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We investigate the van der Waals–London dispersion interactions between a single-walled carbon nanotube
immersed in water and interacting with three different objects: an optically isotropic planar substrate, an
optically anisotropic planar substrate, and another single-walled carbon nanotube of identical chirality. These
interactions were derived from ab initio optical properties and an appropriate formulation of the Lifshitz
theory. We derive two analytically tractable limits for the van der Waals interaction: the far limit at separations
much larger than the cylinder radius, and the near or Derjaguin limit where surface-cylinder separation is much
smaller than the radius. We investigate in detail the effect of relative geometry and the relative separation on
the magnitude of the dispersion interaction.
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I. INTRODUCTION

Single-wall carbon nanotubes �SWCNTs� have received
an extraordinary amount of attention since their discovery in
1991.1,2 One unique feature of this class of materials is how
much their electronic properties can change with respect to
subtle changes in the wrapping angle, or chirality, of each
particular carbon nanotube �CNT�.3,4 Many researchers clas-
sify SWCNTs into two broad categories: metallic and
semiconducting.5 The metallic tubes have a chirality such
that ��n−m�Mod 3=0�, where n and m are the lattice trans-
lation vectors for a simple sheet of graphene. All other com-
binations of n and m yield SWCNTs with a band gap and are
thus semiconducting. The origin and reasoning behind the
electronic structure’s dependence on chirality are well docu-
mented from both band-structure theory and experimental
results, and are based heavily on the continuous nature of the
graphene band structure becoming discretized because of the
imposed finite distance in the circumferential direction. The
metallic tubes are the SWCNTs that have these allowable
states cross the k points of graphene.6

The literature often ignores the full frequency-dependent
dielectric spectrum of the SWCNTs. This is largely due to
two major reasons: First, people interested in electronic con-
duction focus particularly on the band gap. Second, it is non-
trivial to measure accurately full spectral data. While it is
true that these data are not necessarily important for the per-
formance of a particular device, they are critical for making
devices that involve the placement and/or arrangement of
SWCNTs. Fortunately, computational power and efficient,
robust quantum-mechanical codes have been developed to
give us the very accurate spectral data needed for analyzing
these interactions.7–11 Additionally, it has been discovered
that the dielectric spectral data nonlinearly depend on chiral-
ity and some SWCNTs even exhibit significant optical aniso-
tropy between their radial and axial directions.12,13 For the

purposes of this paper, one CNT was selected out of each of
the two major SWCNT classes �the �6,5 ,s� semiconducting
and �9,3 ,m� metallic, which have been previously
analyzed13�. This is not to suggest that all or even any tubes
in each category will behave alike. In fact, it is possible to
group SWCNTs into three different classes �metals, semimet-
als �very small gap semiconductors�, and semiconductors�,
by families,14 or have no classification system at all. While
the taxonomy and correlation of van der Waals–London dis-
persion �vdW-Ld� spectra to chirality is very interesting in
itself, it is not the focus of this paper and will be analyzed in
the future. Rather, the focus is on the methodology of going
from each SWCNT’s van der Waals–London dispersion
spectrum to calculate the van der Waals–London dispersion
interaction energy that results from the SWCNT’s shape and
optical anisotropy.

The van der Waals–London dispersion interactions domi-
nate systems that have no net charge and in which typical
separations are much larger than those characteristic of mo-
lecular and atomic bonds. They are particularly important in
colloidal systems and, in fact, determine the colloidal stabil-
ity as formalized within the standard Derjaguin-Landau-
Verwey-Overbeek theory.15 A proper understanding and a
consistent theoretical formulation of the van der Waals–
London dispersion interaction have been fully achieved
within the Lifshitz theory of dispersion interactions.16,17 It
provides the link between dielectric dispersion spectra and
the magnitude of these interactions for geometries that are
either analytically tractable or easily approximated into sim-
pler geometries. For systems with anisotropic dielectric re-
sponse, such as SWCNTs, the van der Waals–London disper-
sion interaction is much richer than in the case of simple
isotropic systems. The anisotropy of dielectric response leads
straightforwardly to orientation-dependent interactions and
the van der Waals–London dispersion torques, which can, in
turn, introduce strong alignment forces either between
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SWCNTs themselves or between SWCNTs and anisotropic
macroscopic substrates. These are the main focus of this pa-
per.

Anisotropic van der Waals–London dispersion forces be-
tween SWCNTs will be analyzed in two separate, analyti-
cally tractable limits corresponding to large and small sepa-
rations as compared with the radius of the SWCNTs. We
refer to these as the far and near limits. The intermediate
regime will be covered by sensible interpolation formulas. In
the far limit, the Parsegian method for anisotropic cylinders
will provide the basis for numerical evaluation of the
vdW-Ld interaction. In the near limit, corresponding to near
contact, the cylinder-surface and cylinder-cylinder geom-
etries are, to a first-order approximation, equivalent to the
infinite half-space formulations of the Lifshitz theory aug-
mented by the Derjaguin method �Ref. 17 p. 204�. Previ-
ously developed numerical implementations of the Lifshitz
theory valid for two infinite half-spaces can, thus, be fruit-
fully used in this limit.

The structure of this paper is as follows: we first introduce
the van der Waals–London dispersion spectrum and discuss
its properties for two representative cases of the SWCNTs.
We then derive the exact Lifshitz formulas for the van der
Waals–London dispersion interaction energy between an op-
tically anisotropic cylinder and a semi-infinite optically an-
isotropic substrate and between two optically anisotropic cyl-
inders in both the far and near limits. We formulate the
vdW-Ld interaction energies in terms of the appropriate Ha-
maker coefficients. We then evaluate these Hamaker coeffi-
cients for the relevant SWCNT van der Waals–London dis-
persion spectra and propose an interpolation formula that
will cover the whole regime of separations. Finally, we will
comment on and discuss the magnitude and salient properties
of the van der Waals–London dispersion interaction in the
context of SWCNTs.

II. DIELECTRIC AND LONDON DISPERSION SPECTRA

A. Full spectral Hamaker coefficients

In the framework of the Lifshitz theory �Ref. 17 p. 283�
the nonretarded dispersion interaction free energy between
two semi-infinite half-spaces is conveniently written as

G��� = −
A123

12��2 �1�

with a Hamaker coefficient defined in this case as

A123 = − 6kT�2�
n=0

�

��
0

�

QdQ ln�1 − �32��n��12��n�e−2Q��

�
3

2
kBT�

n=0

�

��12��n��23��n� . �2�

Here, 1 and 3 �of 123� represent the left and right infinite
half-space materials separated by medium 2 of thickness �.
Q is the magnitude of the wave vector in the plane of the two
opposed interfaces. The summation in the expression above
is not continuous but rather over a discrete set of Matsubara,

or boson, frequencies �n=
2�kBTn

� , where kB is the Boltzmann
constant and � is the Planck constant divided by 2�. At room
temperature, this interval per n is approximately 0.16 eV.
The prime in the summation signifies that the first, n=0, term
is taken with weight 1

2 .
The Hamaker coefficient depends on the values of �’s

that describe the relative dielectric mismatches between the
dielectric media involved in the interaction and are defined
as

�kj��n� =
�k�i�n� − � j�i�n�
�k�i�n� + � j�i�n�

. �3�

The dielectric function at imaginary values of the fre-
quency argument, which is obviously the fundamental ingre-
dient of the Lifshitz theory of van der Waals interactions, can
be obtained via the Kramers-Kronig �KK� transform in the
form

��i�� = 1 +
2

�
�

0

� ���	�d	

	2 + �2 , �4�

where ���	� is the imaginary part of the dielectric response
function, i.e., ��	�=���	�+ i���	�. ��i�� is referred to as the
van der Waals–London dispersion spectrum �or vdW-Ld
spectrum�. The magnitude of ��i�� essentially describes how
well the material responds and is polarized by fluctuations up
to the given frequency. Note that the integration in Eq. �4�
requires frequencies out to infinity. In practice this is impos-
sible, but also unnecessary, as long as all the interband tran-
sition energies are either known or properly approximated.

For simple systems, it may be acceptable to use this
simple formulation for planar geometries to get a general feel
for the magnitude and sign of the Hamaker coefficient. How-
ever, the geometry of the system cannot be ignored at certain
distances and in certain arrangements and must be taken into
account.

B. Structure and optical properties

In order to obtain accurate vdW-Ld spectra over a suffi-
ciently large frequency range �as large as possible while
maintaining accuracy�, ab initio electronic structure codes
were used to calculate ���	� from the resulting band struc-
ture via its connection with the dipolar transition strengths
�kn
 	 pi 	kn�

 of the form18

�ij� �	� =
4�2e2

�m2	2 �
knn�


�kn
	pi	kn�

�kn�
	pj	kn

fkn

��1 − fkn���ekn� − ekn − �	� . �5�

Here, again ���	� is the imaginary part of the dielectric spec-
trum at a given frequency 	, with mass m and Brillouin-zone
volume �. The momentum operators, pi and pj, operate on
both the valence- and conduction-band wave functions,
where the i and j subscripts represent the directions of the
tensor in three-dimensional space. The Fermi function �fkn�
terms ensure that only transitions between an occupied va-
lence to an unoccupied conduction-band transition are al-
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lowed, and the delta function ensures that only transitions
corresponding to the particular energy �	 are considered.
Once ���	� is obtained, it is then trivial to use the Kramers-
Kronig transform Eq. �4� to convert these data into a form
useful for dispersion interaction computation.

Figure 1 shows the band diagrams for the �6,5 ,s� and
�9,3 ,m� SWCNTs, which served as the basis for Eq. �5�. The
calculation was done for an infinitely long uncapped
SWCNT �i.e., we used a single unit cell and applied periodic
boundary conditions in the axial direction�. The small gap
present in the �9,3 ,m� is consistent with previous research
for achiral SWCNTs.6 For practical electronic conduction
purposes, it still behaves like a metal and thus it maintains its
label as such. The band gap for the �6,5 ,s� is just over
1.0 eV and is thus in agreement with previous trend
analysis.14

Figure 2 shows the �� data for the �6,5 ,s� and �9,3 ,m�
SWCNTs, which have identical peaks and features in com-
parison to the data used in our first analysis.13 However, the
magnitudes have now been scaled to compensate for the ex-
cess volume surrounding the SWCNT in the three-
dimensional supercell of the orthogonalized linear combina-
tion of atomic orbitals �OLCAO� calculation so as to report
the �� data of a SWCNT as a solid cylinder.7 This scaling of
the �� from that of a solid cylinder in an empty box to the
solid cylinder by itself is based on the oscillator strength, or
f-sum rule,20 which relates the optical property �� to a mate-
rial’s electron density as follows:

nef f�	� =
m

2�2e2�
0

	

	���	��d	�. �6�

Here, nef f�	� is the effective number of electrons per volume
contributing to the optical properties for energy excitations
up to frequency 	. Variables m and e are the standard values
of electron mass and charge, respectively. For our particular
system, we define the outer surface of the solid cylinder to be
half a graphite interlayer spacing �d0 /2=0.168 nm�,19 be-
yond what is traditionally called the SWCNT radius �the tra-
ditionally defined radius is typically the distance between
where the carbon nuclei reside and the center of the cylin-
der�. We chose this extended radius because we are inter-
ested in the vdW-Ld energies and forces between two
SWCNTs up until actual contact. d0 is a suitable distance
because it is the equilibrium distance between two graphene
layers in graphite and also of the different layers in a multi-
walled carbon nanotube system. Therefore, for an infinitely
long SWCNT with its axial direction along the z direction,
the scale factor is simply xyz��z�r+ 1 � 2d0

�2
.

The axial directions z cancel out as expected. Variables x
and y represent the supercell box dimensions for the OLCAO
calculation along the radial component directions of the
SWCNTs. Their sizes are arbitrarily chosen to be large
enough to prevent the SWCNT from feeling the effects of an
identical neighbor. For both of our SWCNT calculations, we
used 2 nm for the x and y dimensions and a single lattice unit
translation for the z dimension �1.535 96 nm for the �9,3 ,m�
and 4.063 78 nm for the �6,5 ,s��.

As with our previous analysis, the �� data were obtained
to be 30 eV. This upper limit is sufficient for most SWCNTs,
as they are made of carbon and do not exhibit any of the
higher-order d and f shell transitions. The two SWCNTs
have noticeable differences in their �� absorption peaks be-
tween the two chiralities and between the different principal
directions of a particular SWCNT. This lays the fundamental
groundwork for these differences to carry over to the
vdW-Ld interactions that will, thus, exhibit strong anisotropy
in the interaction.

Figure 3 shows the vdW-Ld curves of water and the
�9,3 ,m� and �6,5 ,s� tubes after the KK transform. Again, it
is clear that these curves are all different, some more sub-
stantially than others. The metallic �9,3 ,m� tube has very
obvious directional dependence, with the axial direction hav-
ing a large wing at low frequencies and a dampened response
at high frequencies if compared to the radial vdW-Ld spec-
trum. To those not used to vdW-Ld spectra analysis, the
SWCNT curves may look different by only 10%–20% in any
given frequency regime, but these seemingly small shifts can
have a big impact because of the infinite Matsubara fre-
quency summation in Eq. �2�. Small shifts in vdW-Ld spectra
can even determine whether an interaction is attractive or
repulsive for a multicomponent system.21–23

III. van der WAALS–LONDON DISPERSION
INTERACTION BETWEEN ANISOTROPIC BODIES

In this section, we derive the nonretarded van der Waals–
London interaction between a semi-infinite anisotropic sub-

FIG. 1. The band diagrams for the axial direction of the �a�
�6,5 ,s� and �b� �9,3 ,m� SWCNTs.

FIG. 2. �Color online� The �2 or imaginary part of the dielectric
spectrum versus frequency for the �a� �6,5 ,s� and �b� �9,3 ,m�
SWCNTs. The axial direction of the �6,5 ,s� spikes and plateaus to
values around 17 in the range of 1.00–1.07 eV, while the �9,3 ,m�
spikes sharply up to a value of 933 at 0.04 eV.
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strate and an anisotropic cylinder in two limits: the far limit,
corresponding to a large l �note that l is the separation be-
tween the surface of the substrate and the surface of the
cylinder�, and the near limit, corresponding to the Derjaguin
limit valid in the case of small separation from the substrate.
The substrate is assumed to be optically uniaxial and have a
dielectric response function �� in the direction parallel to the
surface and �� in the other two directions. The cylinder is
also uniaxial with dielectric response functions �c

� and �c
�

parallel and perpendicular to the cylinder axis.
The philosophy of our approach is based on consecutive

application of the Parsegian method and the Pitaevskii
method for two semi-infinite anisotropic media �Ref. 17 p.
236�:

�1� In the cylinder-substrate case, we first formulate the
Lifshitz interaction energy for two plane-parallel semi-
infinite anisotropic media and then use the Pitaevskii method
to extract an interaction free energy between a single aniso-
tropic cylinder and a semi-infinite anisotropic substrate. The
limiting procedure of going from the anisotropic composite
to a single long anisotropic cylinder is based on the applica-
tion of the Parsegian method of composite anisotropic media.

�2� In the cylinder-cylinder case, we start again from the
Lifshitz interaction energy for two plane-parallel semi-
infinite anisotropic media but then use the Parsegian method
of composite anisotropic media for both of them. Applying
the Pitaevskii method to both media now allows for an ex-
traction of the interaction free energy between two aniso-
tropic cylinders.

For the first case listed above, a related computation was
performed in a nevertheless unrelated context by Chun et
al.24 The main difference between this approach and the one
described in detail here is that we have now circumvented all
linearization assumptions, and thus our formulas are exact to
all orders in the orientational dependence, we have derived
the interaction formulas for any value of the substrate aniso-
tropy, and we have used the Pitaevskii method to go from the
slab-slab interaction to the cylinder-substrate interaction.

We first calculate the Lifshitz interaction free energy for
two anisotropic media L and R across m of thickness � in
the nonretarded limit.25 We introduce two components of the
uniaxial dielectric response of the substrate L as �� and ��,
and �� and �� as the two components of the uniaxial dielec-
tric response of the substrate R.

The angle between the two principal axes of media L and
R is defined as �, see Fig. 4. �m is the dielectric response of
the isotropic medium between the two semi-infinite sub-
strates. � is an integration variable used to capture the inter-
actions between all possible directions within the plane nor-
mal to the stacking direction. The interaction free energy for
this system is given by the following expression �Ref. 17, p.
320�

G��,�� =
kBT

4�2 �
n=0

�

��
0

2�

d��
0

y

QdQ log�1 − �Lm���

��Rm�� − ��e−2Q�� . �7�

All the dielectric functions have to be taken as their
Kramers-Kronig transforms at i�n, i.e., ��i�n�, where �n

=2�n
kBT

� . Q is the magnitude of the wave vector in the plane
of the two opposed interfaces. Also here,

�Lm��� =
��

�1 + � cos2 � − �m

��
�1 + � cos2 � + �m

, �8�

where medium L anisotropy is defined as

� =
�� − ��

��

. �9�

If the substrate L is isotropic, then �� =�� and �=0. For the
medium R, we analogously have

�Rm�� − �� =
��

�1 + �̄ cos2�� − �� − �m

��
�1 + �̄ cos2�� − �� + �m

, �10�

with an anisotropy of

�̄ =
�� − ��

��

. �11�

Again, if the substrate R is isotropic, then �� =�� and �̄
=0. The interaction free energy G�� ,�� �Eq. �8��, can be
evaluated at any separation � between the interfaces of L and
R as well as at any angle � between the two principal axes of
media L and R.

A. Cylinder–planar substrate interaction

In order to get the interaction free energy between an
anisotropic cylinder and an anisotropic substrate, we use the

FIG. 3. �Color online� The vdW-Ld curves of both SWCNTs in
their radial and axial directions for the �a� �6,5 ,s� and �b� �9,3 ,m�
SWCNTs. The vdW-Ld spectra for water rises sharply to 78 at
0 eV, while the �9,3 ,m� goes even higher and peaks at approxi-
mately 333.

FIG. 4. Schematic showing the geometry of the �a� anisotropic
cylinder–anistropic planar substrate and �b� anisotropic cylinder–
anisotropic cylinder systems.

RAJTER et al. PHYSICAL REVIEW B 76, 045417 �2007�

045417-4



Parsegian method; i.e., we assume that one of the semi-
infinite substrates, i.e., R, is a composite composed of ori-
ented anisotropic cylinders at volume fraction v, with ��

c and
��

c as the transverse and longitudinal dielectric response func-
tions of the cylinder material. For the semi-infinite composite
medium of oriented anisotropic cylinders R, the anisotropic
bulk dielectric response function can be derived in the form
�Ref. 17 p. 318�

�� = �m�1 + v���, �� = �m1 +
2v��

1 − v��

� , �12�

where

�� =
��

c − �m

��
c + �m

, �� =
��

c − �m

�m
, �13�

and �m is, again, the dielectric function of the isotropic me-
dium between cylinders as well as between regions L and R.

We now apply the Pitaevskii method to this composite
system, which allows us to extract the interaction between a
single anisotropic cylinder and a semi-infinite anisotropic
substrate from an interaction energy between two semi-
infinite substrates, of which one is a composite defined
above. We start from the free energy of interaction G�� ,��
�Eq. �8�� where the composite of uniaxial cylinders is at a
volume fraction v=N�a2, where N is the cross-sectional
number density and a is the radius of the cylinders. For this
case, one can derive that �Ref. 17 p. 236�

� −
�G��,��

��
�

�

= Ng��,�� . �14�

Here, g�� ,�� is the interaction free energy per unit length
between a cylinder with a /�→0 and a semi-infinite substrate
L, while G�� ,�� is the interaction free energy per unit sur-
face area between a semi-infinite region L and a semi-
infinite composite region R, at separation � and angle �,
composed of parallel anisotropic cylinders embedded in me-
dium m. g�� ,�� is thus obtained by expanding G��� to the
first order in v. This is the essence of the Pitaevskii method.

1. Far limit

We formally define the far limit as the limit a /�→0 and
use the result of the previous section to explicitly derive
g�� ,��. In order to use the Pitaevskii method, we expand
�Rm��−�� to lowest order in v,

�Rm�� − �� = − ��� +
1

4
��� − 2���cos2�� − ���v + O�v2� .

�15�

To this order in v, the Q integral in Eq. �8� can then be
done explicitly

G��,�� = −
kBT

16�2�2v�
n=0

�

��
0

2�

d��Lm���

���� +
1

4
��� − 2���cos2�� − ��� . �16�

Now apply Eq. �15� and thus extract the interaction free
energy per unit length of a cylinder

g��,�� = −
kBT�a2

4�22�3 �
n=0

�

��
0

2�

d��Lm���

���� +
1

4
��� − 2���cos2�� − ��� . �17�

Integration over � leads to a term that is independent of �
plus a term that goes as cos2 �. This can be proved simply by
Taylor expanding the above equation in cos2 � and evaluat-
ing the � integrals order by order. This is tedious but
straightforward. Therefore we can write g�� ,�� in the com-
pact form

g��,�� = −
kBT��a2�

4��3 �H�0� + H�2� cos2 �� . �18�

We define H�0� and H�2� by picking two convenient angles
� in Eq. �18� as �=0 and �= �

2 . For �=0,

H�0� + H�2� =
1

2�
�
n=0

�

��
0

2�

d��Lm���

���� +
1

4
��� − 2���cos2 �� , �19�

and for �= �
2 ,

H�0� =
1

2�
�
n=0

�

��
0

2�

d��Lm������ +
1

4
��� − 2���sin2 �� .

�20�

H�0� and H�2� can be evaluated explicitly since all the
integrals are elementary, but the expressions obtained contain
various elliptic functions and are not particularly illuminat-
ing. They can be obtained easily with MATHEMATICA.

In order to cast the result in a form that can be easily
evaluated and interpreted, we first define two Hamaker coef-
ficients as

A�0� =
3

2
kBTH�0� andA�2� =

3

2
kBTH�2�. �21�

A�0� describes the orientation-independent part of the in-
teraction, and A�2� the orientation-dependent part. The inter-
action free energy per unit length between a cylinder of ra-
dius a and a planar anisotropic substrate at surface-surface
separation � �Eq. �19�� becomes

g��,�� = −
��a2��A�0� + A�2� cos2 ��

6��3 . �22�

This is the main result that we will use in order to quan-
tify the van der Waals–London dispersion interaction be-
tween a cylindrical CNT and an anisotropic semi-infinite
substrate. Note that in Eq. �23� all the � and � dependencies
are explicitly given.

For completeness, we also give the results for the force
and torque on the cylinder. The force per unit length of the
cylinder is thus
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f��,�� = −
�g��,��

��
�23�

or

f��,�� = −
��a2��A�0� + A�2� cos2 ��

2��4 . �24�

The corresponding torque per unit length is the derivative

���,�� = −
�g��,��

��
, �25�

explicitly,

���,�� = −
��a2�A�2� sin 2�

6��3 . �26�

These last results in the far limit give the force per unit
length f�� ,�� and the torque per unit length ��� ,�� as a func-
tion of the separation � and the angle between the two di-
electric axes �.

2. Near limit

We now investigate the opposite limit, � /a→0, which we
term the near limit. Here, one uses the Derjaguin method to
get the interaction energy of two cylinders, one of which has
an infinite radius of curvature, from the interaction energy
between two half-spaces. In this case, the interaction energy
per unit length between cylinders of radii a1 and a2 can be
derived as �Ref. 17, p. 204�

g��,�;a1,a2� = �
−�

+�

G„� + ��a1x�2,�…a1dx , �27�

where

� =
a1 + a2

2a1a2
. �28�

The Derjaguin method Eq. �28� is based on a summation
of interactions between quasiparallel sections of the two cyl-
inders. From Eqs. �8� and �28�, it follows that

�
−�

+�

G�� + �x2,��d�a1x� = −
kBT

4�2 �
n=0

�

��
0

2�

d��
0

�

QdQ�Lm

�����Rm�� − ��e−2Q��
−�

+�

�e−2Q��a1x�2
d�a1x� , �29�

and thus,

g��,�;a1,a2� = −
kBT

16�3/2� 2a1a2

a1 + a2
�
n=0

�

�
1

2�
�

0

2�

�d��Lm����Rm�� − �� . �30�

For the interaction between a cylinder and a plane, let
a1→a and a2→�. Also, let one of the semi-infinite slabs,
again say this is R, be composed of the anisotropic cylinder
material so that

�Rm�� − �� =
��

c �1 + �c cos2�� − �� − �m

��
c �1 + �c cos2�� − �� + �m

. �31�

Here, again

�c =
��

c − ��
c

��
c , �32�

and ��
c and ��

c are the transverse and longitudinal dielectric
responses of the cylinder, and �m that of the solution me-
dium. This formula is valid for any angle between the two
cylinders or, equivalently, between the two principal axes of
the dielectric response: the axis of the cylinder and the prin-
cipal axis of the anisotropic substrate. The angular integral is
analytically solvable for any anisotropy by the same methods
as used to derive Eq. �19� and leads to the interaction free
energy per unit length between a cylinder and an anisotropic
substrate,

g��,�;a� = −
kBT�2a

16�3/2 �H�0� + H�2� cos2 �� . �33�

Here, H�0� and H�2� are obtained in complete analogy to Eq.
�19� from

H�0� + H�2� =
1

2�
�
n=0

�

��
0

2�

d� ��
�1 + � cos2 � − �m

��
�1 + � cos2 � + �m

�
� ��

c �1 + �c cos2 � − �m

��
c �1 + �c cos2 � + �m

� �34�

and

H�0� =
1

2�
�
n=0

�

��
0

2�

d� ��
�1 + � cos2 � − �m

��
�1 + � cos2 � + �m

�
� ��

c �1 + �c sin2 � − �m

��
c �1 + �c sin2 � + �m

� . �35�

In order to cast the result in an easily evaluated and inter-
preted form, we define Hamaker coefficients as

A�0� =
3

2
kBTH�0� and A�2� =

3

2
kBTH�2�. �36�

Coefficient A�0� again describes the orientation-
independent part of the interaction and A�2� the orientation-
dependent part of the interaction. The interaction free energy
per unit length between a thick cylinder �near limit� and a
planar anisotropic substrate at surface-surface separation �
�Eq. �34�� becomes

g��,�,a� = −
�2a�A�0� + A�2� cos2 ��

24�3/2 . �37�

This is the second main result that we will use in order to
quantify the van der Waals–London dispersion interaction
between a cylindrical CNT and an anisotropic semi-infinite
substrate at close separations. Note that here, too, all the �
and � dependencies are explicitly given.

The corresponding force per unit length is then according
to Eq. �24�
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f��,�,a� = −
�g��,�,a�

��
�38�

or

f��,�,a� = −
�2a�A�0� + A�2� cos2 ��

16�5/2 . �39�

The torque per unit length is then again

���,�,a� = −
�g��,�,a�

��
�40�

or, explicitly,

���,�,a� = −
�2aA�2� sin 2�

24�3/2 . �41�

This completes the near limit for the interaction free energy
per unit length g�� ,� ,a� in the cylinder–planar substrate sys-
tem as an explicit function of the surface separation � and the
angle � between the two principal dielectric axes.

B. Cylinder-cylinder interaction

In order to get the interaction free energy between two
anisotropic cylinders, we again use the Parsegian method,
assuming now that both L and R are composites composed
of oriented anisotropic cylinders at volume fraction v, with
��

c and ��
c as the transverse and longitudinal dielectric re-

sponse functions of the cylinder material. The rest of the
derivation is very similar to the case of the cylinder and a
semi-infinite substrate. We again decompose it into the far
and near limits.

1. Far limit

Start with the interaction between two semi-infinite me-
dia, both composed of uniaxial cylinders at a volume fraction
v=N�a2, where N is the cross-sectional number density and
a is the radius of the cylinders.

Depending on �, in this case, Eq. �15� comes in two vari-
ants. If the cylinders in each of the composite media are
parallel, �=0, then �Ref. 15 p. 234�

d2G��,� = 0�
d�2 = N2�

−�

+�

g���2 + y2�dy . �42�

Here, g��� is the free energy of interaction between parallel
cylinders per unit length at a separation �. If, on the other
hand, the angle � is finite, i.e., ��0, then the corresponding
expression becomes �Ref. 17, p. 234�

d2G��,��
d�2 = N2 sin ��G��,��� . �43�

Here, G�� ,�� is the interaction free energy between the two
cylinders, skewed at an angle �. For two semi-infinite com-
posite media, Eq. �3� now becomes

G��,�� =
kBT

4�2 �
n=0

�

��
0

2�

d��
0

y

QdQ log

��1 − �Lm����Rm�� − ��e−2Q�� , �44�

where

�Lm��� =
���L��1 + ��L�cos2 � − �m

���L��1 + ��L�cos2 � + �m

. �45�

and

�Rm�� − �� =
���R��1 + ��R�cos2�� − �� − �m

���R��1 + ��R�cos2�� − �� + �m

. �46�

We have kept the option that the two cylinders are composed
of different materials, �R� and �L�. The other definitions are
trivially generalized, for �R� and �L�, from

�̄ =
�� − ��

��

, �47�

with

�� = �m�1 + v���, �� = �m1 +
2v��

1 − v��

� , �48�

where

�� �
��

c − �m

��
c + �m

, �� �
��

c − �m

�m
. �49�

Starting first with the expansion of �Rm and �Lm in terms
of v,

�Lm��� = − ����L� +
1

4
����L� − 2���L��cos2 ��v

+ O�v2� ,

�Rm��� = − ����R� +
1

4
����R� − 2���R��cos2�� − ���v

+ O�v2� . �50�

To second order in v, this gives

G��,�� = −
kBT

2�
N2��a2�2�

n=0

�

�

��H�0� + H�2� cos2 ���
0

�

QdQe−2Q� �51�

by using v=N��a2�. Here,
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H�0� + H�2� =
1

2�
�

0

2�

�d�����L� +
1

4
����L� − 2���L��cos2 ��

�����R� +
1

4
����R� − 2���R��cos2 ��

�52�

and

H�0� =
1

2�
�

0

2�

d�����L� +
1

4
����L� − 2���L��cos2 ��

�����R� +
1

4
����R� − 2���R��sin2 �� . �53�

We can now extract interaction formulas for a pair of
skewed or parallel cylinders. In the simpler skewed case,
Eqs. �44� and �52� give

sin ��G��,��� = −
kBT

2�
��a2�24�

n=0

�

��H�0�

+ H�2� cos2 ���
0

�

Q3dQe−2Q� �54�

or

G��,�� = −
3kBT��a2�2

4��4 sin �
�
n=0

�

��H�0� + H�2� cos2 �� . �55�

Introducing two Hamaker coefficients

A�0� =
3

2
kBTH�0� and A�2� =

3

2
kBTH�2�, �56�

we can write the interaction free energy between two thin
cylinders �far limit� of radius a skewed at an angle � and at
a �smallest� separation � in the form

G��,�� = −
��a2�2�A�0� + A�2� cos2 ��

2��4 sin �
. �57�

Note that this is now a total interaction free energy and not
interaction free energy per unit length. This is the third main
result that we will use in order to quantify the van der
Waals–London dispersion interaction between two cylindri-
cal CNTs at large separations. Note, too, that all the � and �
dependencies are explicitly given.

For completeness, we also derive the expressions for the
force and the torque. The corresponding force is again ob-
tained from

f��,�� = −
�G��,��

��
�58�

or

f��,�� = −
2��a2�2�A�0� + A�2� cos2 ��

��5 sin �
. �59�

Similarly, the torque is

���,�� = −
�G��,��

��
�60�

or

���,�� = −
��a2�2

2��4 � A�0�

sin2 �
+ A�2��2 + cot2 ���cos � .

�61�

For parallel cylinders, the derivation proceeds along a dif-
ferent line, since now the interaction energy scales propor-
tional to the total length of the cylinders. Starting with Eq.
�43� gives

�
−�

+�

g���2 + y2�dy = −
kBT

2�
��a2�24�

n=0

�

��H�0� + H�2���
0

�

�Q3dQe−2Q�. �62�

By the inverse Abel transform,

h��� = �
−�

+�

g��2 + y2�dy → g��� = −
1

�
�

�

� h��y�dy
��2 − y2

,

�63�

we obtain

g��� = −
1

�

kBT

2�
��a2�28�

n=0

�

��H�0� + H�2���
0

�

Q3dQK0�− 2Q��

�64�

by using the standard identity

�
�

� e−2Qydy
��2 − y2

= K0�− 2Q�� . �65�

From here, it is easy to write explicitly the interaction free
energy per unit length between two parallel cylinders of ra-
dius a,

g��� = −
9kBT��a2�2

16��5 �
n=0

�

��H�0� + H�2�� . �66�

The Matsubara sum �n=0
�� is as before. With the two Ha-

maker coefficients

A�0� =
3

2
kBTH�0� and A�2� =

3

2
kBTH�2�, �67�

we remain with

g��� = −
3��a2�2�A�0� + A�2��

8��5 . �68�

This is the free energy of interaction between two parallel
thin cylinders at a separation � in the far limit. This is the
fourth main result that we will use in order to quantify the
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van der Waals–London dispersion interaction between two
parallel cylindrical CNTs at large separations.

Again, for the sake of completeness, we quote the results
for the corresponding force per unit length as

f��,�� = −
�g��,��

��
�69�

or

f��,�� = −
15��a2�2�A�0� + A�2��

8��6 . �70�

2. Near limit

In the limit of small separations between the two cylin-
ders � /a→0, we reformulate the approach based on the Der-
jaguin method and introduced for a single cylinder and a
substrate. For closely opposed curved surfaces where c1

1 ,c2
1

are the principal curvatures of surface 1 and c1
2 ,c2

2 are the
principal curvatures of surface 2, the Derjaguin method leads
to the interaction energy of the form �Ref. 17 p. 204�

G��,�;a1,a2� =� �
−�

+�

G� +
1

2
c1x2 +

1

2
c2y2�dxdy ,

�71�

where c1 and c2 are defined as

c1c2 = �c1
1c2

1 + c1
2c2

2� + �c1
1c1

2 + c2
1c2

2�sin2 �

�+ �c1
1c2

2 + c1
1c2

2�cos2 � . �72�

With polar variables, the integral Eq. �72� can be rewritten as

G��,�;a1,a2� = �
0

2� �
0

+�

G� +
1

2
�2��d�d�

�c1c2

. �73�

For two cylinders with radii a1 and a2 at an angle �, the
above equations can be cast in the form

G��,�;a1,a2� =
2��a1a2

sin �
�

�

�

G�h,��dh . �74�

This gives, to the lowest order in the �’s,

G��,�;a1,a2� = −
�a1a2kBT

8�� sin �
�
n=0

�

��
0

2�

d��Lm����Rm�� − �� .

�75�

Taking into account Eqs. �46� and �47�, the angular integral
is again analytically solvable for any anisotropy and leads to
the following result for the interaction free energy of two
cylinders of equal radii a1=a2=a:

G��,�;a� = −
akBT

4� sin �
�H�0� + H�2� cos2 �� , �76�

where H�0� and H�2� are obtained from

H�0� + H�2� =
1

2�
�
n=0

�

��
0

2�

d� ��
c �R��1 + �c�R�cos2 � − �m

��
c �R��1 + �c�R�cos2 � + �m

� ��
c �L��1 + �c�L�cos2 � − �m

��
c �L��1 + �c�L�cos2 � + �m

� �77�

and

H�0� =
1

2�
�
n=0

�

��
0

2�

d� ��
c �R��1 + �c�R�cos2 � − �m

��
c �R��1 + �c�R�cos2 � + �m

�
� ��

c �L��1 + �c�L�sin2 � − �m

��
c �L��1 + �c�L�sin2 � + �m

� . �78�

For two identical cylinders, the L and R values are the
same. Again, we omit writing the explicit frequency depen-
dence of all the dielectric functions. This dependence should
be entered when numerical calculations are performed.

As above, we now introduce the Hamaker coefficients
according to the definitions

A�0� =
3

2
kBTH�0� and A�2� =

3

2
kBTH�2�, �79�

and thus obtain for the interaction free energy of the two
cylinders of equal radii a1=a2=a

G��,�;a� = −
a

6� sin �
�A�0� + A�2� cos2 �� . �80�

This is the final expression for the interaction free energy
between two CNTs at a general angle � and separation � in
the near limit. Note again that all the � and � dependencies
are given explicitly. Again, for completeness, the correspond-
ing force is given by

f��,�;a� = −
�G��,�;a�

��
�81�

or

f��,�;a� = −
a

6�2 sin �
�A�0� + A�2� cos2 �� . �82�

The corresponding torque is obtained straightforwardly as
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���,�;a� = −
�G��,�;a�

��
, �83�

which can be rewritten as

���,�;a� = −
a

6�2� A�0�

sin2 �
+ A�2��2 + cot2 ���cos � .

�84�

These are the results for two near cylinders at a surface to
surface separation �, at a mutual angle �, and of a common
radius a. This is the fifth main result that we will use in order

to quantify the van der Waals–London dispersion interaction
between two cylindrical CNTs at small separations.

Examine now the interaction free energy of two identical
anisotropic cylinders of radius a at zero mutual angle. In this
case, the interaction free energy per unit length can be ob-
tained in the form �Ref. 17 p. 172�

g��,� = 0;a� = −
kBT�a

16�3/2 �H�0� + H�2�� , �85�

where H�0� and H�2� are obtained in complete analogy to Eq.
�19� from

H�0� + H�2� =
1

2�
�
n=0

�

��
0

2�

d� ��
c �R��1 + �c�R�cos2 � − �m

��
c �R��1 + �c�R�cos2 � + �m

� ��
c �L��1 + �c�L�cos2 � − �m

��
c �L��1 + �c�L�cos2 � + �m

� . �86�

Of course, for two identical cylinders, the � values for L
and R are the same. Introducing again the Hamaker coeffi-
cient as before, we get the interaction free energy per unit
length of the parallel cylinders as

g��,� = 0;a� = −
�a

24�3/2 �A�0� + A�2�� . �87�

This is now the sixth and last result that we will use to
quantify the van der Waals–London dispersion interaction
between two parallel cylindrical CNTs at small separations.

C. Determining the full distance dependence of the van der
Waals–London dispersion interaction energy

We have now derived two valuable limits for the vdW-Ld
interaction free energy: for very large intersurface separa-
tions, when compared to the radius of the cylinder, and for
very small intersurface separations, either in the case of a
cylinder and a substrate or two cylinders. However, the final
goal of this analysis is to take these two limiting expressions
and their power-law dependence on the intersurface separa-
tion � and glue them together sensibly to obtain vdW-Ld
interactions for all distances in between the two asymptotic
limits.

This is accomplished by comparing our two asymptotic
results, the far and near limits, with approximate nonretarded
Hamaker pairwise summation formulas that can be derived
and numerically evaluated for any separation and any geom-
etry. Though the Hamaker summation procedure is, of
course, approximate, we are only really interested in its dis-
tance and orientational scaling because we have already cal-
culated the absolute values of the Hamaker coefficients in the
two limits above. We will, thus, derive approximate interpo-
lation formulas between our two exact limiting results by
comparing the distance and orientational scaling within the
two limits with the Hamaker summation results. This appears
to be a reasonable method that partly circumvents the very

complicated case of exact evaluation of the vdW-Ld interac-
tions for any separation and any orientation.

1. Cylinder–planar substrate interaction

The problem of interpolation in the case of the cylinder–
planar substrate interaction is solved in the following way.
We take the vdW-Ld interaction energy between a point par-
ticle and a semi-infinite substrate at a separation � that de-
cays as �−3. For a cylinder of volume �V�, the Hamaker sum-
mation formula gives, for the interaction energy per unit
length,

g��,�,a� = −
A

L
�

�V�

dV

�3�V�
, �88�

where the volume of integration �V� is over the interior of the
cylinder, L is the length of the cylinder, and ��V� stands for
the separation of each point within the cylinder from the
planar substrate. This integral cannot be evaluated analyti-
cally but can be easily obtained numerically. We then com-
pare this numerical form of the Hamaker summation formula
to a different analytical function consisting of the previous
far and near limiting cases blended by an interpolation func-
tion. The total vdW-Ld interaction free energy per unit length
of cylinder of radius a and length L, at all distances � away
from the planar substrate, is assumed to be of the form

g��,�,a� = −
�2a

24�3/2 �AN
�0� + AN

�2� cos2 ��f��,�0,��

−
��a2�

6��� + a�3 �AF
�0� + AF

�2� cos2 ���1 − f��,�0,��� .

�89�

For consistency, we also had to measure all the distances
from the center of the cylinder; hence, �+a in the far term.
The Hamaker coefficients in the first part correspond to defi-
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nitions in the near limit �Eqs. �35� and �36�� and thus the
index P; and in the second part, to definitions in the far limit
�Eqs. �20� and �21��, thus the index D. Here, f�� ,�0 ,�� is an
interpolation function that we choose to be of the simple
two-parameter Fermi form

f��,�0,�� =
1

1 + e���−�0� , �90�

where �0 is the transition point and � is essentially a fade or
blur factor between the two functions. The asymptotic be-
havior of the interpolation function is f��→0,�0 ,��=1 and
f��→� ,�0 ,��=0.

2. Cylinder-cylinder interaction

For the skewed cylinder-cylinder interaction, we follow
exactly the same procedure except that in this case we must
consider the interaction free energy, rather than the interac-
tion free energy per unit length. The Hamaker-summation
result,

G��,�,a� = − A�
�V1�
�

�V2�

dV1dV1

�6�V1,V2�
, �91�

is a bit more complicated than Eq. �89�, because one has to
integrate an �−6 form over the volumes of the two interacting
cylinders; the volume of integration �V1� is over the interior
of the first cylinder, the volume of integration �V2� is over the
interior of the second cylinder, and ��V1 ,V2� stands for the
separation. This integral cannot be evaluated analytically but
can be easily obtained numerically. We then compare this
numerical form of the Hamaker-summation formula to a dif-
ferent analytical function consisting of the previous far and
near limiting cases blended together by the same interpola-
tion function as used for the cylinder–planar substrate case.
The total vdW-Ld interaction free energy in this case is then
written as

G��,�,a� = −
3a

2� sin �
�AN

�0� + AN
�2� cos2 ��f��,�0,��

−
��a2�2

2��� + 2a�4 sin �
�AF

�0� + AF
�2� cos2 ��

��1 − f��,�0,��� . �92�

The Hamaker coefficients in the first part correspond to defi-
nitions in the near limit �Eqs. �78� and �79�� and thus the
index P, and in the second part to definitions in the far limit
�Eqs. �53� and �54�� and thus the index D. Again, f�� ,�0 ,��
is a Fermi interpolation function of the form Eq. �91�, but
possibly with a different set of parameters �0 and �.

The case of two parallel anisotropic cylinders at zero mu-
tual angle is dealt with similarly. First, we construct the ap-
propriate Hamaker summation integral for this geometry,
which we compare with the suitably interpolated interaction
free energy per unit length obtained from the two exact lim-
its, just as above. The interpolated interaction energy is now

g��,a� = −
�a

24��3/2 �AP
�0� + AP

�2��f��,�0,��

−
3��a2�2

8��� + 2a�5 �AD
�0� + AD

�2���1 − f��,�0,��� ,

�93�

where the near form and the far form of the Hamaker coef-
ficients are given by Eqs. �87� and �53�, respectively. This
completes the derivation of the interpolation formulas for all
the cases of interaction either between a cylinder and a pla-
nar substrate or between two cylinders.

3. Numerical values of the parameters

Determining the values for �0 and � was a simple matter
of fitting to obtain the best possible match. It was pleasing to
discover that with simple Fermi function blending of the two
analytical limiting forms we were able to capture the
Hamaker-summation numerical results over all distances.
Figure 5 shows the ratio of the numerical versus analytical
energy for a unit length of cylinder with a 0.4 nm radius in
the cylinder–planar substrate and cylinder-cylinder systems
at all distances �. For the cylinder–planar substrate system,
we obtained �0=0.4 nm and �=0.15 as our best-fit param-
eters. This resulted in our interpolated interaction energy
having an 8% underestimation at 1.2 nm and a 25% overes-
timation at approximately 0.3 nm. This is a very reasonable
result considering the large change in the scale factor behav-
ior within this small separation region. Of course, one can
adjust the values of �0 and � to be more accurate in one
regime versus another or change the form of the interpolation
function to incorporate this small discrepancy. One important
aspect of knowing this simple interpolation behavior is that it
is clear which distance range is relevant to both the far and
near Hamaker coefficients.

Another nice aspect regarding the interpolation function is
that it is possible to get the same ratio behavior displayed in
Fig. 5 for any cylinder radii by scaling the parameters � and
�0 as a linear function of the cylinder radius, which is a
simple consequence of the scaling form Eq. �92�. For ex-
ample, if we doubled the radius of the cylinder, doubling �

FIG. 5. �Color online� The ratio of the numerical integration
�Eq. �89�� versus the interpolated analytical function �Eq. �90�� for
the cylinder–planar substrate and parallel cylinder-cylinder system.
The radius of the CNT cylinder in both scenarios is a=0.4 nm.
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and �0 would give the curve in Fig. 5 stretched by a factor 2
along the x axis. This is very good because once we are
satisfied with the curve’s behavior, we know exactly how it
will behave for any arbitrary CNT diameter. Therefore, for
an arbitrary radius of a cylinder, the parameters �0=a and
�=0.375a will match the behaviors found in Fig. 5 for cyl-
inder radii within a substantial range of variation.

For the cylinder-cylinder system, the matching between
Hamaker-summation numerical and analytical interpolated
solutions �Fig. 5� is acceptable given the fact that the scaling
behavior change is more complicated than that for the
cylinder–planar substrate system. If one needs more accuracy
in this regime, they can either incorporate a more compli-
cated interpolation function or simply use the numerical in-
tegration. However, this simple analysis is still useful for at
least determining when the behavior of the system changes
between the near and far limits. Our best-fit parameters for
Fig. 5 were �0=0.28 nm and �=0.14, which can also be
scaled for any arbitrary cylinder radii size using �0=0.7a and
�=0.35a.

IV. RESULTS

We now calculate the corresponding Hamaker coefficients
for three main cases: a CNT interacting with an optically
isotropic planar substrate, a CNT interacting with an opti-
cally anisotropic planar substrate, and two single dispersed
SWCNTs interacting with each other. We will consider only
cases where the CNTs are embedded in an aqueous medium
because it is the most relevant in colloidal systems. The
analysis can easily be extended to other media, such as air or
an organic solvent, by appropriately modifying the dielectric
response of the intervening medium. We also ignore the case
of two optically isotropic cylinders simply because all CNTs
exhibit some degree of optical anisotropy.

The gold vdW-Ld spectrum was obtained from converting
frequency-dependent n and k values from experimental data
in Palik26 into �� by the relationship ���	�=n�	�k�	�, and
then transforming via the standard KK transform.27 For the
water vdW-Ld spectrum, we used the standard model com-
posed of one Debye microwave relaxation, five Lorentz in-
frared relaxations, and six Lorentz ultraviolet relaxations.
This relaxation model accurately captures the zero-frequency

term as well as the index of refraction in the optical frequen-
cies �Ref. 17 p. 266�. Other models for water exist,28,29 but
they either ignore the zero-frequency term or they overesti-
mate the index of refraction. Neither of these shortcomings is
trivial. For Hamaker coefficients having a magnitude less
than 10 zJ in an aqueous medium, the zero-frequency term in
the Lifshitz summation can be the dominating factor. For
Hamaker coefficients having a magnitude of 30 zJ or higher,
the values in the visible to deep UV ranges can dominate
because of the large number of terms adding significantly to
the summation. Therefore, we caution others to think care-
fully about the selection of the water dielectric spectra for a
vdW-Ld interaction calculation. Figure 6 shows the gold
spectra in relation to the water and solid cylinder �9,3 ,m�
spectra.

Figure 7 shows the Hamaker coefficient for the CNT-
water-gold substrate system. The total Matsubara summa-
tions contain only a single negative or repulsive term at n
=0 �0 eV� for the �9,3 ,m� radial, �6,5 ,s� radial, and �6,5 ,s�
axial directions. The rest of the terms are positive and thus
lead to an overall positive Hamaker coefficient, correspond-
ing to attractive nonretarded van der Waals interactions.
There are three noteworthy trends in this figure: The �6,5 ,s�

FIG. 6. �Color online� The vdW-Ld spectra of gold in compari-
son to water and the axial and/or radial directions of the solid cyl-
inder �9,3 ,m� SWCNT spectra at low energies.

FIG. 7. �Color online� The Hamaker coefficients for both the
�6,5 ,s� and �9,3 ,m� SWCNTs as a function � in the case of a CNT
interacting across water with a gold substrate. The �0 crossover
points are equal to the solid cylinder radii ��0=a� as described
earlier. The values of the solid cylinder radii are 0.54 and 0.59 nm,
respectively, for the �6,5 ,s� and �9,3 ,m� SWCNTs. The gold sub-
strate has isotropic optical properties, so there is no dependence on
the orientation of the SWCNT.

FIG. 8. �Color online� The Hamaker coefficients for both the �a�
near and �b� far limits for the �6,5 ,s� and �9,3 ,m� SWCNTs as a
function of orientation angle above an anisotropic substrate. The
medium here is water and the anisotropic substrate is taken as a
hexagonally packed array of solid SWCNT cylinders of identical
chirality to the singly dispersed CNT in solution. The Hamaker
coefficient is largest for �=0 �alignment�.
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interacts more strongly with gold than the �9,3 ,m� does in
both near and far regimes, the far-limit Hamaker coefficients
are larger in magnitude by 10–15 zJ when compared to
those of the near limit, and the �9,3 ,m� has a larger spread in
values between the near and far limits. The reasons behind
these trends will be explained in detail in Sec. V.

Figure 8 shows the interaction across water of a CNT with
a planar substrate comprised of identical chirality SWCNTs
arranged in a dry hexagonal closed-packed array �volume
fraction of 0.906 with air filling the void space�. In this sym-
metric case, the vdW-Ld interaction is obviously attractive
and shows a pronounced angular dependence for metallic
�9,3 ,m� in the far limit. That is, the �9,3 ,m� Hamaker co-
efficients increase by 2.7 and 0.5 zJ in the far and near limits,
respectively, when going from the orthogonal direction to
align with the principal axis of the substrate. Conversely, the
�6,5 ,s� CNTs exhibit only negligible anisotropy in the Ha-
maker coefficient, gaining 0.1 zJ or less between the two
orientations in both limits. Three interesting things occur in
Fig. 8: The �9,3 ,m� has more anisotropy than the �6,5 ,s� in
each limit, the anisotropy for both is greatest in the far limit,
and the overall �9,3 ,m� Hamaker coefficient is weaker than
the �6,5 ,s� in both limits.

Figure 9 shows the interaction between two CNTs of iden-
tical chirality immersed in water. We again highlight the an-
gular dependence of the Hamaker coefficient in both re-
gimes. Similar to the cylinder-substrate scenario, the
�9,3 ,m� interaction has a much stronger orientation depen-
dence in the far limit, increasing in magnitude by 36 zJ or
34% when going from the orthogonal to aligned orientations.
The �6,5 ,s� Hamaker coefficient also has a notable 1.9 zJ
increase in the far-limit Hamaker coefficient based solely on
alignment. In the near limit, both orientation effects are
much smaller, increasing by 0.5 and 0.1 zJ for the �9,3 ,m�
and �6,5 ,s�, respectively. As for trends, we again see very
similar behavior to the two rod-substrate cases. The far-limit
coefficients are greater in magnitude for both SWCNTs, the
magnitude of the anisotropy is greatest in the far limit, and
the �9,3 ,m� Hamaker coefficient is weaker than the �6,5 ,s�
in the near limit but stronger in the far limit.

V. DISCUSSION

The importance of optical anisotropy in the context of
vdW-Ld interactions between a pair of CNTs and/or between

a single CNT and a planar substrate cannot be overstated.
Even if only one component of the system is anisotropic,
there is a need to incorporate all unique properties �in the
different directions� into the consistent Lifshitz formulation.
The naive approach might be to assume that we could calcu-
late the vdW-Ld energy accurately by using both directions
of the optical anisotropy separately and then averaging them
in either a geometric or harmonic fashion prior to calculating
the Hamaker coefficient, or attempting to calculate Hamaker
constants for each direction, and averaging these by some
similar method. That certainly is a possibility and might give
the right phenomenology, but it is not recommended except
for gaining insight into how materials of different spectra
interact. The reason is that boundary conditions within the
Lifshitz formulation simultaneously use both the normal and
in-plane vdW-Ld spectra in order to satisfy the Maxwell
equations. Therefore, it is not possible to decouple aniso-
tropic optical properties and to think of them as a indepen-
dent axial-axial or radial-radial interaction. Equation �9�
shows how the integration over all values of � is required
within the correct Lifshitz formulation. Merely choosing the
end points may result in either over- or underestimation of
the Hamaker coefficient in a way that cannot be easily ad-
justed for all chiralities in the same manner.

Our primary focus so far13 has been to analyze the effect
of optical anisotropy rather than geometry on the overall
vdW-Ld interaction. For the case of the cylinder-cylinder
interaction, geometrical arrangement will play a very large
role because the overall distance between the various por-
tions of the two interacting CNTs will depend strongly on the
angle of misorientation. Thus, the study of the strength of
alignment forces arising from the optical properties might
not seem particularly relevant compared to the geometrical
effect. However, we must consider that it is, in principle,
possible for two CNTs of different chiralities to have a re-
pulsive Hamaker coefficient upon alignment that becomes
attractive as they become orthogonal. To achieve repulsion,
one would have to carefully select the appropriate CNTs as
well as the intervening medium in order to stack the respec-
tive vdW-Ld spectra appropriately. Additionally, for the case
of a planar substrate, there would be no net gain from a
geometrical standpoint of rotating a CNT by any arbitrary
angle. The only source of alignment would be from the an-
isotropic optical properties since geometry-driven alignment
is no longer present. This is important if one uses anisotropic
substrates to enable or enhance alignment of CNTs to a pre-
ferred direction.

Anisotropic substrates need not be packed cylinder arrays
of CNTs as assumed in our analysis. We used them more out
of convenience because their spectra were already available
from this work and we wanted to compare the magnitude of
the respective Hamaker coefficients with the cylinder-
cylinder case. The problem is not so much a lack of optically
anisotropic substrates, but rather a lack of accurate knowl-
edge of their vdW-Ld spectra. It is well known that single-
crystal wafers such as Al2O3 and SiO2 �quartz� have direc-
tionally dependent indices of refraction30,31 as a consequence
of the directional anisotropy of the electronic band structure,
just as in the case of CNTs. It nevertheless remains to be
ascertained just how this anisotropy translates into the corre-

FIG. 9. �Color online� The Hamaker coefficients for two identi-
cal �6,5 ,s� and �9,3 ,m� SWCNTs as a function of orientation angle
interacting across a water medium in the �a� near and �b� far limits.
Much like the cylinder–planar substrate scenario, the magnitude of
the Hamaker coefficient is maximized at �=0.
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sponding frequency dependence of the vdW-Ld spectra. This
dearth of accurate vdW-Ld properties will be resolved as
more materials are cataloged via experimental measurement
and ab initio calculations.

Returning to the results, we can broadly state that there
are obvious differences between how CNTs interact in the
three cases treated in detail in this paper �i.e., the anisotropic
rod–isotropic substrate, the anisotropic rod–anisotropic sub-
strate, and two identical anisotropic rods�. We now turn to
analyze the trending behavior observed in these cases in or-
der to gain qualitative insight for future calculations involv-
ing other substrates and other CNTs. We briefly summarize
them for clarity:

�1� The Hamaker coefficients in the far limit are larger in
magnitude for all three systems: �a� A CNT interacting with
isotropic semi-infinite substrate, �b� a CNT interacting with
an anistropic semi-infinite substrate, and �c� a CNT interact-
ing with another CNT.

�2� The �6,5 ,s� is always stronger than the �9,3 ,m� in the
near limit, but sometimes weaker in the far limit.

�3� The far limit exhibits more anisotropic effects than the
near limit. The underlying reasons for all of these are inter-
related, but we will deal with each individually.

A. Importance of �¸ in increasing the magnitude
of the far-limit Hamaker coefficients

The first trend is that the Hamaker coefficients in the far
limit are always larger than the near-limit ones in any given
system. Because the spectra are unchanged when going from
the near to far limits, the reasons for this difference must be
contained within the configurational aspects of the equations.
Note that every Hamaker coefficient calculation �for ex-
ample, observe Eq. �35�� has distinct components for the
materials on the respective left and right sides. These terms
can be thought of as spectral mismatch functions of each
anisotropic spectrum interacting through the medium. If we
look at both combinations of geometry �rod-substrate versus
rod-rod� and both limits �near versus far�, we find that rods
in the far limit have mismatch functions of the form of Eq.
�51� while the substrate and near-limit rod formulations have
the form Eq. �9�.

Note that these mismatch functions for the near-limit
terms can never exceed a magnitude of 1 because they are of
the form

�L−�m

�L+�m
and no part of a vdW-Ld spectra can be less

than 1. Thus, there is a finite limit to how much each par-
ticular term at any given Matsubara frequency n can contrib-
ute to the overall summation. However, this magnitude cap
of 1 is not present for the far-limit cylinder mismatch func-
tion. Specifically, it is the �� terms �see Eq. �14�� that have
the form

�L−�m

�m
and can easily exceed values of 1 when the

medium and interacting materials have a large mismatch at
any given Matsubara frequency. For example, �� for the
�9,3 ,m� peaks to a value of 18.5 at n=1 �approximately
0.16 eV at room temperature� and descends to 2.3 at n=5,
while the �6,5 ,s� averages 2.5 between n=1 and n=5. These
large values of �� increase the strength of the far-limit be-
havior and thus explain this increase in Hamaker coefficient

magnitude in the far limit. The particularly large values for
the first few frequencies of the �9,3 ,m� summation also ex-
plains why it experiences a far greater increase in magnitude
when going from the near to far limit and can therefore ex-
ceed the �6,5 ,s� interaction strength �see Fig. 9�.

B. Importance of not ignoring terms in the Lifshitz summation

One may ask why the �6,5 ,s� would ever be larger than
the �9,3 ,m� Hamaker coefficient to begin with. The trap one
may fall into is the assumption that the large wing behavior
for the �9,3 ,m� axial direction will always dominate the in-
teraction. However, the Hamaker coefficient is, again, a sum-
mation of spectral differences over a large amount of fre-
quencies. Those small contributions can and do add up.
Although it is not obvious in Fig. 3, there is a small differ-
ence in the radial and axial direction values for all values of
frequency. For example, at the frequencies around 5 eV, the
�6,5 ,s� radial direction vdW-LD spectrum is larger than the
�9,3 ,m� radial direction spectra by about 0.3. This seem-
ingly small difference is significant enough to make all of the
summation terms above n=3 larger for the �6,5 ,s� SWCNT
than for the �9,3 ,m� SWCNT, resulting in a stronger overall
interaction strength for the �6,5 ,s� SWCNT.

C. How �¸, ��, and � influence far and near-limit anisotropies

Lastly, we analyze the terms that dictate the strength of
the anisotropy in the formulations. In each particular calcu-
lation, there are always two different Hamaker coefficients
being calculated �A�0� and A�2��. The A�0� calculations have
the trigonometric functions phase offset by 90°, which rep-
resents the orthogonal arrangement. When the trigonometric
functions are brought into phase, there is an additional term
A�2� that represents the anisotropy arising from the orienta-
tion component. The largest amount of anisotropy will occur
when the in-phase and 90° out-of-phase end points are dras-
tically different. For the far-limit rod-rod �9,3 ,m� system,
the large values of �� �18.5 at n=1� give a huge boost when
multiplied together in the aligned arrangement. When offset
by 90°, the maximum values of �� are multiplied by �� like
terms, which are always less than a magnitude of 1 and thus
limits the size of the overall contribution. Therefore, large
differences between �� and �� give insight as to the degree
of anisotropy of the Hamaker coefficients.

When moving to the near-limit geometries addressed in
this paper, the mismatch functions at a given frequency are
always less than 1 because of their

�L−�m

�L+�m
form. This limits the

achievable anisotropy and overall Hamaker magnitude in
ways described in the previous two sections. Furthermore,
we no longer have �� for the aligned geometry, but rather �.
While � is similar to �� in its L−m

m form, its overall magnitude
at each summation frequency n is smaller in size because the
parallel and perpendicular directions are much closer to each
other than that of the water medium �see Fig. 6�, at least for
all Matsubara frequencies above n=2. Lastly, the effect of �
on anisotropy is decreased further because it is found under a
square-root sign. Still, despite all of these different dampen-
ing effects, anisotropy is still visible in the �9,3 ,m� because
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of the large mismatch in the axial and radial spectra at low
frequencies. For the �6,5 ,s�, the values of � are already very
small and they get virtually wiped out within the �1+� term.

However, regardless of the smaller values of the Hamaker
coefficient and of anisotropy in the near limit, we must re-
member the scale factor behaves as the far limit until the
crossover point �0, which we have found to be at surface to
surface separation distances approximately a CNT radii
away. Therefore, if the different entities are indeed attracting
each other up until the point of contact, then alignment can
occur at all distances beyond this small crossover separation
distance. In short, alignment considerations in the far limit
should always be relevant when interacting with an optically
anisotropic substrate or other optically anisotropic materials.

D. Practical matters

Much of the discussion thus far has been targeted toward
understanding the nuts and bolts of the equations themselves.
However, we would also like to address a few things that are
of interest to the pragmatic experimentalist who may just
want to use the equations or know how strong these energies
are relative to thermal energy or other colloidal materials.

First, it is important not to forget that the Hamaker coef-
ficient is not the only part of the entire vdW-Ld energy cal-
culation. To get the final vdW-Ld energy, the Hamaker coef-
ficient must be multiplied by the SWCNT length because
almost all of the equations given have Hamaker coefficients
that are per unit length. Thus, even a seemingly “small” Ha-
maker coefficient can result in an interaction energy much
larger than the thermal energy simply because of length. For
example, a 1-�m-long �6,5 ,s� SWCNT at a distance of
2 nm from a gold substrate has a calculated vdW-Ld energy
of approximately −221 kT at room temperature. A 100 nm
rod would have a tenth of that, or approximately −21 kT of
vdW-Ld energy interaction.

It is also this “per unit length” aspect that can make even
very small values of the A�2� or torque component of the
Hamaker coefficient become very relevant with respect to
total vdW-Ld energy considerations. For example, in Fig. 8
the Hamaker coefficient of the �9,3 ,m� SWCNT is a 2.7 zJ
greater when its axial direction aligns with that of the packed
array anisotropic substrate. This yields an additional −4 kT
of attractive vdW-Ld energy for a SWCNT length of 1 �m at
a separation distance of 2 nm.

The next question of importance is whether or not one can
glean the same amount of information using a component
analysis as we did in our initial paper on the subject of an-
isotropic optical spectra of SWCNTs.13 If one is uninterested
in differentiating the energies between respective SWCNT
chiralities and merely wants a ballpark figure, then one can
certainly use the simple methods for approximation pur-
poses. However, if one is interested in trying to design ex-
periments where one tries to separate particular chiralities
from one another, then it becomes imperative to use the full
equations. Although the spectra will be exactly the same, the
different formulations weight the mismatch in the neighbor-
ing spectrum in different ways, as can be seen by the previ-
ous sections describing the effects of ��, ��, and �.

Finally, it is useful to compare the magnitudes of SWCNT
Hamaker coefficients in water to other materials commonly
found in colloidal systems, such as beads and/or particles of
polystyrene, Al2O3, graphite, and gold. Using the same
index-matching water spectrum as the intervening medium
and the semi-infinite biaxial plane-plane Lifshitz formulation
�graphite is anisotropic and we need to account for both di-
rections�, we calculate values of 10, 60, 97, and 221 zJ for
the polystyrene, Al2O3, graphite, and gold systems, respec-
tively. The gold spectrum was obtained from experimental
data in Palik,26 the graphite spectra was obtained from our
previously reported ab initio optical properties,13 and the ex-
perimental Al2O3 and polystyrene spectra were obtained by
vaccum ultraviolet and electron-energy-loss measurements
found in the literature.21,35 As we can see, the SWCNTs have
Hamaker coefficients that are much more attractive than
those of the polymer material but are not quite as strong as
metals like gold. The overall values tend to be just as strong
or stronger than those of graphite and titanium particles in
solution.

VI. CONCLUSIONS

We have derived a consistent form of vdW-Ld interac-
tions in the framework of the Lifshitz formulation for opti-
cally anisotropic cylinders and substrates. This formulation
takes into account the optical and morphological anisotropies
of SWCNTs and yields a quantitative estimate of the
vdW-Ld interactions in terms of the appropriate Hamaker
coefficients. Though the dependence of the interaction en-
ergy on the separation is, in general, complicated, we were
able to derive two limiting cases, i.e., the far and near limits
that allow for explicit analytical expressions for the interac-
tion free energy. We have used these two explicit limiting
forms to construct an interpolation formula valid for all in-
termediate separations and all orientations of the principal
axes of the dielectric media involved. We were able to esti-
mate that the crossover between the near and the far limit is
at a surface-surface separation of approximately 1 SWCNT
radius.

We have used these analytical developments to calculate
the appropriate nonretarded Hamaker coefficients over the
whole separation and orientation range of the interactions,
for three conveniently chosen cases: a CNT interacting with
an isotropic semi-infinite substrate, a CNT interacting with
an anisotropic semi-infinite substrate, and a CNT interacting
with another CNT. In the first case, the substrate was gold,
and in the second, it was an ordered array of CNTs. In all
three cases the medium was water. For all cases analyzed, the
dielectric spectra are known and allow a straightforward
computation of the separation as well as orientation depen-
dence of the van der Waals interaction free energy. This de-
pendence has been quantified via two Hamaker coefficients,
one giving the magnitude of the orientation-independent part
of the interaction and the other one accounting for the orien-
tational part. In this way we were able to show the strong
orientational dependence of the far-limit Hamaker coefficient
for two metallic �9,3 ,m� CNTs interacting with each other
across a water medium. We have also shown similar strength

VAN DER WAALS–LONDON DISPERSION INTERACTIONS… PHYSICAL REVIEW B 76, 045417 �2007�

045417-15



and orientation behaviors in the far-limit Hamaker calcula-
tions for a metallic �9,3 ,m� over a substrate comprised of a
hexagonal packed array of �9,3 ,m� CNTs in water, predict-
ing to drive an orientational ordering or torque upon ap-
proaching CNT from an orthogonal to a collinear configura-
tion. We have also shown that, contrary to a �9,3 ,m� CNT,
the �6,5 ,s� CNT has a much weaker directionally dependent
Hamaker coefficient for both the rod-rod and rod-substrate
systems in either limit. These results should guide future
formulations that consider retardation, salt within the me-
dium, and multilayer geometrical arrangements.32–34

The formulations are different from previous semi-infinite
plane-plane interactions in that they introduce other compo-
nents ���, ��, and � as well as trigonometric functions�
which alter the influence on how strongly the spectral mis-
matches influence the resulting Hamaker coefficient. Their
importance lies in the calculation not only of orientation ef-

fects but also of the overall difference in magnitude between
different SWCNT chiralities and a substrate. Knowing the
difference of these magnitudes is useful for those interested
in solution separation of SWCNTs based on the chirality-
dependent vdW-Ld interaction energies.
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