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We develop a many-body description of ultrafast electron dynamics in surface bands appropriate for study-
ing relaxation of hot electrons and holes excited in the processes of one- and two-photon photoemission and
inverse photoemission from surfaces. The description is based on the formalism for calculation of quasiparticle
survival probabilities combined with self-consistent treatment of the electronic response of the system. We
show that the calculation of survival amplitudes which carry information on the quasiparticle decay and
decoherence can be conveniently mapped onto the problem of renormalization of quasiparticles by the inter-
actions with bosonized excitations constituting the system heatbath. Applying this approach to the benchmark
Cu�111� surface we are able to assess the regimes of preasymptotic non-Markovian quasiparticle dynamics in
surface bands and locate transitions to the regime of exponential decay governed by the modified Fermi golden
rule-type of transition rates. The general validity of these findings enables us to establish borderlines between
different regimes of ultrafast electronic relaxation and on that basis to introduce a simple interpolation scheme
for modeling of quasiparticle decay in the course of spectroscopic measurements.
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I. INTRODUCTION

Recent applications of high resolution electron spec-
troscopies to the investigations of surfaces have enabled im-
portant new insights into the electronic structure and dynam-
ics of probed systems.1–8 Studies of the electronic properties
of confined systems are usually based on electron excitations
from or injections into the system, either in the one-step
processes as in the direct photoemission �PE� or inverse pho-
toemission �IPE� spectroscopy, or in the two step laser pump-
probe induced transitions as in the two-photon photoemis-
sion �2PPE� spectroscopy. Common to all these experiments
is a nonadiabatic creation of quasiparticles, electrons in the
unoccupied and holes in the occupied states, whose subse-
quent motion is subjected to the final state �in PE and IPE� or
intermediate state interactions �in 2PPE� with the remainder
of the system. This gives rise to the processes of decoherence
and decay of primary excitation9,10 which affect the spectra
of excited quasiparticle�s�. Experiments carried out on the
systems whose typical relaxation times are much shorter than
the duration of measurement provide information on the
asymptotic steady state relaxation of excited systems in their
passage towards thermodynamic equilibrium. This type of
relaxation is commonly described in terms of the rate con-
stants that control the decay and dephasing of quasiparticle
states.7,8

The sources of decay and dephasing of quasiparticles in
surface bands are their interactions with the degrees of free-
dom that constitute the heatbath of the system10 �excitations
of electronic charge density, spin density, vibrations, etc.� as
well as with the localized scatterers11 �impurities, defects,
steps, etc.�. The manifestations of these processes in the mea-
sured spectra enable the assessments of dynamical properties

of the system. Of special interest in this context are the sys-
tems which support unoccupied and occupied quasi-two-
dimensional �Q2D� surface bands because that makes pos-
sible the studies of dynamics of surface localized electrons
and holes in interaction with the same heatbath by employing
complementary experimental techniques. A paradigmatic ex-
ample of this type of structure is the Cu�111� surface with a
partly occupied surface state band and an unoccupied image
potential state band that were among the first Q2D electron
bands extensively studied by high resolution PE12 and time
resolved 2PPE spectroscopy,3,13 respectively.

New developments and applications of time resolved
spectroscopies have pushed the limits of detection of ul-
trafast phenomena towards the subfemtosecond scale. In this
regime the act of measurement may proceed on the time
scale comparable to or shorter than that of relaxation pro-
cesses. Recent spectroscopic measurements utilizing ul-
trashort laser pulses14 and novel applications of x-ray
techniques15 have demonstrated the possibility of probing the
early evolution of excited quasiparticles with high temporal
resolution. However, since the early quasiparticle evolution
may considerably differ from the asymptotic Markovian be-
havior described by the rate constants,9,16 reliable interpreta-
tions of the results of this kind of measurements should be
based on nonasymptotic treatments of the dynamics of ex-
cited systems. Nonasymptotic treatments enable pinpointing
the intervals in which the descriptions of quasiparticle propa-
gation in terms of few rate constants cease to be valid and
thereby provide greatly improved physical insights into the
evolution of intermediate states in 2PPE and the final states
in PE and IPE from surface electronic bands.

The modeling and analyses of electron dynamics in time
resolved spectroscopies of surfaces have been carried out
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dominantly in the framework of optical Bloch equations pa-
rametrized in terms of rate constants that were fitted to re-
produce the measured data.17,18 However, the phenomeno-
logically introduced rate constants do not carry information
on the early quasiparticle evolution and hence the validity of
this approach is restricted to the asymptotic regime in which
the time scale�s� of perturbation of the system by external
probe�s� is separated from the time scale of relaxation pro-
cesses that affect spectral shapes.6,18 To overcome this short-
coming of the phenomenological approaches we develop in
the present paper a microscopic description of presymptotic
evolution of electrons and holes subsequent to their promo-
tion into the surface localized states. The formalism is ap-
plied to illustrate and interpret ultrafast quasiparticle dynam-
ics in Q2D bands on the benchmark Cu�111� surface in the
course of spectroscopic measurements. Extension to other
systems that exhibit surface electronic bands is straightfor-
ward as it only requires modifications in the input of unper-
turbed band structure.

The present work is focused on the description of decay
and dephasing of quasiparticles caused by the interaction
with the heatbath of electronic excitations. We model this
interaction within the linear response formalism developed
earlier to study dynamical electronic properties of metallic
surfaces.7,8 In Sec. II we first outline a general method for
calculating the self-consistent �SC� response of interacting
electrons confined in a thick slab which enables the identifi-
cation of the bulk and surface localized electronic states in
the system and of the ensuing spectrum of single pair and
collective excitations. The method is applied to calculate the
electronic response of a Cu�111� surface and to demonstrate
its equivalent boson representation needed for tractable de-
scriptions of quasiparticle interactions with the heatbath. In
Sec. III we define the survival amplitudes and probabilities
which contain the desired information on ultrafast dynamics
of quasiparticles promoted into surface bands. Upon estab-
lishing the relation between electron and hole propagators in
the real time domain and quasiparticle survival amplitudes
the latter are calculated by combining the description of
preasymptotic quasiparticle dynamics elaborated in Ref. 19
�hereafter to be referred to as I� and the formulation of
bosonized electronic response developed in Sec. II. Analyses
of the thus calculated survival probabilities of hot quasi-
particles excited in surface bands on Cu�111� enable the
identification and assessment of electronic relaxation pro-
cesses characteristic of the final states in PE and IPE and of
the intermediate states in 2PPE spectroscopy of surfaces. In
concluding Sec. IV we summarize the main results of appli-
cation of the developed formalism to description of quasipar-
ticle dynamics in surface bands and discuss its merits in
the context of complementing and refining the earlier theo-
retical treatments of ultrafast dynamics in which the deco-
herence and decay of quasiparticles were introduced either
on a semiphenomenological basis13,17,18 or were restricted to
asymptotic regimes.7,8 To facilitate applications of the devel-
oped description in interpretations of time resolved measure-
ments we formulate a simple interpolation scheme for fitting
the non-Markovian ultrafast decay of quasiparticles that
could be used for analyzing the results of high resolution
spectroscopic studies.

In Appendix A we present a detailed derivation of the
electronic response function for a thick atomic slab required
in the calculations of survival probabilities in Sec. III. In
Appendix B we use this formulation to derive a quantum
analog of the classical image potential needed in the discus-
sion of final state screening effects in Sec. II B. Preliminary
results of this work have already been published in Ref. 16.

II. MODELING OF INTERACTIONS OF
QUASIPARTICLES WITH SUBSTRATE ELECTRONIC

EXCITATIONS

A. Electronic response of a metallic slab

Dynamical interaction of a probe charge with the charge
density fluctuations in a polarizable medium can be conve-
niently described within the formalism of dielectric response.
Dielectric properties of planar metallic surfaces have been
extensively studied in the past four decades, mainly through
the descriptions of electronic response by the linear density-
density response function ��r ,r� , t� for interacting electron
gas homogeneous in the direction parallel to the surface.20,21

In our calculation of the properties of response functions
pertinent to metallic surfaces that support Q2D electronic
bands we start from the definition

��r,r�,t� = − i�0���̂�r,t��̂†�r,t�,�̂�r�,0��̂†�r�,0���0���t� ,

�1�

where �. . . , . . . � denotes a commutator, �̂†�r , t� and �̂�r , t� are
the electron field creation and annihilation operators in the
Heisenberg picture, respectively, with r= �� ,z� and r�
= ��� ,z�� denoting the coordinates of the field with � ����
parallel and z �z�� perpendicular to the surface plane, and �0�
represents the ground state of the system. In the calculations
of response functions corresponding to electron systems with
translational invariance along the surface we shall represent
the various propagators and interactions by their two-
dimensional �2D� spatial and temporal Fourier transforms
�FT� following the notation of Ref. 22. Summations over 2D
wave vectors parallel to the surface are performed accord-
ing to �Q→ �L /2��2	d2Q and inverse Fourier transforms
are obtained as f�z ,z� ;��= �1/L2��Q exp�iQ��f�z ,z� ;Q�
=	 exp�iQ��f�z ,z� ;Q�d2Q / �2��2, where L plays the role of
box quantization length in x and y directions. With these
conventions the 2D spatial and temporal FT of the response
function �1� reads �hereafter �=1�:

��z,z�;Q,�� =
 d2�̄e−iQ�̄
 dtei�t��z,z�;�̄,t� , �2�

where �̄= ��−��� and Q is a 2D wave vector parallel to the
surface. The dimension of the thus defined ��z ,z� ;Q ,�� is
�length�−4	 �energy�−1.

In this section we construct ��z ,z� ;Q ,�� corresponding
to interacting electron gas at zero temperature that is con-
fined within a thick atomic slab translationally invariant in
the surface plane because this geometry has proved conve-
nient in the assignments and numerical treatments of elec-

LAZIĆ et al. PHYSICAL REVIEW B 76, 045420 �2007�

045420-2



tronic states localized at atomically flat surfaces.23–25 We
start from �0�z ,z� ;Q ,�� corresponding to a noninteracting
electron gas in the same geometry to obtain self-consistent
��z ,z� ;Q ,�� in the random phase approximation �RPA� and
then make use of the spectral properties of response func-
tions to calculate the excitation spectrum of interacting elec-
trons in the slab.

In the framework of SC RPA the response function
��z ,z� ;Q ,�� is obtained by solving the integral equation

��z,z�;Q,�� = �0�z,z�;Q,��

+
 dz1
 dz2�0�z,z1;Q,��V�z1,z2;Q�

	��z2,z�;Q,�� . �3�

The ingredients of this equation are �0�z ,z� ;Q ,�� calculated
below and the 2D Fourier transform V�z ,z� ;Q� of the bare
Coulomb interaction �see Eqs. �A4� and �A5��. The noninter-
acting electrons are described by the single particle wave
functions

��r�K,n� = �K,n�r� =
1

�L2
eiK�
n�z� , �4�

where K and n are the 2D wave vector and the quantum
number describing the particle motion parallel and perpen-
dicular to the surface, respectively. The single particle orbit-
als 
n�z� are normalized to the length perpendicular to the
surface so that �K� ,n� �K ,n�=�K,K��n,n�, and the correspond-
ing energies �n are solutions of the 1D Schrödinger equation

�−
1

2m

d2

dz2 + VMP�z�
n�z� = �n
n�z� . �5�

Here VMP�z� is the effective model potential described in
Ref. 26 that is constructed so as to follow the asymptotic
form of the semiclassical image potential for an electron
placed at distance z outside the metal surface

v�z� = −
e2

4�z − z0�
, �6�

with e denoting the electron charge and z0 the effective po-
sition of the image plane, respectively �note this difference in
selection of VMP�z� with respect to Refs. 20 and 21�. For
slabs of finite thickness analogous asymptotic behavior of
the potential is also introduced outside the other surface �see
below�. The potential VMP�z� reproduces the key properties
of the surface electronic band structure which in the case of
�111� surfaces of noble metals are the presence of a band gap
at the center of the 2D Brillouin zone and the existence of
surface localized Shockley and image potential states as the
initial unperturbed state features �hereafter to be referred to
as SS and IS states, respectively�. Upon expanding the par-
ticle field operators in Eq. �1� in terms of unperturbed wave
functions �4� and electron creation and annihilation operators
cK,n

† and cK,n for the corresponding eigenstates, respectively,
viz.

�̂�r� = �̂��,z� = �
K,n

eiK�
n�z�
�L2

cK,n, �7�

we find that the 2D FT of the response function for nonin-
teracting electrons takes the form

�0�z,z�;Q,�� = 2�
n,n�


n�z�
n��z�
n�z��
n��z��
1

L2

	�
K

fK,n − fK+Q,n�

EK,n − EK+Q,n� + � + i�
, �8�

where the prefactor 2 stands for spin, fK,n is the Fermi dis-
tribution, � is a positive infinitesimal, and

EK,n =
K2

2mn
+ �n �9�

denotes the energy of a particle in the eigenstate �K ,n� in the
nth band of the slab. The thus obtained �0�z ,z�Q ,�� has the
required dimension �length�−4	 �energy�−1 and is indepen-
dent of the box quantization length L.

In the following, we shall take 
n�z� calculated in the
geometry corresponding to a thick atomic slab with the left-
hand side �lhs� and right-hand side �rhs� crystal edges �sur-
faces� located at zL0 and zR=0, respectively, and a large
enough number of atomic layers in between so as to retrieve
both the bulk and surface electronic properties of the crystal.
We shall also assume that the electron density vanishes at a
large distance zs from either crystal edge which enables us to
expand the one-dimensional wave functions 
n�z� in a Fou-
rier series of the form24


n�z� =�2

d
�
l=0

lmax �cn,l
+ cos�2�l

d
z� + cn,l

− sin�2�l

d
z� ,

�10�

where n=1,2 , . . . takes the role of a band index, the distance
d is given by

d = �N − 1�d0 + 2zs, �11�

and N and d0 are the number of atomic layers and the inter-
layer spacing, respectively. This yields zL=−�N−1�d0. Due
to the symmetry of the slab model potential that enters Eq.
�5�, the eigenfunctions 
n�z� are either even �with cn,l

− =0� or
odd �with cn,l

+ =0� with respect to the mirror symmetry plane
z=−�N−1�d0 /2. In the case of the hereafter studied �111�
surface of Cu we take N=31 and zs=20d0 with d0=3.943 a.u.
to fix d in Eq. �11�, and lmax in Eq. �10� to correspond to an
energy of 150 eV.

In the limit N→� the lhs crystal edge zL→−� and the
pairs of wave functions 
2k−1 and 
2k �k=1,2 , . . . � become
degenerate. The limit of a very thick slab is appropriate to
modeling of a semi-infinite crystal with the surface at zR=0
and in such situations of large N it may turn out more con-
venient to introduce an equivalent basis set of orthonormal
wave functions that are localized on the left �L� or the right
�R� surface of the slab. These wave functions are obtained by
applying the transformation
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k
�L,R��z� =


2k−1�z� ± 
2k�z�
�2

. �12�

For the above choice of the slab parameters the lhs and rhs
crystal edge SS wave functions are given by Eq. �12� with
k=16, i.e., they are formed by taking the linear combinations
of 
31 and 
32 defined in Eq. �10�. Analogously, the first lhs
and rhs IS wave functions are obtained from Eq. �12� by
setting k=17. The corresponding electron density residing in
the lhs SS state, viz. �
SS

�L��z��2, and in the first rhs IS state,
viz. �
IS

�R��z��2, of the thus parametrized Cu�111� slab are
shown in Fig. 1. Illustration of going over from one basis to
the other in the calculations of physically relevant quantities
is given at the end of Appendix A.

Substituting the wave functions �10� in Eq. �8� we obtain
a series expansion for the response function of noninteract-
ing electrons

�0�z,z�;Q,�� = �
n1=0

�

�
n2=0

�

�n1,n2

0,+ �Q,��cos�2�n1

d
z�

	cos�2�n2

d
z��

+ �
n1=1

�

�
n2=1

�

�n1,n2

0,− �Q,��sin�2�n1

d
z�

	sin�2�n2

d
z�� , �13�

in which the coefficients �n1,n2

0,± �Q ,�� are calculated follow-
ing the procedure described in Ref. 24. The SC response
function ��z ,z� ;Q ,�� of interacting electrons can be ex-
panded in the same type of series and expressed in terms of
the coefficients �n1,n2

± �Q ,�� which are determined by substi-
tuting Eq. �13� into integral equation �3� and solving the
ensuing matrix equation

�n1,n2

± �Q,�� = �n1,n2

0,± �Q,��

+ �
n�,n�

�n1,n�
0,± �Q,��Vn�,n��Q��n�,n2

± �Q,�� ,

�14�

in which the coefficients Vn�,n��Q� are obtained by integrat-
ing the product of 2D FT of the bare Coulomb interaction
V�z ,z� ;Q� and the eigenfunctions of the Fourier series for �0

and �.
In the present study of electron dynamics at surfaces we

shall investigate how the excited quasiparticles are affected
by the interactions with charge density fluctuations in the
system that are described by �. To this end we develop a
method for renormalization of quasiparticles based on the
equivalent boson representation that proves particularly con-
venient in the studies of quasiparticle dynamics in the real
time domain. In doing so we start from the above outlined
linear response formalism as a suitable framework for the
calculation of quasiparticle self-energies at the level of GW
approximation �GWA�. In this scheme the short range ex-
change and correlation effects associated with the probe qua-
siparticle and the screening electrons are omitted which is
justified in common practice by the large mutual cancellation
between these effects in the final expressions for self-
energies �see discussion in Sec. 2.1.1 of Ref. 8�. As demon-
strated in Appendix A, resorting to this scheme is equivalent
to studying the quasiparticle intra- �n�=n� and inter-band
transitions �n��n� induced by the interactions with
bosonized excitations of wave vector Q and energy � of the
electronic density in the system. These excitations are mod-
eled by a boson propagator D that has a Lehmann represen-
tation

Dn,n�;n�,n�Q,�� = 

0

�

d��Sn,n�;n�,n�Q,���

	� 1

� − �� + i�
−

1

� + �� + i�
� , �15�

whose spectrum is calculated from ��z1 ,z2 ;Q ,�� for inter-
acting electrons as

Sn,n�;n�,n�Q,�� =
 dz1
 dz2fn,n��z1,Q�

	�−
1

�
Im ��z1,z2;Q,�� fn�,n�z2,Q� .

�16�

Here the generalized oscillator strengths fn,n��z1 ,Q� and
fn�,n�z2 ,Q� are defined in Eq. �A6� and the calculation of
coefficients determining the expansion of expression on the
rhs of Eq. �16� is demonstrated in Appendix A. This finally
yields the SC RPA electronic excitation spectrum
Sn,n�;n�,n�Q ,�� in the form given by Eq. �A12�, with the
dimension �length�−2	 �energy�−1. Note also that the role of
Sn,n�;n�,n�Q ,�� in the phase space of quantum numbers
�Q ,n ,n� ,�� is analogous to the role played by the imaginary
part of Lindhard’s function in the case of a 3D noninteracting

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

-100 -50 0 z (a.u.)

|φ
SS

(L)
(z)|2 |φ

IS

(R)
(z)|2

FIG. 1. �Color online� Plot of electron densities residing in the
Shockley surface state, �
SS

�L��z��2, on the left �111� surface, and in
the first image potential state, �
IS

�R��z��2, on the right �111� surface
of a 31 atomic layer thick Cu slab �shaded region� with interlayer
spacing d0=3.943 a.u.
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electron gas. The evolution of a wave packet comprising
bosonized electronic excitations that build up the spectrum
�16� is described by Dn,n�;n�,n�Q , t� which is obtained as the
inverse temporal Fourier transform of Eq. �15�. One of the
most important features of the thus defined SC response
function � for interacting electrons and its boson representa-
tion D is that they correctly reproduce the static limit of a
retarded screened interaction between the probe charges and
metal surfaces in the asymptotic form of a classical image
potential �cf. Appendix B�. This signifies that the self-
consistent linear response formalism satisfies the limit of per-
fect screening at surfaces which imposes important sum rules
on the spectrum of surface electronic excitations.27–30

In Sec. III we exploit the above-developed slab approach
in the calculation of electron dynamics in Q2D bands local-
ized at metallic surfaces. In order to apply the thick slab
model to this situation one needs to express the spectrum
�16� in the �L ,R�-basis spanned by the wave functions �12�,
i.e., compute it for the initial states localized at one surface
of the slab and for the various combinations of final states
partaking in intra- and inter-band transitions, viz. IS→ IS,
IS→SS, SS→SS, and similar ones involving the bulk final
states. This requires the representation of the corresponding
oscillator strengths in the �L ,R�-basis which are derived at
the end of Appendix A.

Quite generally, interacting electron gas in a thick slab
may exhibit incoherent excitations �single- and multi-pair ex-
citations� and coherent excitations �collective modes�. In the
SC RPA formalism described above the incoherent excita-
tions are single electron-hole pairs and coherent excitations
include bulk plasmons �BP�, surface plasmons �SP�, and
multipole plasmons �MP� which all contribute to the spectral
function Sn,n�;n�,n�Q ,��. Figure 2 shows the computed inten-
sity of the n=n�=IS intraband component of the excitation
spectrum SIS,IS�Q ,�� obtained for the IS-band localized on
one side of a 31 layer thick Cu�111� slab, over the phase
space of excitation energies � and wave vectors Q relevant
to our calculations. The contributions to the intensity come
from the collective mode which disperses along a parabolic

curve starting at the point �Q=0,�=7.6 eV� and dominates
the spectrum, another distinct mode with higher energy
whose dispersion curve starts at �=11.6 eV, and the
electron-hole �e-h� quasicontinuum with nonvanishing inten-
sity in the region encompassed by the parabolas �
=Q2 /2mn±QvF,n and 0���QvF,n−Q2 /2mn �vF,n is the
Fermi velocity in the nth band�. Here the assignment of the
various collective modes are additionally complicated by the
effective electron masses mn different from the free electron
value due to which the magnitudes of surface plasmon fre-
quency �s and bulk plasmon frequency �p need not be equal
to those of the equivalent jellium model of the slab charac-
terized by the corresponding free electron density parameter
rs. To assist assignments and estimate the relative contribu-
tions of collective excitations to the surface excitation spec-
tra we show in Fig. 3 the calculated shapes of the spectrum
SIS,IS�Q ,�� for small values of wave vectors from the inter-
val 0Q�0.09 a.u. in which the e-h continuum component
that is linear in Q is still small. While the maxima develop-
ing from the peak centered at �7.6 eV for small Q can be
clearly identified with the monopole surface plasmon excita-
tions in the slab, the assignment of the mode giving rise to
the peaks at �11.6 eV is less straightforward. Their very
weak dispersion and the enhancement of intensity with the
increase of Q point towards the multipole surface plasmon
character of this mode31,32 rather than of the bulk plasmon.
This assignment is additionally corroborated by inspection of
the spectra Sn,n�;n�,n�Q ,�� involving IS→ bulk band transi-
tions and intrabulk band transitions �not shown here� which
exhibit a third peak at �12.5 eV that can be assigned the
bulk plasmon character. Further elaboration of this issue re-
quires analyses going beyond the scope of the present work
in which the various Sn,n�;n�,n�Q ,�� enter as numerical in-
puts.

The n=n�=SS intraband component SSS,SS�Q ,��, shown
in Fig. 4 exhibits similar features. However, owing to the
larger oscillator strengths fSS,SS� f IS,IS the overall magnitude
of SSS,SS�Q ,�� is larger than SIS,IS�Q ,�� by a factor �3. In
contrast to this, the interband n=IS,n�=SS surface excita-
tion spectrum SIS,SS�Q ,�� shown in Fig. 5 vanishes for Q

FIG. 2. �Color online� Intensity plot of the image state intraband
component of the slab electronic density excitation spectrum
SIS,IS�Q ,��, shown as a function of energy � and momentum Q of
the excitations.

0 5 10 15
0

0.005

0.01

Q=0.015
Q=0.03
Q=0.045
Q=0.06
Q=0.075
Q=0.09

MP

SP

ω [eV]

FIG. 3. �Color online� Cuts of the image state intraband compo-
nent of the excitation spectrum SIS,IS�Q ,�� from Fig. 2 taken along
the planes Q=const as indicated in the inset. SP and MP denote the
peaks associated with monopole surface plasmon and higher order
multipole plasmon mode, respectively.
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=0 due to the orthogonality of wave functions 
n�z�, and for
Q�0 exhibits the magnitude that is smaller than SIS,IS�Q ,��
by a factor �45 because f IS,SS� f IS,IS.

B. Image potential as an adiabatic final state effect

The effective potential VMP�z� employed in Eq. �5� to cal-
culate the single-electron wave functions in the slab has been
taken to incorporate the asymptotic form of the semiclassical
image potential outside the slab, as given for the rhs surface
by Eq. �6�. As a consequence, a series of states localized at
either surface is produced by a combined effect of the long
ranged image potential tail and the surface projected bulk
band gap. However, an external probe charge e that is nona-
diabatically �suddenly� promoted to a distance z outside the
metal surface does not initially feel the image potential that
would arise due to instantaneous formation of the image
charge density in the surface region. Rather, the quantum
analog of classical image potential appears as a result of the
retarded interaction of the external charge with the induced
screening charge described by Dn,n�;n�,n�Q , t� that, according

to the results presented in Sec. II A and Appendix A, builds
up in a finite time interval, typically of the order of inverse
surface plasmon frequency �s

−1 for which the spectra �16�
exhibit maxima �cf. Figs. 2–5�. In other words, the full semi-
classical form of the image potential is reached only after the
external charge has interacted sufficiently long with the elec-
tronic density excitations in the metal in order to develop a
fully relaxed screening charge density. Thus in PE spectros-
copy the creation of a positive hole charge in an initially
occupied state at the surface is followed by the formation of
negative screening charge density which gives rise to a final
state image potential energy shift of the photoinduced hole.
On the other hand, in IPE and the first step of 2PPE the
image potential appears as a relaxation effect arising from
the positive charge density induced in the metal in response
to the electron promotion into an empty state �for the discus-
sion of formation of image potential shifted energy levels see
Refs. 33 and 34, and the Introduction of Ref. 36�. Hence a
natural choice of a complete set of states used in the linear
response description of dynamical screening at surfaces may
be the set of eigenstates of the one-body potential ṼMP�z�
that does not initially incorporate image potential effects.
However, as a time-dependent perturbation approach starting
from this basis of initial states may converge very slowly or
require summations of infinite series of the scattering contri-
butions, resorting to different schemes proves necessary. A
similar problem arises also in connection with energy level
renormalizations in the field theoretical formulations of
scattering37 and we shall adopt the same method of solution
in the present treatment.

We proceed by assuming that the energy spectrum of the
unperturbed Hamiltonian which describes the probe electron
moving inside and near the boundary of a semi-infinite metal
is solved in the same fashion as implemented in the deriva-
tion of the electronic response function in Sec. II A. The
effective interaction Ucrys�z� of the probe particle with the
periodic structure of the crystal is complemented with the
adiabatic �static� surface correction

U�z� = −
e2

4�z − z0�
f1�z − z0� , �17�

which is nonvanishing in the interval z�z0 outside the crys-
tal surface located at z=0. Here f1�z−z0� is a kind of Tang-
Toennies attenuating function38 which guaranties a smooth
match of the asymptotic form of the semiclassical image po-
tential v�z� given by Eq. �6� with Ucrys�z� at z=z0, and which
saturates at unity for z→�. Thus the effective potential act-
ing on the probe electron is the same as the one appearing in
Eq. �5� and given by VMP�z�=Ucrys�z�+U�z�. In the case of
slabs of large but finite thickness an analogous correction is
introduced also at the opposite surface. This enables con-
struction of a Hamiltonian H0 for noninteracting electrons in
the second quantization representation in terms of the elec-
tron creation and annihilation operators introduced in Eq. �7�
and the one-electron energies Eq. �9� as

H0 = �
K,n

EK,ncK,n
† cK,n. �18�

Here the eigenstates �K ,n� and eigenenergies EK,n corre-
sponding to H0 incorporate the final state effects of image

FIG. 4. �Color online� Intensity plot of the surface state intra-
band component of the slab electronic density excitation spectrum
SSS,SS�Q ,��, shown as a function of energy � and momentum Q of
the excitations. Note that the maxima of SSS,SS�Q ,�� are not plot-
ted beyond the upper limit of vertical scale.

FIG. 5. �Color online� Intensity plot of the IS-SS interband com-
ponent of the slab electronic density excitation spectrum
SIS,SS�Q ,��, shown as a function of energy � and momentum Q of
the excitations.
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potential on the noninteracting electrons as generated by the
Schrödinger equation �5�.

However, when considering the effects of dynamic re-
sponse of the electronic density to the introduction of a
single electron �hole� into the system it is necessary to take
into account that U�z� is equal to the final state total energy
correction or the energy relaxation shift which originates
from the static limit of the dynamic many-body response of
the metal to the presence of external charge �cf. Appendix
A�. Hence in order to avoid overcounting the same final state
potential should be subtracted from the effects produced by
the dynamical many-body interaction V of the electron �hole�
with the electronic response. This can be achieved by making
use of the procedure outlined in Sec. 5 of Ref. 37 and Sec.
3.3.1 of Ref. 39. To this end we consider the following
Hamiltonian which describes electron interaction with the
electronic heatbath of the system:

H = H0 + Hbath + V�, �19�

where Hbath is the unperturbed Hamiltonian of bosonized
electronic charge density fluctuations constituting the heat-
bath. The interaction V�, obtained from V by subtracting the
final static image effects, then reads

V� = �
K,n,K�,n�

��VK,n,K�,n� − �K,K�Un,n��cK�,n�
† cK,n, �20�

where � is the coupling constant and VK,n,K�,n� is the matrix
element of the afore-mentioned dynamic interaction of the
excited quasiparticle �electron or hole� with the bosonized
charge density fluctuations described by the response func-
tion � �or equivalently, by the boson propagator D�, and
Un,n�= ��n�z� �U�z� ��n��z�� with U�z���2 given by Eq. �17�.
By introducing the creation and annihilation operators aQ,�

†

and aQ,�, respectively, for bosonized charge density modes
�Q ,��, we find that VK,n,K�,n�� �aQ,�

† +a−Q,�� which is off-
diagonal in the number of boson excitation quanta �cf. Refs.
35 and 36, and Fig. 14�. Now, in a full quantum calculation
of renormalization of quasiparticle energy in the adiabatic
limit we start from definitions �18�–�20� and find that the first
order Rayleigh-Schrödinger perturbation correction in V� for
the energy level �n yields the shift −Un,n��2, whereas
�VK,n,K�,n� gives no contribution since by construction it is
off-diagonal in the quantum numbers �Q ,��. However,
�VK,n,K�,n gives a contribution to the second order perturba-
tion correction which by construction of the image potential
shift within the linear response is ��2 and cancels out the
first order correction −Un,n in the limit of a quasiclassical
particle �see Appendix B�. On the other hand, the diagonal
Un,n gives no contribution to the second order perturbation
correction �neither to any higher order one�, whereas the off-
diagonal Un,n� produces a contribution ��4, likewise the
fourth order corrections in VK,n,K�,n�. All such terms that are
��4 represent higher order corrections to the image potential
and should be discarded in the quasiclassical limit in order to
preserve consistency with the image potential terms included
in Eq. �18� that are ��2. Hence the present choice of H0 and
V� eliminates overcounting of the final state image potential
energy shifts up to O��4� and preserves the consistency of

perturbation treatment. In the adiabatic limit of quasiparticle
motion this cancellation holds to all orders in �. Thereby the
final state image potential energy shifts are treated at the
level of GW approximation.

We shall pursue the study of dynamical effects induced by
the perturbation V� consistent with the above-discussed treat-
ment of static image potential shifts arising from the same
perturbation. This means that we should consider only those
dynamical processes induced by the perturbation �V which
lead to the results equivalent to the renormalization of qua-
siparticle propagators through the response function �3�. In
the energy representation this leads to the quasiparticle self-
energy renormalization up to the order �2, which was dem-
onstrated in Appendix A to be equivalent to the description
of quasiparticle interactions with bosonized charge density
excitations represented by the propagator Dn,n�;n�,n�Q ,���
�cf. expression �A8� and Fig. 14�b��. This provides a ratio-
nale for resorting to the bosonization approximation in the
treatment of ultrafast phenomena at surfaces which will be
developed in the next section. Clearly, the main advantages
of such an approach are a good representation of the self-
consistent screened interparticle interactions and a justifica-
tion of the ad hoc inclusion of the image potential U�z� in H0

as a quasiparticle final state energy relaxation shift originat-
ing from the second order perturbation treatment of the same
interactions.

III. DYNAMICS OF QUASIPARTICLES INJECTED INTO
SURFACE BANDS

Quantum mechanical transition amplitudes describing the
processes of PE, IPE, and 2PPE from surfaces can be ex-
pressed in terms of the propagators of excited quasiparticles
�electrons and holes� whose dynamics is renormalized by the
interactions with the environment �heatbath� and among each
other �cf. Refs. 40–47�. Effects of the various interactions
involving the heatbath of the system can be conveniently
illustrated on the example of the pump-probe pulse induced
2PPE from SS-bands on �111� surfaces of noble metals be-
cause these events are affected by the decoherence and decay
processes associated with the evolution of both the electron
and the hole photoexcited in surface bands. In the represen-
tation of the above-described bosonized interaction of quasi-
particles with the heatbath and among themselves the ampli-
tude of the pump and probe pulse induced 2PPE transition in
a two band model is schematically illustrated in Fig. 6. Here
we assume that prior to the pump photon absorption the sys-
tem is in a neutral ground state �0� in which the motion of
electrons is described by H0 given in Eq. �18�, and
�0 ��V �0�=0 by construction. Annihilation of a pump photon
gives rise to creation of an electron in one of the unoccupied
states above the Fermi energy and a hole in the SS-band, i.e.,
to a formation of an intermediate electron-hole �e-h� pair in
an eigenstate of H0. Now, as the injection of a quasiparticle
in an excited state of the system effectively switches on the
interaction V� �cf. Eq. �20��, the latter will act so as to de-
stroy the primary coherence of the photoexcited e-h pair in
the course of time �for a more detailed discussion see Sec. I
of Ref. 35�. Consequently, the photons from the time delayed
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second pulse, which eject electrons from the intermediate
states into the states above the vacuum level, act as a probe
for the decohered states of intermediate e-h pairs. Note also
that since we are interested in the response of the system to
pulsed photon fields, the relevant quantities to study are the
populations of final photoelectron states �f� above the
vacuum level rather than the steady state photoelectron cur-
rents as is the case in standard formulation of photoemission
in terms of current-current correlation functions.41,42,47 The
required population of a final state �f� is obtained from the
absolute square of the sum of all 2PPE transition amplitudes
of the kind shown in Fig. 6, and this is equivalent to the
population formulated in the density matrix approach utiliz-
ing the Keldysh nonequilibrium Green’s function method de-
veloped in Ref. 46.

Quasiparticle interactions with the bosonized heatbath
give rise to two types of renormalizations of the transition
amplitudes by the propagator D denoted by the wiggly lines
in Fig. 6. The heatbath-mediated interparticle interactions il-
lustrated by the leftmost wiggly line give rise to processes
described by interband vertex corrections, whereas the inter-
actions in which the quasiparticles emit real and virtual
quanta of the heatbath excitations give rise to processes de-
scribed by the dressing of single quasiparticle propagators.
Earlier estimates of the effects of the particle-heatbath inter-
actions on the transition amplitudes showed that in the ul-
trafast regime major contributions to the decay and decoher-
ence of intermediate states in 2PPE arise from single
quasiparticle interactions with the heatbath �see Figs. 1 and 2
in Ref. 9�. In the language of renormalization of transition
amplitudes by heatbath excitations, these are the processes

arising from the self-energy-type of renormalization of the
propagators of excited quasiparticles throughout the inter-
val�s� in which the interaction V� is effective. Hence in the
following we shall concentrate on the role which single qua-
siparticle decoherence and decay processes play in the vari-
ous stages of evolution of photoexcited states partaking in
the PE, IPE, and 2PPE events.

We assess the ultrafast dynamics of electrons and holes
promoted in surface bands from the survival probability
LK,n�t� which yields information on the evolution of a qua-
siparticle upon its injection into a 2D momentum eigenstate
�K ,n� within the nth surface band. Creation of a charged
quasiparticle in a state �K ,n� of the initially neutral system
switches on the interaction V� which causes the decoherence
and decay of the quasiparticle state in the course of time. For
electron �hole� promotion into an empty �occupied� band the
survival probability is defined as

LK,n�t� = ����K,n
0 �t���K,n�t���2, �21�

where �K,n
0 �t� and �K,n�t� are the unperturbed and perturbed

wave functions of the system subsequent to the quasiparticle
injection into the nth band at t=0, whose temporal evolutions
are governed by H0+Hbath and full H defined in Eqs. �18�
and �19�, respectively. Assuming these initial conditions we
may write

��K,n
0 �t�� = e−iH0tcK,n

† �0� �22�

and

��K,n�t�� = e−iHtcK,n
† �0� . �23�

This enables expressing the survival amplitude as

���K,n
0 �t���K,n�t�� = �0�cK,neiH0te−iHtcK,n

† �0���t�

= G0
*�K,n,t�G�K,n,t� , �24�

where G0�K ,n , t� and G�K ,n , t� are the unperturbed and per-
turbed Green’s functions of a single electron or a hole in the
state �K ,n� of H0, respectively. Hence expressions �21�–�23�
define the quantum mechanical probability that a quasiparti-
cle, prepared at t=0 in the eigenstate �K ,n� of H0 and sub-
jected to a perturbation V� arising from the coupling to
charge density excitations in the system, retains its identity
and be recovered in the same initial state at a later instant t
�0. Expression �24� establishes the sought for relation be-
tween the survival amplitudes and quasiparticle propagators
constituting the PE, IPE, and 2PPE spectra and yields.

In the case of single electron injection into an empty band
the propagator G�K ,n , t� can be expressed as19,48,49

G�K,n,t� = G0�K,n,t�exp�C�K,n,t�� , �25�

where

G0�K,n,t� = − i exp�− iEK,nt���t� �26�

is the unperturbed propagator of an electron of effective
mass mn, charge e, and energy EK,n given by Eq. �9�. Hence

LK,n�t� = �eC�K,n,t��2, �27�

where the exponent

SS-hole

IS-electron

pump t

probe t+τ

photoelectron
termination
in |f > at tobs

summed over

intermediate

excited states

FIG. 6. �Color online� Schematic of contributions to the ampli-
tude of 2PPE from a surface state band via the intermediate IS-band
channel. Thick full and dashed lines denote the IS and SS propaga-
tors, respectively, the full thin line denotes the electron propagator
in a final photoelectron state above the vacuum level, and wiggly
lines illustrate the boson propagator D. Electron-photon field inter-
action matrix elements are denoted by filled circles and pump and
probe photon pulses are delayed by the time interval �. The photo-
electron terminates in the final state �f� at the observation time
tobs� t+�.
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C�K,n,t� = �
l=1

�

Cl�K,n,t� �28�

is obtained as a sum of all cumulants Cl�K ,n , t� generated by
the interaction V� defined in Eq. �20�. Once the boson repre-
sentation of V� is established the cumulants Cl�K ,n , t� can be
readily calculated in terms of the propagators G0�K ,n , t� and
Dn,n�;n�,n�Q , t� following the method described in I. Employ-
ing this procedure we were able to estimate that for the cou-
pling strengths typical of quasiparticles in Q2D surface
bands the cumulant series �28� is represented with high ac-
curacy by the sum of first and second order cumulants.19

Hence in the following we shall restrict our calculations to
the derivation of quasiparticle propagators in this approxima-
tion. This approach fulfills the unitarity condition and en-
ables a systematic treatment of intra- and inter-band quasi-
particle transitions on equivalent footing.

For the interaction �20� the first order cumulant is trivially
given by

C1�K,n,t� = − i�− Un,n�t , �29�

and since being a purely imaginary function it can give rise
only to a level shift ��2 that was discussed in Sec. II B. The
relevant information on quasiparticle evolution is contained
in the second order cumulant which is a complex function of
t. Using the method presented in Sec. 3.1 of Ref. 19 for the
calculation of second order cumulants involving bosonized
interactions, we find that C2�K ,n , t� can be expressed in
terms of the density of substrate electronic excitations
Sn,n�;n�,n�Q ,�� derived in Sec. II A. Following that proce-
dure we obtain for the real and imaginary parts of the second
order cumulant16

Re C2�K,n,t� = −
1

L2 �
Q,n�

�VQ�2

0

�

d�Sn,n�;n�,n�Q,��

	�1 − cos��EK,n − EK+Q,n� − ��t�

�EK,n − EK+Q,n� − ��2 � , �30�

Im C2�K,n,t� = −
1

L2 �
Q,n�

�VQ�2

0

�

d�
Sn,n�;n�,n�Q,��

EK,n − EK+Q,n� − �

	�t −
sin��EK,n − EK+Q,n� − ��t�

EK,n − EK+Q,n� − �
� . �31�

Here VQ=2�e2 /Q and the index n� denotes unoccupied parts
of the bands allowed in intra- and inter-band electron transi-
tions so that EK+Q,n��EF where EF is the Fermi energy. The
contribution of Un,n� to the second cumulant is of the order
O��4� and consistent with our earlier approximation for the
image potential effects it will be neglected in comparison
with Eqs. �30� and �31� which are ��2. Reformulation of
Eqs. �30� and �31� to describe the dynamics of a hole in an
occupied Q2D surface band is carried out on noting that the
hole excitation energies are negative, i.e., in the case of a
hole excitation the quasiparticle energy differences appearing
in Eqs. �30� and �31� are replaced by EK,n

hole−EK+Q,n�
hole = �K

+Q�2 /2mn�− �K�2 /2mn+�n�−�n, where �K ,n� and �K
+Q ,n�� now range over the occupied states of the respective
bands. In the following the restrictions on the final electron
and hole quantum numbers in summations over Q and n� on
the rhs of Eqs. �30� and �31� and expressions �33�–�36� de-
riving thereof are implicit. It is easily verified that the ob-
tained cumulants are dimensionless quantities independent of
the quantization length L.

At this stage a word of caution is required concerning the
use of cumulant expansion in the calculation of survival
probabilities leading to Eqs. �30� and �31�. The representa-
tion of single particle propagators in the form �25� is possible
provided the initial quasiparticle energy EK,n is sufficiently
far from the Fermi level of the system so as that the assump-
tion of a single quasiparticle propagating in only one time
direction and interacting with bosons may be applied. A rea-
sonable requirement for the validity of this approximation is
that in the course of interaction the magnitude of the mean
energy transfer to the heatbath be smaller than �EK,n−EF�.
This implies that interactions with bosons should not cause a
drop of the quasiparticle to the vicinity of EF where the
retarded propagators �25� and �26� must be replaced by the
causal ones that allow for propagation in both time direc-
tions. As was found in Ref. 9 this condition is safely fulfilled
in the case of electrons in IS bands on Cu�111�, whereas in
the case of SS holes it holds for the states in the lower half of
the occupied part of the band.

Quite generally, Re C2�K ,n , t� describes the decay and
Im C2�K ,n , t� describes the energy renormalization and
dephasing of the initial quasiparticle state �K ,n�. The early
evolution of Re C2�K ,n , t� in the ultrashort interval set
by the Heisenberg uncertainty follows the universal behavior
of the form −t2 /2�n

2+O�t4�. This gives rise to a ballistic
or “Zeno-like” initial decoherence of the survival
probability50,51

LK,n�t → 0� → exp�− t2/�n
2 + O�t4�� , �32�

where

�n
−2 =

1

L2 �
Q,n�

�VQ�2

0

�

d�Sn,n�;n�,n�Q,�� . �33�

In the same temporal interval the energy renormalization and
dephasing processes described by the linear and nonlinear
terms on the rhs of Eq. �31�, respectively, cancel out each
other so that Im C2�K ,n , t→0�=O�t3� and only the energy
shift described by the first cumulant �29� survives. As the
time grows larger the nonlinear component in t on the rhs of
Eq. �31� builds up very fast and then saturates at a finite
value, whereby it gives rise only to a pure phase change. In
this regime the linear in t component on the rhs of Eq. �31�
that describes renormalization of the quasiparticle energy
through the processes quadratic in �V is by construction can-
celled out by the first cumulant �29� up to the order O��4�. In
other words, the effect of interaction �20� on the imaginary
phase of the renormalized electron propagator is to produce
an early transient which saturates already in a subfemtosec-
ond time interval, but it does not give rise to a contribution to
final state energy shift up to O��4�.
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In the opposite limit of long times several scenarios con-
cerning the temporal dependence of C2�K ,n , t� are possible,
depending on the variation of excitation spectrum
Sn,n�;n�,n�Q ,�� across the resonant limit EK,n=EK+Q,n�+� of
the integrands in Eqs. �30� and �31�. A nonvanishing and
smoothly varying Sn,n�;n�,n�Q ,�� across the resonant limit
gives rise to the behavior16,19

C2�K,n,t � �K,n
−1 � � − ��K,n/2 + i�K,n�t − wK,n. �34�

Here the decay rate or inverse lifetime

�K,n =
2�

L2 �
Q,n�

�VQ�2

0

�

d�Sn,n�;n�,n�Q,��

	��EK,n − EK+Q,n� − �� � 0, �35�

that has the appearance of Fermi’s golden rule �FGR�, arises
from the adiabatic limit ���EK,n−EK+Q,n�−��t of the time
dependent factor in the integrand on the rhs of Eq. �30�. The
energy relaxation shift

�K,n =
1

L2 �
Q,n�

�VQ�2

0

�

d�
Sn,n�;n�,n�Q,��

EK,n − EK+Q,n� − �
, �36�

which arises from the linear in t component in the integrand
on the rhs of Eq. �31� has the form of a Rayleigh-
Schrödinger correction to unperturbed energy that is ��2 and
builds up on the extremely short time scale �s��s

−1

�0.2 fs.36,52 As is shown in Appendix B, in the quasiclassi-
cal limit of adiabatic motion of the quasiparticle outside the
surface this correction yields asymptotically the image po-
tential shift �6� that is cancelled out by the contribution from
the first order cumulant �29�. The time-independent term
wK,n is an off-resonant correction to the first two terms on the
rhs of Eq. �34� and measures the nonadiabaticity of excita-
tion processes induced by the interaction V� that is switched
on with the quasiparticle injection into a state �K ,n�. In the
opposite situation of Sn,n�;n�,n�Q ,�� varying discontinuously
across the resonant limit or in the case of quasiparticle tran-
sitions to the threshold, here given by the lower bound of the
final energy EK+Q,n�=EF, the asymptotic form of C2�K ,n , t�
exhibits a more complicated behavior leading to a nonexpo-
nential decay of the survival probability in the limit
t→�.53–55 Hence further insight in the quasiparticle dynam-
ics, both on the ultrashort �preasymptotic� and long
�asymptotic� time scale requires the evaluation of integrals
on the rhs of expressions �30� and �31� for concrete forms of
Sn,n�;n�,n�Q ,��.

In the following we illustrate and quantify the above-
discussed different stages of ultrafast dynamics of quasipar-
ticles for the benchmark surface Cu�111�. The desired infor-
mation is deduced from the survival probabilities �21� which
in the present approach are fully determined by the behavior
of Re C2�K ,n , t� because the imaginary parts of the cumu-
lants cancel out in the absolute square of Eq. �27�. Now,
Re C2�K ,n , t� is determined by the 	dQ	d
K,Q	d�-integral
over the product of unbounded time-independent factor

Wn,n�;n�,n�K,Q,�� =
Q

�2��2 �VQ�2
Sn,n�;n�,n�Q,��

�EK,n − EK+Q,n� − ��2 ,

�37�

which becomes singular for EK,n−EK+Q,n�=�, and a
bounded time dependent factor �1−cos��EK,n−EK+Q,n�
−��t��, which may quench this singularity. Reexpressing Eq.
�37� in the basis �12� we show in Fig. 7 a three-dimensional
plot of WIS,IS�K ,Q ,�� corresponding to intraband electron
transitions in the IS-band over the allowed segments of the
�Q ,�� plane for the initial quasiparticle wave vector K=0.
Its structure is dominated by the maxima arising from the
plasmon peaks in SIS,IS, and the singularities produced by the
zeros of the denominator in Eq. �37�. We find that the region
around the infrared singularity at �Q=0,�=0� gives the
dominant contribution to Re C2�K=0, IS, t� in the femtosec-
ond domain and thereby to decoherence of the quasiparticle.
However, it does not contribute to its exponential decay be-
cause for K=0 only the transitions into lower bands can give
a contribution to �K,IS, as is evident from the argument of the
�-function on the rhs of Eq. �35�. For K�0 the singularity
moves away and its weight is redistributed over a larger seg-
ment of the �Q ,��-phase space.56 This effective increase of
the phase space for quasiparticle scattering by substrate ex-
citations gives rise to an onset of intraband contributions and
thereby to enhancement of the total decay rate �K,IS.

A notably different situation is encountered in the case of
interband electron transitions from the IS band into the un-
occupied part of the SS band on the same side of the slab that
is described by WIS,SS�K ,Q ,�� and whose behavior is de-
picted in Fig. 8. Here due to the Pauli exclusion the maxi-
mum deexcitation or electron recoil energy is equal to
�IS−SS= ��IS−�SS− �KF

SS�2 /2mSS� for Q=KF
SS, which then di-

minishes quadratically with the increase of Q. Hence
WIS,SS�K ,Q ,�� is zero for QKF

SS and its maxima for Q
�KF

SS that rise from the e-h continuum are associated with

FIG. 7. �Color online� Intensity plot of WIS,IS�K ,Q ,�� defined
in Eq. �37� and representing the unbounded component of the inte-
grand in Eq. �30� over the regions in �Q ,��-phase space of the
metal excitations which give major contributions to intraband-
induced decoherence of an image potential state electron with initial
K=0.
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the zeros of the denominator in Eq. �37�, as is clearly seen in
Fig. 8.

Figure 9 shows a three-dimensional plot of
WSS,SS�K ,Q ,�� corresponding to a hole created at the bot-
tom of the SS band. Here the dominant maxima in the plot
are of the same origin as in Fig. 7, however, the whole struc-
ture is cut off at the Fermi wave vector in the SS band, Q
=KF

SS, which is the upper bound for the SS-hole momentum
recoil. Since the largest phase space for intraband hole decay
is for initial states near the band bottom �K=0� from which

the holes can decay towards the Fermi level, the contribution
of WSS,SS�K ,Q ,�� to the Q integral in Eq. �30� would gen-
erally diminish with the increase of K.

The final step in determination of Re C2�K ,n , t� is the
phase space integration of the multidimensional integrands
on the rhs of Eq. �30� that appear in the form of products of
Wn,n��K ,Q ,�� and the corresponding factors �1−cos��EK,n

−EK+Q,n�−��t��, in which the latter introduce a parametric
time dependence. Animations of the intensity evolution of
the integrands on the rhs of Eq. �30� as functions of Q �hori-
zontal axis� and � �vertical axis� for K=0.01, which yield the
temporal dependence of Re C2�K , IS, t� and Re C2�K ,SS, t�
in the interval 0 t10 fs, are available online �see Ref.
57�.

Temporal behavior of the survival probability �21� is now
readily calculated for the initial band indices and values of K
using the above-obtained results. Figure 10 shows LK,IS�t�
together with its major contributions for the case of an elec-
tron created in the IS band on the Cu�111� surface with the
initial wave vector near the band bottom, K=0.01 a.u. The
early universal ballistic decay of the survival probability �32�
is superseded by a superposition of oscillations arising from
the nonadiabatic �off-resonant� excitations of surface plas-
mons in the slab and a gradual buildup of the wK,IS-modified
FGR decay �34� arising from the resonant excitation of e-h
pairs. Due to the off-the-energy-shell character of plasmon
excitations their amplitude diminishes with the diminution of
Heisenberg uncertainty for transfer of energy as t grows
larger. All these features signify non-Markovian dynamics in
the early evolution of quasiparticles that is inaccessible to
asymptotic and adiabatic theories. We find that for K=0.01
the interband IS→SS transitions contribute about 39% to the
total decay rate �K,IS, and the remaining 61% arise from
interband transitions into the bulk bands, in agreement with
the earlier calculations.7 The contribution from intraband
IS→ IS electron transitions to the resonant decay rate �K,IS is
insignificant at this value of K as only very small initial
kinetic energy is available for excitation of other electrons in

FIG. 8. �Color online� Intensity plot of WIS,SS�K ,Q ,�� defined
in Eq. �37� and representing the unbounded component of the inte-
grand in Eq. �30� over the regions in �Q ,��-phase space of the
metal excitations which give major contributions to electron deco-
herence in interband transitions from the image potential band to
the surface state band with initial K=0. Due to the Pauli exclusion
principle only the electron interband transitions into the unoccupied
SS-band states for which Q�KF

SS are allowed.

FIG. 9. �Color online� Intensity plot of WSS,SS�K ,Q ,�� defined
in Eq. �37� and representing the unbounded component of the inte-
grand in Eq. �30� over the regions in �Q ,��-phase space of the
metal excitations which give major contributions to intraband-
induced decoherence of a hole in the surface state band with initial
K=0. Here only the hole intraband transitions into the states below
the Fermi energy in the SS band for which QKF

SS�0.1 a.u. are
allowed.
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FIG. 10. �Color online� Intra- and inter-band components and
total survival probability LK,IS�t� for an electron promoted into the
first image state band on Cu�111� with initial state wave vector K
=0.01 a.u. �see legend for assignments�. Asymptotic decay given by
the interpolation fit of Eq. �42� and “bare” FGR exponential decay
law are shown by thin dash-double dotted and dash-dotted curves,
respectively.
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the system. On the other hand, their role is dominant in off-
resonant excitation of surface plasmons and the buildup of
nonadiabatic correction wK,IS=0.15. Qualitatively similar
trends in the behavior of survival probability are retained for
initial K=KF

SS /2�0.05 a.u., as illustrated in Fig. 11.
Figure 12 shows various contributions to the survival

probability �21� for a hole created in the SS band on Cu�111�
with the initial wave vector K=0.01. Here the intraband SS
→SS transitions contribute the major part ��70% � to the
total decay rate �K,SS, and the remainder is due to interband
transitions into the bulk bands, again in accord with earlier
calculations.7,8 Intraband transitions also give dominant con-
tribution ��60% � to the short time behavior of LK,SS�t� re-
flected in the magnitude of the total nonadiabatic correction
wK,SS=0.21. A similar structure of the survival probability is
recovered for a SS hole with initial K=KF

SS /2�0.05 a.u., as
shown in Fig. 13.

IV. DISCUSSION

The results for survival probabilities shown in Figs.
10–13 enable the identification of three distinct regimes of

ultrafast dynamics of electrons and holes subsequent to their
creation in the IS- and SS-bands on the Cu�111� surface,
respectively. The early ballistic or Zeno regime �0 t
1 fs� is followed by preasymptotic non-Markovian evolu-
tion with superimposed off-resonant excitation of surface
plasmons and resonant excitation of e-h pairs. This structure
persists up to t�10 fs and only past that time the off-
resonant plasmon excitations die out and the steady state
evolution governed by the modified FGR decay �34� takes
over. However, even long past that time the “bare” FGR
decay commonly used in asymptotic descriptions of quasi-
particle evolution

LK,n
FGR = e−�K,nt �38�

is not yet reached. This signifies that manifestations of qua-
siparticle dynamics which become important on the ul-
trashort scale of time resolved experiments can be assessed
only within preasymptotic treatments of electronic relaxation
processes. A non-Markovian evolution of the survival prob-
ability decaying faster than Eq. �38� will manifest itself
through the modifications of relative intensities of direct and
indirect transitions in 2PPE and of the peak shapes in PE,
IPE, and 2PPE spectra from surface bands relative to the
ones deduced from the asymptotic approaches18,46,47 utilizing
Eq. �38�. These features should be taken into account par-
ticularly in the interpretations of time resolved measure-
ments.

Time resolved 2PPE spectroscopy has enabled an unprec-
edented insight into the hot carrier dynamics in the bulk and
surface electronic bands. Identifications and qualitative de-
scriptions of the 2PPE signal from metal surfaces have been
frequently carried out by resorting to optical Bloch equations
�OBE� for modeling of the population dynamics of a re-
stricted number �usually two or three� of the levels partaking
in 2PPE.17,18 Application of the OBE to interpretation of
2PPE from surface bands has enabled the assignments of
features in the measured 2PPE spectra as well as the esti-
mates of rate constants that control state populations and
coherences in the asymptotic regime. However, the OBE em-
ployed in these analyses are based on two assumptions that
render the whole approach highly phenomenological. �i� Sur-
face bands partaking in 2PPE processes are modeled by dis-
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FIG. 11. �Color online� Same as in Fig. 10 for K=0.05 a.u.
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FIG. 12. �Color online� Intra- and inter-band components and
total survival probability LK,SS�t� for a hole created in the surface
state band on Cu�111� with initial state wave vector K=0.01 a.u.
�see legend for assignments�. Asymptotic decay given by the inter-
polation fit of Eq. �42� and “bare” FGR exponential decay law are
shown by thin dash-double dotted and dash-dotted curves,
respectively.
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FIG. 13. �Color online� Same as in Fig. 12 for K=0.05 a.u.
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crete energy levels whose populations are governed by the
rate constants which give rise to a Markovian decay of qua-
siparticles of the form �38� during each stage of the experi-
ment, and �ii� these rate constants are represented by a sum
of the rate constants describing the decay �in that context
interlevel transitions� and the dephasing �intralevel elastic
scattering� of quasiparticles. To this end, two types of rate
constants �n,n� that model the decay and dephasing processes
are introduced in the OBE and varied in order to fit the
experimental data. However, the validity of such descriptions
is by construction restricted to the regime of separate time
scales of perturbation and relaxation of the system6,18 and to
the use of asymptotic representation of quasiparticle decay in
the form �38�. Hence the analyses of quasiparticle dynamics
on the femtosecond scale require a treatment that is free from
these limitations.

In contrast to the phenomenological approaches embodied
in the OBE, the theoretical description of excited quasiparti-
cle propagation developed in Secs. II and III treats both the
intra- and inter-band transitions during all stages of quasi-
particle evolution on equivalent footing. Thereby it avoids a
division of irreversible quasiparticle relaxation into separate
decay and dephasing processes that is justified only in the
Markov approximation. However, conditions for experimen-
tal observation of the different stages of ultrafast quasiparti-
cle dynamics discussed above may be technically very de-
manding and therefore critical. Whereas it would certainly be
desirable to detect non-Markovian oscillatory transients in
the preasymptotic evolution of excited quasiparticles, it may
be more feasible to observe a coarse grained �CGR� behavior
of transitions from the early ballistic to the intermediate re-
gime in which the quasiparticle decay is described by modi-
fied FGR law �MFGR�. Representing C�K ,n , t� in the early
interval by58

CCGR�K,n,t� = −
t2

2�K,n
2 , �39�

and in the intermediate regime by

CMFGR�K,n,t� = −
�K,nt

2
− wK,n, �40�

one can obtain a temporally coarse grained interpolation of
the relevant real part of C�K ,n , t� in the femtosecond regime
in a Padé approximantlike form:

Cfit�K,n,t� =
1

CCGR
−1 �K,n,t� + CMFGR

−1 �K,n,t�
. �41�

This leads to the following three-parameter interpolation fit
for the survival probability:

LK,n
fit �t� = exp�−

�t2/�K,n
2 ���K,nt + 2wK,n�

�t2/�K,n
2 + �K,nt + 2wK,n� . �42�

Such fits of the computed survival probabilities are also
shown in Figs. 10–13. Interpolations based on Eq. �42�
should be simple enough to allow also the fitting of quasi-
particle decay estimated from the time resolved experiments.
Hence it may be of considerable interest to exploit expres-

sion �42� in the analyses of experimental data in order to
demonstrate limitations of the phenomenological form of
quasiparticle decay �38� used so far in the interpretations of
2PPE amplitudes and yields.17,18,44,46,47

In summary, the microscopic model of ultrafast hot carrier
dynamics combined with self-consistent calculations of elec-
tronic response developed and described in Secs. II and III
provide unified treatments of quasiparticle evolution in sur-
face bands in which the various mechanisms that control
ultrafast phenomena can be traced back to fundamental
quantum processes rather than being described by phenom-
enological parameters. The need for such descriptions was
recognized in the first fully quantum-mechanical formula-
tions of 2PPE from surfaces44,46 but concrete realizations
were hindered by the lack of adequate microscopic descrip-
tions of ultrafast relaxation dynamics. Hence further progress
in the interpretations of PE, IPE, and 2PPE spectra from
surfaces should be sought in terms of the above elucidated
quasiparticle evolution with which the corresponding ap-
proximate descriptions based on asymptotic and phenomeno-
logical rate constants need be correlated and compared. The
work on realization of this task is in progress.
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APPENDIX A: BOSONIZATION OF THE INTERACTION
OF QUASIPARTICLES WITH THE RESPONSE OF

A DIELECTRIC SURFACE

The problem of mapping the interaction of a probe elec-
tron with the charge density fluctuations in a metallic slab to
an equivalent electron-boson interaction can be conveniently
illustrated on the example of calculations of electron self-
energies. We start from the expression for the self-energy
�n�K ,�� of an electron in the nth surface band at the level of
GW approximation regarding the final state image potential
energy shifts and short range exchange-correlation effects.7,8

Exploiting the translational invariance of the system in the x
and y directions parallel to the surface we obtain the expres-
sion for the probe electron self-energy in the form

�n�K,�� =
 dz
 dz�
n�z���z,z�;K,��
n�z�� , �A1�

which represents a correction to the unperturbed energy
given by expression �9�. By introducing the surface response
function � defined by Eqs. �1� and �2� expression �A1� can
be written as �cf. Fig. 14�a��
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�n�K,�� =
1

L2�
Q

�
n�

 d��

2�

 dz
 dz�
 dz1
 dz2
n�z�

	
n��z�V�z1,z,Q���z1,z2;Q,���V�z2,z�,Q�

	
n�z��
n��z��Gn��K − Q,� − ��� , �A2�

where

Gn��K − Q,� − ��� =
1

� − �� − EK−Q,n� + i�
�A3�

is the unperturbed retarded Green’s function of the probe
electron in the nth unoccupied band, and the z-component of
the 2D Fourier transform of the bare Coulomb interaction
e2 / �r1−r � =e2 /���1−��2+ �z1−z�2 is according to definitions
of Fourier transforms in Sec. II A given by

V�z1,z;Q� = VQe−Q�z1−z�, �A4�

with

VQ =
2�e2

Q
, �A5�

that has the dimension �energy�	 �length�2. Next we intro-
duce generalized oscillator strengths

fn,n��Q,z1� =
 dz
n�z�e−Q�z−z1�
n��z� , �A6�

which enable us to represent �n�K ,�� in the form

�n�K,�� =
1

L2�
Q

�VQ�2�
n�

 d��

2�

 dz1
 dz2fn,n��z1,Q�

	��z1,z2;Q,���fn�,n�z2,Q�Gn��K − Q,� − ��� .

�A7�

This expression, which has the dimension of energy and is
independent of the box quantization length L, can be visual-
ized as the self-energy renormalization of the single electron
Green’s function Gn�K ,�� through a boson propagator
Dn,n�;n�,n�Q ,��� describing the projection of electronic exci-
tations of the system of wave vector Q and energy �� onto
the nth band �cf. Fig. 14�, viz.

�n�K,�� =
1

L2�
Q

�VQ�2�
n�

 d��

2�
Dn,n�;n�,n�Q,���

	Gn��K − Q,� − ��� , �A8�

where

Dn,n�;n�,n�Q,�� =
 dz1
 dz2fn,n��z1,Q��

	�z1,z2;Q,��fn�,n�z2,Q� . �A9�

The thus defined Dn,n�;n�,n�Q ,�� is independent of L and has
the dimension �energy�−1	 �length�−2. Making use of the
causal properties of response functions it can be expressed in
the Lehmann representation

Dn,n�;n�,n�Q,�� = 

0

�

d��Sn,n�;n�,n�Q,���

	� 1

� − �� + i�
−

1

� + �� + i�
� ,

�A10�

in terms of the �n ,n��-band projected boson excitation spec-
trum

Sn,n�;n�,n�Q,��� = −
1

�
Im Dn,n�;n�,n�Q,���

=
 dz1
 dz2fn,n��z1,Q�

	�−
1

�
Im ��z1,z2;Q,��� fn�,n�z2,Q� .

�A11�

Hence expression �A9� and Fig. 14�b� enable us to establish
a one-to-one correspondence or mapping between the probe
electron interaction with the charge density fluctuations
treated in the linear response model of Refs. 7 and 8 and an
equivalent electron-boson interaction once the substrate den-
sity of excitations �A11� is known and available. Note also
that in the higher order quasiparticle self-energy corrections
in terms of the boson propagator D �Eq. �A9��, and its spec-
trum S �Eq. �A11��, all four n-indices are generally different.

K, ωK-Q, ω - ω’

Χ(z1,z2,Q,ω’)

z z´

(a)

K, ω

K-Q, ω – ω’, n’

Q,ω’

(b)

K, ω, n K, ω, n

FIG. 14. �Color online� �a� Feynman diagram for the second
order self-energy of the nth band electron in GWA. Dotted lines
denote Coulomb interactions �A4� and the bubble represents the
response function �3�. �b� Equivalent diagram in the electron-boson
interaction formulation. Filled dots denote matrix elements VQ and
the wiggly line the boson propagator Dn,n�;n�,n�Q ,��� given by Eqs.
�A5� and �A9�, respectively.
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Expression �A11� is quite general in that it applies to any
��z1 ,z2 ;Q ,���. Specifying to the case of a slab in which the
one-electron states are described by wave functions �4� with

n�z� given by Eq. �10� we may expand ��z1 ,z2 ;Q ,��� in
the same type of series as given by expression �13� with the
corresponding expansion coefficients �n1,n2

+ �Q ,�� and
�n1,n2

− �Q ,��. Substituting the thus obtained expansion for
��z1 ,z2 ;Q ,��� in expression �A11� and carrying out the in-
tegrals over the oscillator strengths we get

Sn,n�;n�,n�Q,��� = −
1

�
�

n1,n2=0

lmax

��n1,n2

+ �Q,���

	�n,n�
+ �Q,n1��n,n�

+ �Q,n2�

+ �n1,n2

− �Q,����n,n�
− �Q,n1��n,n�

− �Q,n2�� ,

�A12�

where �n1,n2

± �Q ,��� are determined from Eq. �14�, and

�n,n�
+ �Q,n1� =

2

d
�

l1,l2=0

lmax

�cn,l1
+ cn�,l2

+ j11�Q,l1,l2,n1�

+ cn,l1
− cn�,l2

− j14�Q,l1,l2,n1�� , �A13�

�n,n�
− �Q,n1� =

2

d
�

l1,l2=0

lmax

�cn,l1
+ cn�,l2

− j22�Q,l1,l2,n1�

+ cn,l1
− cn�,l2

+ j23�Q,l1,l2,n1�� . �A14�

Here cn,l
± are determined from expansion �10� and

juv�Q , l1 , l2 ,n1� are defined as

j11�Q,l1,l2,n1� = − Q2A − Q2B + C��l1−l2,n1
+ �l1−l2,−n1

�

+ D��l1+l2,n1
+ �l1+l2,−n1

� ,

j14�Q,l1,l2,n1� = − Q2A + Q2B + C��l1−l2,n1
+ �l1−l2,−n1

�

− D��l1+l2,n1
+ �l1+l2,−n1

� ,

j22�Q,l1,l2,n1� = − �L1 − L2�N1A + �L1 + L2�N1B

+ C�− �l1−l2,n1
+ �l1−l2,−n1

�

+ D��l1+l2,n1
− �l1+l2,−n1

� ,

j24�Q,l1,l2,n1� = �L1 − L2�N1A + �L1 + L2�N1B

+ C��l1−l2,n1
− �l1−l2,−n1

�

+ D��l1+l2,n1
− �l1+l2,−n1

� , �A15�

in which the values of A, B, C, and D are given by

A =

e−dQ�− 1 + edQ�cos�1

2
d�L1 − L2�cos�dN1

2


��L1 − L2�2 + Q2��N1
2 + Q2�

,

B =

e−dQ�− 1 + edQ�cos�1

2
d�L1 + L2�cos�dN1

2


��L1 + L2�2 + Q2��N1
2 + Q2�

,

C =
Qd

2

1

�L1 − L2�2 + Q2 ,

D =
Qd

2

1

�L1 + L2�2 + Q2 , �A16�

where �p,q are Kronecker symbols and L1=
2�l1

d , L2=
2�l2

d , and
N1=

2�n1

d .
In the case of electronic excitation spectra �16� projected

onto the band states localized on one side of a thick slab, viz.
SIS,IS�Q ,��, SSS,SS�Q ,��, SIS,SS�Q ,��, etc., we must first
compute the oscillator strengths describing the transitions be-
tween the states described by wave functions �12�, viz.

fk,k�
��,���Q,z1� =
 e−Q�z−z1�
k

����z�
k�
����z�dz , �A17�

where �=L or R, which are symmetric with respect to per-
mutation of indices of wave functions in the integrand. In the
limit of a thick slab, zL→�, the wave functions 
k

�L��z� and

k

�R��z� become degenerate so that one can construct oscilla-
tor strengths appropriate to electronic transitions from initial
states localized at either surface:

fk,k�
��,���Q,z1� →

1

2

 e−Q�z−z1��
k

�L��z�
k�
�L��z� + 
k

�R��z�
k�
�R��z��dz

=
1

2

 e−Q�z−z1��
2k−1�z�
2k�−1�z�

+ 
2k�z�
2k��z��dz =
1

2
�f2k−1,2k�−1�Q,z1�

+ f2k,2k��Q,z1�� . �A18�

Oscillator strengths obtained by swapping the indices L↔R
in one of the wave functions on the lhs of eq. �A18�, viz.

fk,k�
��,���Q,z1� →

1

2

 e−Q�z−z1��
k

�L��z�
k�
�R��z� + 
k

�R��z�
k�
�L��z��dz

=
1

2

 e−Q�z−z1��
2k−1�z�
2k�−1�z�

− 
2k�z�
2k��z��dz =
1

2
�f2k−1,2k�−1�Q,z1�

− f2k,2k��Q,z1�� , �A19�

where �=L and �=R or vice versa, describe electronic tran-
sitions from the states on one side of the slab to the states
on the other side. Hence the oscillator strengths in the
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�L ,R�-basis defined by wave functions �12� are readily ob-
tained from the oscillator strengths in the n-basis spanned by
wave functions �10�. For a 31 layer thick slab discussed in
Sec. II A we get for oscillator strengths corresponding to one
surface of the slab: f IS,IS= 1

2 �f33,33+ f34,34�, fSS,SS= 1
2 �f31,31

+ f32,32�, f IS,SS= 1
2 �f33,31+ f34,32�, and analogously so for other

intra- and inter-band transitions. Finally, the electronic exci-
tation spectrum of a thick slab that is projected onto the
states described by the wave functions �12� is obtained by
substituting the oscillator strengths �A18� and �A19� in ex-
pressions �16� and �A11�.

APPENDIX B: SEMICLASSICAL IMAGE POTENTIAL
ENERGY SHIFTS FROM THE BOSONIZED RESPONSE

In this appendix we present a simple demonstration of
consistency of the use of a bosonized interaction of particles
with charge density excitations �cf. Appendix A� in the con-
struction of dynamic interaction V� �Eq. �20�� from which
the final state image potential shifts have been subtracted due
to their inclusion in H0. We consider a semiclassical limit of
the interaction of an external point charge e located at ra
= �� ,za�0� with the semi-infinite interacting electron gas
occupying the halfspace z0. This represents a semiclassi-
cal analog of the classical image potential in which the level
shift �36� appearing in the imaginary part of the second cu-
mulant �31� should exactly cancel out the contribution −Un,n
from the first cumulant �29�. To demonstrate this property in
the semiclassical limit we model the z component of the
point charge density distribution with �a�z�= �
n=a�z��2=��z
−za� where za�0 is assumed to lie outside the tail of the
electronic charge density extending across the surface. The
diagonal matrix element Un,n calculated using Eq. �6� and the
semiclassical density distribution �a�z� reads

Ua,a = −
e2

4�za − z0�
. �B1�

On the other hand, the semiclassical limit of the energy level
relaxation shift �36� is obtained by setting EK,n=EK+Q,n�
=Ea in the denominator of the integrand and taking
Sa,a;a,a�Q ,�� calculated from Eq. �A9� with n�=n=a and for
the above point charge density distribution, viz.

�a = −
1

L2�
Q

�VQ�2

0

�

d�
Sa,a;a,a�Q,��

�
. �B2�

To obtain Sa,a;a,a�Q ,�� from Da,a;a,a�Q ,�� calculated with
the semiclassical �a�z� we observe that in this case za�z1

and za�z2 in expressions �A6� for the oscillator strengths
entering expression �A9�. This property enables factorization
of the integration coordinates, yielding

Da,a;a,a�Q,�� = e−2Qza
 dz1
 dz2eQz1��z1,z2;Q,��eQz2.

�B3�

Recalling the definition of the surface response function to
external charges27–29

R�Q,�� =
2�e2

Q

 dz1
 dz2eQz1��z1,z2;Q,��eQz2

=
1 − ��Q,��
1 + ��Q,��

, �B4�

with ��Q ,�� denoting the surface dielectric function20 for
laterally homogeneous electron gas, we may write

Da,a;a,a�Q,�� = e−2Qza
Q

2�e2R�Q,�� . �B5�

Now, the leading contributions to Eq. �B5� are obtained from
the first two terms in the small Q-expansion of R�Q ,��.
These terms were derived by Feibelman32 who showed that
the series expansion for R�Q ,�� assumes the form

R�Q,�� =
1 − ����
1 + �����1 + 2Q�d���� + ����d����

1 + ���� � + O�Q2� ,

�B6�

where ���� is the long-wavelength limit of the surface di-
electric function that is equal to the bulk dielectric function
in the same limit.20 The definitions of d����, which is the
distribution of the currents induced parallel to the surface by
external tangential electric field, and of d����, which is the
centroid of the induced surface charge due to external elec-
tric field normal to the surface, are given in Refs. 32 and 59.
The required Sa,a:a,a�Q ,�� can now be calculated from Eqs.
�B5� and �B6� in the two pole approximation appropriate to
the long wavelength response of simple metal surfaces.59,60

This is effectuated by using the Drude expression ����=1
−�p

2 /�2 for bulk dielectric function which enables represent-
ing expression �B6� near the plasmon poles in the form

R�Q,�� �
�Q

2

�2 − �Q
2 + i�

�1 + 2Qd����� , �B7�

that is valid to the order O�Q2�. Here the dispersion of mono-
pole surface plasmon frequency for small Q is given by
�Q=�s�1+Q�d���s�−d���s�� /2�, �s=�p /�2, d����=zB,59

where zB is the position of the positive jellium background
edge, and d���� is approximated by a multipole plasmon
interpolation ansatz58

d���� =
zB�2 − z0�m

2

�2 − �m
2 + i�

. �B8�

This renders a model expression for R�Q ,�� that exhibits a
correct static ��→0� and extreme dynamical ��→ � � limits
required in the calculation of �a, the poles at monopole and
multipole plasmon frequencies �Q and �m, respectively �cf.
Fig. 3�, but misses out on the effects of finite lifetime of
plasmon excitations caused by their decay into electron-hole
pairs which are not accounted for in Eq. �B8�. Substituting
Eq. �B7� in Eq. �B5�, taking the imaginary part
−�1/��Im Da,a:a,a�Q ,�� to obtain the corresponding
Sa,a:a,a�Q ,��, and using the latter in Eq. �B2� yields after
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integration over � and summation over Q the energy shift

�a
sc = −

e2

4za
�1 +

z0

za
� + O�za

−3� � −
e2

4�za − z0�
�B9�

that cancels out the shift �B1� in the sum of the first and
second order cumulants, Eqs. �29� and �31�, calculated in the

semiclassical limit. Hence the bosonized surface response
yields the correct semiclassical image potential introduced in
VMP�z� which, in turn, enables a construction of the dynami-
cal quasiparticle-surface interaction �20� that avoids over-
counting of the final state image potential energy shifts in the
calculations of quasiparticle evolution.
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