. The exception is the case H/J
=2, which at small angles presents a polynuclear growth
type, as well as significant differences between the theoreti-
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FIG. 7. (Color online) Average stationary normal interface ve-
locity at 7=0.2T,, obtained by coupling the system to a one-
dimensional phonon bath. MC data are represented by the symbols,
and analytical results by the solid curves. (a) Velocity vs H/J for
$=0. (b) Velocity vs tan ¢ for several values of H/J.

cal and simulated results. The behavior of the normal veloc-
ity at T=0.6T, (excluding the case H/J=2) is very similar to
that observed for both the TDA and the OSD dynamics.’

We have not performed simulations of cluster growth with
this dynamic (except to some extent for nucleation at very
low T in Ref. 19). However, predictions for the asymptotic
growth shapes could be obtained from the anisotropy curves
for the growth velocity shown in Fig. 8 through a kinetic
Wulff construction.’® While we shall not perform such a for-
mal calculation here, we present the following qualitative
predictions. Isotropy should lead to near-circular growth
shapes, while anisotropic growth velocities should lead to the
elimination of the faster-growing faces. As a result, the “nor-
mal” anisotropy with growth velocity increasing with ¢
should lead to approximately square growth shapes with
faces parallel to the coordinate axes. At H/J=2, the results
shown in Fig. 5(b) lead us to expect any initial cluster to
evolve to a stationary rectangle bounded by planes touching
the initial cluster at its extrema in the x and y directions. In
contrast, Eden-like “reverse” anisotropy should lead to ap-
proximately diamond-shaped clusters with faces making 45°
angles with the axes.

The temperature dependence of the normal interface ve-
locity is shown in Fig. 9 for several values of H/J. The
agreement between the simulations and the analytical results
is reasonable, except for H/J=2, where the simulated veloc-
ity remains zero for all temperatures, while the predicted
velocity increases monotonically with the temperature. This
discrepancy is also due to the static and microscopically flat
interface that forms at H/J=2. This figure also shows that as
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FIG. 8. (Color online) The average stationary normal interface
velocity (v,) vs tan ¢, for several values of H/J. The symbols
represent MC data, and the solid curves analytical results. (a) T
=0.2T. and (b) T=0.6T,. The symbols have the same interpretations
in (a) and (b), given by the legend in (a). Online, the colors of the
curves and symbols match.

T— 0, the system develops a step discontinuity: the velocity
is zero for H/J<2 and increases with H for stronger fields.
This discontinuity at T=0 is also observed with the TDA®
and with the standard Glauber dynamic (see Fig. 8 of Ref. 7).

C. Spin-class populations and skewness

To test the analytical assumption that different steps are
statistically independent, we compare the analytical results
for the mean class populations’ with the simulated ones. The
six mean class populations, (n(01s)), (n(11s)), and (n(21s))
with s=+1, for ¢=0 at T=0.2T, and T=0.6T,. are shown vs
H in Fig. 10. At both temperatures, the analytical approxi-
mations follow the average of the populations for s=+1 and
s=—1 qualitatively well. However, for small fields, H/J <2,
the simulations show a stronger dependence on H than the
mean-field results. This difference is more evident at the
higher temperature, where the simulations show that the
population in front of the interface (s=—1) is quite different
from the one behind it (s=+1). Well away from the special
fields (H/J=0 and 2), the interfaces are a little rougher than
the theory predicts (lower Ols and higher 11s populations).
Near the special fields, the interfaces appear to get caught in
smoother (metastable for H/J=0) configurations. For H/J
=0, the Ols populations are slightly higher than the theoreti-
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FIG. 9. (Color online) The average stationary normal interface
velocity (v ) vs T for ¢»=0 and H/J between 0.5 and 3. MC data
are represented by data points and analytical results by solid curves.
Online, the colors of the curves and symbols match. The agreement
between simulation and theory is quite good, except for H/J=2.

cally predicted value, and the 11s populations are slightly
lower. This is more evident at the higher temperature. Note
that when H/J=0, the interface should be in equilibrium, and
the theoretical value is exact. However, this exact value is
only reached if the interface is equilibrating properly. This
can be seen in Fig. 10(b), where we include the population
averages, both calculated starting from a microscopically flat
interface and from a thermalized interface generated with the
standard Glauber dynamic. For H/J=2, the interface is much
smoother than predicted. [For T=0.6T., the measured values
for (n(01x)), (n(11-)), and (n(11+)) are approximately
0.9999, 10~*, and 0, compared with the respective predicted
values of 0.9, 0.1, and 0.01.]

The short-range correlations between neighboring steps
are responsible for the skewness between the spin popula-
tions on the leading and trailing edges of the interface that
appears in the simulation results. This phenomenon is com-
monly observed in driven interfaces. It occurs even when the
long-range correlations vanish as they do for interfaces in
the KPZ dynamic universality class, to which the present
model belongs for all finite, nonzero values of H/J#?2.
Skewness has also been observed in several other SOS-type
models, such as the body-centered SOS model studied by
Neergaard and den Nijs,* the model for step propagation on
crystal surfaces with a kink-Ehrlich-Schwoebel barrier stud-
ied by Pierre-Louis et al.,*' and a model for the local time
horizon in parallel kinetic MC simulations studied by Kor-
niss et al.*> No skewness was observed for the SOS model
with the soft Glauber dynamic.6 However, some skewness
was present in the OSD model,” indicating that a complete
lack of skewness is not a necessary characteristic of soft
dynamics. Also, a small degree of skewness was observed
for the Ising model (whose interfaces include bubbles and
overhangs) with the soft Glauber dynamic (about 2 orders of
magnitude smaller than the skewness observed for the hard
Glauber dynamic).® The TDA dynamic also presents consid-
erable skewness.’ The correlations associated with the skew-
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FIG. 10. (Color online) Mean stationary class populations
(n(jks)) vs H/J for ¢=0. The simulation results are indicated
by symbols, and the analytic approximations by solid curves.
(a) T=0.2T, and (b) T=0.6T,. At T=0.6T,, we also include some
values [asterisks for (n(jk+)) and pluses for (n(jk—))] calculated
with the interface created by the phonon-assisted dynamic, using
the thermalized interface obtained by the Glauber dynamic as start-
ing state. Note that in this case, there is excellent agreement be-
tween theory and simulations at H/J=0. The other symbols have
the same interpretations in (a) and (b), given by the legend in (a).
The insets in both (a) and (b) show (n(11s)) and (n(21s)) near
H/J=2.

ness generally lead to a broadening of protrusions on the
leading edge (“hilltops”), while those on the trailing edge
(“valley bottoms”) are sharpened*® or the other way
around.*? In terms of spin-class populations, the former cor-
responds to (n(21-))>(n(21+)) and (n(11+))>(n(11-)).
The relative skewness can therefore be quantified by the two
functions,*”

(n21-) = (n(21+))
P= 21 =)+ (21 +))

9)

and’
{11+ =11 -))
(11 +4)) + (n(11 =)

These two skewness parameters are shown together in Fig.
11. The temperature dependence of the skewness is stronger
at the lower temperature and smaller fields, and it is espe-
cially pronounced for p, due to the low concentration of sites
in the class 21+ at low temperatures and weak fields. € is

(10)
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FIG. 11. (Color online) The two relative skewness parameters p
(circles, black) and e (squares, red online), defined in Egs. (9) and
(10), respectively. The parameters are shown vs H/J for ¢=0, at
T=0.2T, (empty symbols) and at 7=0.6T, (filled symbols). The
inset shows a magnified view of the region around H/J=2.

very small and almost independent of T and H, except at
H/J=2.0, where both values are near unity, consistent with
the picture of an interface with a very low density of 21—
notches.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the nanostructure of an
unrestricted SOS interface interacting with a two-
dimensional phonon heat bath and driven far from equilib-
rium by an applied field. This work is a continuation of
previous studies aimed to explore the crucial role of
the stochastic dynamics selected to simulate physical
systems.>>43% Important properties such as nanostructure
and mobility of driven interfaces have been shown to be
strongly dependent on the stochastic dynamics.’™

The transition rates that give the evolution of the system
are calculated by coupling the spin Hamiltonian to a two-
dimensional phonon heat bath. The dynamic generated in
this way belongs to the class known as hard.'® In condensed-
matter systems, phonon-driven dynamics are dominant, and
technologically they are becoming increasingly important,
e.g., in connection with the behavior of quantum dots.*

We studied the nanostructure and velocity of the SOS
interface by kinetic MC simulations and by a nonlinear
mean-field theory developed in previous papers.>’ We calcu-
lated the interface velocity as a function of the driving field,
temperature, and angle of the interface relative to the lattice
axes. We also studied the local shape of the interface in terms
of the spin-class populations, the average height of a step,
and the probability density for individual steps in the inter-
face.

In general, we found good agreement between the theo-
retical calculations and the MC simulations. In particular, we
found the strong dependence of the interface structure on the
field characteristic of systems that evolve under hard dynam-
ics, such as the Glauber or TDA dynamics.>”?

Our theoretical results are based on the mean-field as-
sumption that individual steps of the interface are statisti-

PHYSICAL REVIEW B 76, 045422 (2007)

cally independent; short-range correlations are neglected.
However, our MC results show asymmetry between the spin
populations on the leading and trailing edges of the interface,
which is an indication of the existence of such short-range
correlations. With increasing field, the interfaces undergo a
gradual breakdown of up-down symmetry, which has also
been observed in other examples of driven interfaces.”*0-4?
Aside from such, relatively minor, discrepancies between the
theoretical mean-field predictions and the simulation results,
which show that there is room for improvement of the mean-
field model, the theory predicts very accurately the qualita-
tive behavior of the interfaces and yields a reasonable overall
approximation to their quantitative behavior. The important
exceptions are the special field values, H/J=0 and 2, where
certain transitions allowed by the SOS constraint are forbid-
den by the phonon-assisted dynamic for phonon baths of
dimension greater than 1. At H/J=0, this leads to a failure of
the simulated interface to reach thermal equilibrium, while at
H/J=2, it leads to an abnormally flat interface that is unable
to propagate.

It should, however, be noted that the phonon-assisted dy-
namic defined by Eq. (2) is based on a weak, linear coupling
of the bosonic bath to the spins. It is therefore possible that
higher-order and/or multiphonon corrections to the transition
rates could restore the vanishing rates for energy-conserving
transitions. Nevertheless, higher-order effects may not com-
pletely mask the slowing down of the interface in the vicinity
of the special field values observed here. We therefore expect
that much of the characteristic field dependence will carry
over to more sophisticated rate models. This expectation is
supported by the results of recent experiments on phonon-
mediated spin dynamics in a quantum dot,* in which signifi-
cant slowing down was observed for nearly energy-
conserving transitions. Another interesting question is to
what extent a relaxation of the SOS constraint to consider a
full Ising interface including overhangs and bubbles (see
Refs. 5 and 8) might open alternative channels for full equili-
bration. Naturally, one can also think of more general dy-
namics, including multiple-spin-flip elementary transitions.
These questions are left for future study.

As in previous studies,>?*3** our results indicate strong
differences between interfaces moving under different sto-
chastic dynamics, emphasizing the need for extreme care in
selecting the appropriate dynamic for the physical system of
interest. This general understanding and the specific results
for the phonon-assisted dynamic presented in this paper rep-
resent significant steps in the direction of putting kinetic MC
simulations on a solid physical foundation.
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