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We address Fano-like interference effects �Phys. Rev. 124, 1866 �1961�� in scanning tunneling microscopy
measurements of nanoscale systems, e.g., two-level systems. Common to these systems is that second order
tunneling contributions give rise to interference effects that cause suppressed transmission through the system
for certain energies. The suppressed transmission is measurable either in the differential conductance or in the
bias voltage derivative thereof.
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I. INTRODUCTION

There are various techniques that allow one to detect and
manipulate spin states in the solid state, which attract a lot of
interest. A partial list includes optical detection of electron
spin resonance �ESR� in a single molecule,1 tunneling
through a quantum dot,2 and, more recently, ESR-scanning
tunneling microscopy �ESR-STM� technique.3,4 The interest
in ESR-STM is due to the possibility of manipulating single
spins,5–7 something which is crucial in spintronics and quan-
tum information. Experimentally, modulation in the tunnel-
ing current has been observed by STM using spin-
unpolarized electron beam.2,3 Lately, there has also been a
growing interest in using spin-polarized electron beam for
direct detection of spin structures,8 as well as utilizing the
inelastic electron scanning tunneling spectroscopy �IETS� for
detection of local spatial variations in electron-boson cou-
pling in molecular systems.9,10

Typically, in STM measurements with an object located
on a substrate surface, the tunneling current can either go
directly between the STM tip and the substrate or go via the
object. The tunneling electrons are thus branched between
different pathways, which gives rise to interference effects
when the partial waves merge into one in the tip or the
substrate.11 This interference leads to a suppressed transmis-
sion probability for the tunneling electrons at certain ener-
gies. The suppressed transmission is a fingerprint of Fano
resonances,12 and generally appears in systems where tunnel-
ing electrons are branched between different pathways. Re-
cently, Fano resonances have been studied in double and
triple quantum dot systems,13–15 where the different path-
ways are constituted of the different quantum dots.

Fano resonances can be realized in a variety of systems,
ranging from systems with interactions between continuum
states and a localized state to systems where the branching of
the wave function is through diatomic molecules. In the case
originally discussed by Fano,12 here reformulated for the pur-
pose of STM and nanoscale systems, interference occurs be-
tween the different tunneling paths in real space, one path
going through the sample to the substrate whereas the other
goes directly into the substrate. This idea is further exploited
in the works of Kubala and König,13 Ladrón de Guevara et
al.,14 and Lu et al.15 There are also many reports of IETS-
STM measurements on molecules adsorbed onto metallic

surfaces, which apart from the inelastic contributions also
show Fano-like signatures in the transport data.16–20 Theo-
retically, these features can be interpreted as interference ef-
fects between the different tunneling channels.21–24

Here, we address the Fano interference effects that arise
due to different pathways in phase space. In single-level sys-
tems, this phase space interference can be caused by an ef-
fective spin-flip tunneling rate that is comparable to the spin-
preserving tunneling rate.25 In two-level systems, tunneling
paths such as �N=2,n�→ �N=1,m�→ �N=2,n��→ �N=1,m�
→ �N=2,n� give rise to phase space interference. Here, N
=1,2 denote the number of electrons in the state, whereas
n ,m are state indices.26 Although such tunneling paths are of
second order, they provide significant contributions to the
transmission coefficient, and hence to the conductance,
which accounts for the interference effect discussed here.
The interference effects are sufficiently described in mean-
field approximation of the sample correlation functions,
hence, we do not discuss any fluctuations caused by elec-
tronic correlations or by the couplings to the tip and sub-
strate.

The paper is organized as follows. We introduce the for-
malism for the transport calculations in Sec. II. We discuss
the Fano-like interference effects and their implications on
two-level systems in Sec. III and we summarize the paper in
Sec. IV.

II. TUNNELING CURRENT

The STM system we have in mind can generally be de-
scribed by the model Hamiltonian

H = Htip + Hsub + Hsample + HT, �1�

where the first and second terms describe the electronic
states in the tip and substrate, respectively. Here, we assume
flatband free-electron-like models for the states in the tip and
substrate, and define Htip=�p��tip�p�cp�

† cp� and Hsub
=�q��sub�q�cq�

† cq�, for the tip and substrate, respectively.
Henceforth, we let the wave vectors p�q� belong to the tip
�substrate�. Creation �annihilation� of an electron at the en-
ergy �p�q�� is denoted by cp�q��

† �cp�q���, and we let �= ↑ ,↓
denote the spin projection. The third term contains the infor-
mation about the sample that is meant to be studied in the
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STM experiment, whereas HT describes the tunneling be-
tween the sample and the tip and the substrate. The tunneling
Hamiltonian can, in general, be written as

HT = �
pn�

vpn�cp�
† dn� + �

qn�

vqn�cq�
† dn� + H.c., �2�

where vp�q�n� is the tunneling rate between the tip �substrate�
and the sample, whereas dn�

† �dn�� denotes creation �annihi-
lation� of a spin � electron at the nth level in the sample.

The current is derived by standard methods, i.e., in the
stationary regime we have J=Jtip=−e� /�t�Ntip�t��, which
gives27,28

J =
e

h
	 T����f tip��� − fsub����d� , �3�

where the transmission coefficient

T��� = tr �tipGr����subGa��� . �4�

Here, Gr�a� is the retarded �advanced� Green’s function �GF�
of the sample which is to be determined later in the paper.
The coupling between the sample and the tip is denoted by
�nm�

tip =2��pvpn�
* vpm����−�p��, while the coupling between

the sample and the substrate is analogously defined by
�nm�

sub =2��qvqn�
* vqm����−�q��. In the expression for the

current, Eq. �3�, we have also defined the Fermi function
f tip�sub����= f��−�tip�sub�� at the tip chemical potential
�tip�sub�. For later reference, we define the bias voltage eV
=�tip−�sub, where we use �tip=�0+eV and �sub=�0 with
the equilibrium chemical potential �0.

The objective of the present paper is to describe the ex-
pected features in the transport characteristics that are caused
by the Fano-like interference effects when the tunneling elec-
tron wave functions are branched between different path-
ways. It is thus sufficient to provide a mean-field expression
for the GF of the sample, in which case the present level of
transport equations, Eqs. �3� and �4�, is valid.

III. PROBING THE TWO-LEVEL SYSTEM

Two-level systems are the natural extension of single
spins coupled to an environment of delocalized electrons.
The most interesting physics in two-level systems is related
to the lowest two-electron singlet state and the triplet states,
and the exchange splitting between those states. Here, we
will discuss an approach to measure the singlet-triplet ex-
change splitting parameter J in two-level systems through
the presence of Fano-like interference effects.

We begin our study by considering a diatomic molecule
constituted by two identical atoms. One may think of the
atoms as quantum dots �QDs� and the molecule as a double
QD. We assume that the atoms are coupled through Coulomb
and exchange interactions U and J, respectively. For simplic-
ity, we assume infinite intralevel Coulomb interactions in
order to avoid two electrons in one of the atoms, and we also
assume that the tunneling between the atoms is negligible.
This set of assumptions is not crucial for the effect we dis-
cuss; it merely permits a convenient framework for heuristic

and qualitative studies of the approach. The approach is
straightforwardly generalized, which is done in the end of
this section.

The transport measurements are assumed to be performed
by means of STM of a molecule located on a substrate sur-
face. We therefore assume that the atoms couple equally
strong to the surface, while the STM tip may couple asym-
metrically to the atoms. We model the system by the Hamil-
tonian given in Eq. �1� where tip and substrate Hamiltonians
are given in Sec. II, while the Hamiltonian for the molecule
�sample� is given by

Hsample = �
n�

�0dn�
† dn� − 2JS1 · S2

+ �U − J/2��n1↑ + n1↓��n2↑ + n2↓� , �5�

along with the condition that there may not be more
than one electron in each level n=1,2. Here, Sn
= �1/2�����dn�

† �̂���dn�� is a spin operator, where �̂
= ��x ,�y ,�z� is the vector of Pauli spin matrices. A complete
model of the structure we consider may be given by Eq. �1�
in Ref. 29.

In the given model, the sample can either be in the empty
state �0�, have one electron in either of the bonding or anti-
bonding states

�1,1�2�� =
d1↑�↓�

† − d2↑�↓�
†


2
�0� , �6a�

�1,3�4�� =
d1↑�↓�

† + d2↑�↓�
†


2
�0� , �6b�

with corresponding energies E1n=�0, respectively, or have
two electrons in the singlet

�2,1� = �S = 0,mz = 0� =
d2↓

† d1↑
† − d2↑

† d1↓
†


2
�0� , �7�

with energy E21=2�0+U−J /2, or triplet

�2,2� = �S = 1,mz = 0� =
d2↓

† d1↑
† + d2↑

† d1↓
†


2
�0� , �8a�

�2,3� = �S = z,mz = 1� = d2↑
† d1↑

† �0� , �8b�

�2,4� = �S = 1,mz = − 1� = d2↓
† d1↓

† �0� �8c�

configurations, with energies E2n=2�0+U+J /2, n=2,3 ,4.
Here, we use the notation �N ,n�, where N=0,1 ,2 is the num-
ber of electrons, whereas n is a state label.

The main effect that may be used for measurements of the
singlet-triplet splitting J arises due to phase space interfer-
ence effects between the two-electron singlet and triplet
states. This interference results in states that interact only
very weakly with the environment of delocalized electrons
which, in turn, generate conductance suppression at biases
that correspond to the singlet and triplet state energies. The
conductance suppression is a direct response of the states
that interact weakly with the surrounding electron bath.
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Qualitatively, one can understand the appearance of the
localized states that interact weakly with the electron bath by
considering the following. Assume that there are two elec-
trons in the molecule and that they are configured in the
singlet state �2,1�= �d2↓

† d1↑
† −d2↑

† d1↓
† ��0� /
2. Removal of a

spin ↑ electron from the molecule can be done by removing
an electron from either of the atoms, i.e., through the process
�d1↑+d2↑��2,1�=−�d1↓

† +d2↓
† ��0� /
2=−�1,4�. Removal of a

spin ↑ electron thus always puts the sample into the anti-
bonding one-electron spin ↓ state, which is orthogonal to the
other one-electron states by construction. Analogously, re-
moving a spin ↓ electron from the molecule being in the
singlet state necessarily leads to a transition to the antibond-
ing one-electron spin ↑ state �1, 3�. Clearly, the system can-
not undergo first order transitions between bonding one-
electron states �1, 1�2�� and the singlet state. In this respect,
one may therefore regard the singlet state as being decoupled
from the bonding one-electron states.

Likewise, we find that the triplet states can be regarded as
being decoupled from the antibonding one-electron states,
since removal of an electron from any of the triplet state
configurations results in a bonding one-electron state.

Having the sample described in terms of its eigenstates, it
is beneficial to write the sample Hamiltonian in diagonal
form as

Hsample = �
Nn

ENn�N,n��N,n� . �9�

The tunneling Hamiltonian HT is in the present context given
by Eq. �2�, although we disregard spin flip in the hybridiza-
tion between the localized and delocalized electrons. Rewrit-
ing the operators dn� in the tunneling Hamiltonian in terms
of the eigenstates of the sample, we obtain

HT = �
Nnm

��
p�

vp�Nnmcp�
† + �

q�

vq�Nnmcq�
† ��N,n��N + 1,m�

+ H.c. �10�

Here, the tunneling rates �see Ref. 29�

vp�q��Nnm 
 �N,n��vp�q�1�d1� + vp�q�2�d2���N + 1,m�

�11�

also include the matrix elements for single electron transi-
tions in the sample.

The sample GF in this system becomes a 20�20 matrix,
which in general is not diagonal. This is because of higher
order transitions that significantly contribute to the electronic
structure and transport through the sample. The system can
be simplified by assuming that only the diagonal processes
like �N+1,m�→ �N ,n�→ �N+1,m� and off-diagonal pro-
cesses like �N+1,m�→ �N ,n�→ �N+1,m��→ �N ,n�→ �N
+1,m� contribute to the tunneling. In fact, the off-diagonal
processes we include into our scheme are sufficient in de-
scribing the phase space interference in the present system.
This simplification leads to a system of ten 2�2 matrix
equations, each of which is analytically solvable.

Consider the GFs30,31

GNnmm��t,t�� = �− i��TXNN+1
nm �t�XN+1N

m�n �t��� , �12�

where XNN+1
nm 
�N ,n��N+1,m�. The discussed simplifications

lead to the general equations of motion

�i
�

�t
− 	Nmn�GNnmm��t,t��

= ��t − t��PNnmm��t� + �
���

PNnm��t�

�	
t0

t0−i


VNn���n�t,t��GNn��m��t�,t��dt�, �13�

where the transition energy 	Nmn=EN+1m−ENn, the end fac-

tors PNnmm��t�= ��XNN+1
nm ,XN+1N

m�n ��t��, whereas

VNn���n�t,t�� = �
p�

vp�Nn�
* vp�Nn��gp��t,t��

+ �
q�

vq�Nn�
* vq�Nn��gq��t,t�� . �14�

Here, gp�q���t , t�� is the GF for a free electron in the tip
�substrate� satisfying the equation �i� /�t−�p�q���gp�q���t , t��
=��t− t��.

The GF in Eq. �13� should be self-consistently solved for
each value in the parameter space of the Hamiltonian �Eq.
�1��, bias voltage, and temperature, according to the proce-
dure outlined in Ref. 31. Performing the calculations in such
a way would provide a nonequilibrium description of the
interference effects discussed here. For simplicity and in or-
der to focus on the physical mechanism and effect, we omit
such a treatment. The self-consistent calculations are ex-
pected to change the quantitative results; however, the quali-
tative features will remain the same as in the present study.
Here, we discuss the physics without the self-consistency
condition by further simplifying the equation of motion.
Without losing information of the phase space interference
effects, we assume that the end factors PNnmm�=�mm�. In this,
we assume that the off-diagonal occupation numbers are neg-
ligible; however, the off-diagonal GFs are nonvanishing and,
furthermore, they provide important contributions to the
widths of the localized states in the sample. Moreover, we
focus on the transitions between the one- and two-electron
states. In the absence of spin-flip processes, the equations for
transitions between the one-electron spin ↑ and ↓ states are
equal. It is hence sufficient to omit any reference to the spin
degree of freedom, and therefore we consider processes that
couple the two-electron singlet and triplet states �2,1� and
�2,n�, n=2,3 ,4, through a one-electron state.

It is worth pointing out that Eq. �13� is the mean-field
description of the sample, thus neglecting any type of fluc-
tuations caused by the couplings between the sample and the
electron baths in the tip and substrate. Fluctuations caused by
the couplings to the tip and substrate electrons could be
taken into consideration by making use of the diagrammatic
technique described in Refs. 30 and 31. Especially interest-
ing would be to also consider the singlet-triplet Kondo effect
recently discussed by Paaske et al.32 in the present context.
However, a discussion of the Kondo effect and other corre-
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lation effects is beyond the scope of the present paper. Here,
we focus on the possibility of measuring the singlet-triplet
splitting J through direct transport measurements, which is
sufficiently described within the present mean-field theory.

Transitions between the different triplet state configura-
tions do not give rise to the interference effects we discuss in
this paper. Therefore, it is sufficient to study the coupling
between the singlet state and one of the triplet states at the
time. It is, moreover, sufficient to consider only the interfer-
ence between the singlet and, say, the triplet state �2,2�. The
interference arising between the singlet and the other triplet
configurations merely renormalizes the coefficients in the fi-
nal expression for the transmission.

The Fourier transformed retarded GF for transitions be-
tween the two-electron states �2,1� and �2,2� through the one-
electron state n is then given by

Gn
r��� =

�� − 	2n +
i

2
�n2 −

i

2
�1n2

−
i

2
�2n1 � − 	1n +

i

2
�n1
�

Cn���
, �15�

where

�mnm� 
 − 2 Im V1nmm�n
r ��� = 2��

k�

vk�1nm
* vk�1nm���� − �k�� ,

�16�

and �nm
�mnm defines the combined coupling between
the sample and the tip and the substrate. Further, we
define the coupling to the tip �substrate� by �

mnm�
tip�sub�

=2��p�q��vp�q��1nm
* vp�q��1nm����−�p�q��� such that �mnm�

=�mnm�
tip +�mnm�

sub . For a shorter notation, we have also put
	mn
	1mn. Finally, the denominator Cn���= ��−�n+���
−�n−� contains the poles �n± of the GF.

A. Symmetric coupling to the substrate

Now, we assume that the atoms in the diatomic molecule
couple equally strong to the substrate, i.e., vqn�=vq�. Then,
the coupling matrices for the tunneling between the sample
and the substrate take the simple forms

��1,1�
sub = �0

sub�0 0

0 1
� , �17a�

��1,3�
sub = �0

sub�1 0

0 0
� . �17b�

We further assume that the tunneling rate between the tip and
the molecule can be parametrized by vpn�=�nvp�. The cou-
pling matrices for the tunneling between the tip and the
sample then become

��1,1�
tip =

�0
tip

4
���1 − �2�2 − �1

2 + �2
2

− �1
2 + �2

2 ��1 + �2�2 � , �18a�

��1,3�
tip =

�0
tip

4
���1 + �2�2 − �1

2 + �2
2

− �1
2 + �2

2 ��1 − �2�2 � . �18b�

Finally, we assume that �0
tip=
�0 /2 and �0

sub=�0 /2, where

�1, such that the broadening of the localized states ��2,m�
���2,m�

sub . This final assumption is made in order to simplify
the analytical treatment and yields the GF poles �1± for tran-
sitions through the bonding state

�1± = �0 + U �
J

2
−

i

8
�0�1 � 1� , �19�

and the poles �3± for transition through the antibonding state

�3± = �0 + U �
J

2
−

i

8
�0�1 ± 1� , �20�

since 	m1=	m3, m=1, . . . ,4, and since the transition ener-
gies 	11=E21−E11=2�0+U−J /2−�0=�0+U−J /2 and 	21
=E22−E11=2�0+U+J /2−�0=�0+U+J /2, which are associ-
ated with the singlet and triplet states, respectively. The poles
of the GFs are thus located at the singlet and triplet energies,
as expected. Moreover, from these expressions it is legible
that the poles �1+ and �3− acquire vanishing widths, which
mark energies for which the corresponding transitions occur
with vanishing probability. Hence, in the density of states
�DOS� of the sample there are states that interact only
weakly with the surrounding delocalized electrons. In this
sense, both broad and sharp peaks are expected to appear at
energies that are associated with both the singlet and triplet
states.

The sharply peaked state in the sample is a result of the
interference between tunneling electron waves that are
branched in phase space. This branching is responsible for
the coupling of the singlet and triplet states through the one-
electron states. The interference that arises between the
branches of the tunneling electron waves leads to both con-
structive and destructive interference which manifest through
the widths of the localized states in the sample. In terms of
this argument, the states that correspond to the poles �1+ and
�3− are subject to destructive interference which is suffi-
ciently strong to remove any significant broadening of the
state; they hence interact weakly with the surrounding elec-
tron bath�s�. These states should display sharp peaks in the
local DOS of the sample. The states that are associated with
the poles �1− and �3+ are subject to constructive interference
which tends to increase the broadening of these states. Those
states can, thus, be viewed as being strongly interacting with
the environment.

The plot in Fig. 1 �bold� illustrates a typical example of
the calculated local DOS,

�tot��� = �
nm

�nm��� = −
1

�
�
nm

Im G1nmm
r ��� , �21�

for energies around the singlet and triplet in the present con-
text. There are two major broad densities which peak at the
singlet �solid� and triplet �dotted� energies. These states,
which have a strong interaction with the environment, medi-
ate the tunneling current through the molecule. On top of the
broad densities, there are narrow peaks centered at the singlet
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�dashed� and triplet �dash-dotted� energies. These are the
states that interact weakly with the delocalized electrons. In
the calculations, these poles have a finite width due to the
small coupling to the electrons in the tip �c.f. the results for
the poles given in Ref. 26�. The plots correspond to the situ-
ation where the STM tip couples strongly to one of the atoms
and only very weakly to the second.

The states in the local DOS which interact weakly with
the tunneling electrons are the source of dips in the differen-
tial conductance through the system. This can be directly
seen in the transmission coefficient T��� for the system. Us-
ing the above assumptions and that the widths of the levels in
the sample can be written as �ij =�ij

tip+�ij�i2�2
sub, we arrive at

the transmission coefficient

T��� = 
��0

4
�2

��1 + �2�2��� − �0 − U + J/2

C1���
�2

+ �� − �0 − U − J/2

C3���
�2� �22�

for the transmission through the two-electron states. This ex-
pression clearly shows that the transmission dips appear at
the energies associated with the singlet and triplet states, and
that the distance between the dips equals J, i.e., the exchange
splitting parameter.

The total transmission coefficient for the tunneling around
the singlet and triplet states is shown in Fig. 2 �bold�, along
with the partial transmission coefficients for the channel that
couples the two-electron states via the bonding �dotted� and
antibonding �dashed� one-electron states. The plot demon-
strates that the partial transmissions have antiresonances on
the energy that correspond to the singlet and triplet states.
These antiresonances are reflected in the total transmission.

Whenever the broadening of the quantum levels in the
sample is larger than the singlet-triplet splitting J, there will
not be two distinct peaks associated with the singlet and
triplet states in the differential conductance. In addition, vis-
ibility of the dips in the differential conductance requires low
temperatures since the transmission has to be convoluted
with the thermal distribution functions �see Eq. �3��. There-
fore, in order to resolve the singlet-triplet splitting under
those circumstances, one should preferably measure d2I /dV2

rather than the differential conductance. Those measurements
provide further information about the long-lived states in the
sample in terms of very sharp features at the energies corre-
sponding to those states.

In Fig. 3, we plot the calculated transport characteristics
corresponding to the DOS in Fig. 1. The upper panel, Fig.
3�a�, shows the total differential conductance dI /dV �bold�
and the partial differential conductance for the tunneling
through the channel which couples the two-electron states
via the bonding �dotted� and antibonding �dashed� one-
electron states. The broad electron densities give rise to wide
conductance peaks at the singlet and triplet states which,
however, are not clearly distinguishable in the total dI /dV
since the level broadening is larger than the singlet-triplet
exchange splitting. Nonetheless, there are noticeable fea-
tures, or dips, in the dI /dV at the energies for the singlet and
triplet states. These dips are signatures of the states that are
weakly interacting with the tunneling electrons. The large

FIG. 1. �Color online� Typical DOS �bold� around the singlet
and triplet states in the sample. The DOSs associated with the poles
�1± �dashed, dotted� and �3± �solid, dash-dotted� are plotted sepa-
rately. Here, we have the following parameters �0=2, U=3, J
=0.6, �0=2 �units: meV�, 
=0.005, �1=0, and �2=1.

FIG. 2. �Color online� Transmission coefficient for the system
with local DOS plotted in Fig. 1. Total �bold� and partial transmis-
sions through the channel which couples the two-electron states via
the bonding �dotted� and antibonding �dashed� one-electron states.

FIG. 3. �Color online� Transport characteristics for the system
with local DOS given plotted in Fig. 1. �a� Total differential con-
ductance �bold� and the partial differential conductance through the
channel which couples the two-electron states via the bonding �dot-
ted� and antibonding �dashed� states. �b� Total and partial bias volt-
age derivatives d2I /dV2. Here, T=0.05 K, while other parameters
are the same as in Fig. 1.
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level broadening smears out the differential conductance and
makes an unambiguous readout of the singlet and triplet
states difficult. However, the second derivative of the current
d2I /dV2 will provide the information that is required for an
unambiguous readout since the conductance dips will display
sharp features at the positions for the singlet and triplet
states, as can be seen in Fig. 3�b�. This panel shows the total
�bold� and partial d2I /dV2 for the tunneling through the
channel which couples the two-electron states via the bond-
ing �dotted� and antibonding �dashed� one-electron states.

B. Asymmetric coupling to the substrate

Generally, the atoms in the molecule may couple asym-
metrically to the substrate.33 The sample may, on the other
hand, comprise a single entity with two levels. In both these
cases, we can assume that the hybridization can be param-
etrized according to vqn�=�nvq�.

The STM tip was already assumed, in the previous sec-
tion, to couple asymmetrically to the sample; hence, we
merely have to rederive the poles for the GFs and the trans-
mission coefficients using the additional parametrization.
The coupling matrices ��2,n�

sub take the form of the ones given
in Eq. �18�, however, with �n replaced by �n. We still assume
that the tunneling between the atoms in the molecule is neg-
ligible. Then, the localized states will be found at the ener-
gies

�1± = �0 + U −
i

16
�0��1

2 + �2
2�

±
1

2

�J −

i

4
�1�2�0�2

− ��1
2 − �2

2�2��0

8
�2

,

�23a�

�3± = �0 + U −
i

16
�0��1

2 + �2
2�

±
1

2

�J +

i

4
�1�2�0�2

− ��1
2 − �2

2�2��0

8
�2

�23b�

for the transitions through the bonding and antibonding
states, respectively. Again, we assume that the level broad-
ening is dominated by the coupling between the sample and
the substrate surface. The expressions for the poles show that
both solutions �n±, for both n=1,3, acquire an appreciable
width for asymmetric coupling between the sample levels
and the substrate. Thus, for sufficiently large asymmetry be-
tween the couplings, there will not be any state present that
interacts weakly with the surrounding electron bath�s� and
gives rise to the conductance dips. This is an indication that
large asymmetric coupling between the levels in the sample
and the substrate is detrimental to the ability of observing the
sharp features in the dI /dV or d2I /dV2. The presence of such
features will also depend on the asymmetry in the coupling
between the sample levels and the STM tip. In general, in
order to obtain localized states that interact weakly with the
surrounding electron bath�s�, the levels in the sample should

be fairly symmetrically coupled either to the tip or to the
substrate. Good symmetry in the coupling to both the tip and
the sample enhances the amplitude of the sharp features in
the d2I /dV2.

The transmission through the sample that is mediated by
the two-electron states is modified according to

T��� = 
��0

4
�2

��1�1 + �2�2�2��� − �0 − U + qJ/2

C1���
�2

+ �� − �0 − U − qJ/2

C3���
�2� , �24�

where the asymmetry of the coupling introduces the factor

q =
�1�2 + �2�1

�1�1 + �2�2
. �25�

Hence, apart from affecting the overall prefactor, asymmetric
coupling between the levels in the sample and the substrate
shifts the positions of the transmission dips. Quantitatively,
coupling asymmetries �2 /�1�0.7 and �2 /�1�0.7 yield
about 6% shift of the transmission dips. Hence, even for
asymmetric coupling this will be a reasonably good measure-
ment of J.

C. Nonresonant levels

The case thus far considered applies to systems where the
atoms are equivalent, so that the levels in the two atoms are
resonant with one another. Generally, the two levels do not
need to be resonant; they may also be spin split, in which
case the first term in the sample Hamiltonian is modified
according to

�
n�

�n�dn�
† dn�, �26�

where �n�=�n−�	n /2. Here, 	n is the spin split of the nth
level which is imposed by either internal and/or external
magnetic fields.

The singlet and triplet states remain the same as they are
given in Eqs. �7� and �8�, while the energies for the respec-
tive state may change. The singlet state energy becomes
E21=�1+�2+U−J /2, whereas the triplet state energies be-
come E22=�1+�2+U+J /2, E23=E22− �	1+	2� /2, and E24

=E22+ �	1+	2� /2. The one-electron states are in this modi-
fied model preferably described by

�1,n� = ��n1d1↑
† + �n2d2↓

† + �n3d2↑
† + �n4d2↓

† ��0� , �27�

with corresponding energies E1n= ��n1+�n3��n↑+ ��n2

+�n4��n↓.
We consider the general case in the sense that we relax the

assumption of the levels being symmetrically coupled to the
substrate. We thus assume that the tunneling rates can be
parametrized according to vpn�=�nvp� and vqn�=�nvq�, as in
the previous section. The coupling matrices between the
electrons in the STM tip and in the sample become

��1,1�
tip =

�0
tip

2
�2

2�1 1

1 1
� , �28a�
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��1,3�
tip =

�0
tip

2
�1

2� 1 − 1

− 1 1
� , �28b�

while the coupling matrices between electrons in the sub-
strate and the sample are obtained by the replacements �n
→�n and tip→sub. Here, we have only considered the cou-
pling matrices for the singlet state and the triplet state con-
figuration �2,2�= �S=1,mz=0�. The coupling matrices that
involve the other triplet configurations are the same.

In the same approximation as previously, i.e., assuming
that the broadening of the levels in the sample is dominated
by the hybridization with the electrons in the substrate, we
obtain the following poles to the GFs which involve the two-
electron states �2,1�= �S=0,mz=0� and �2, 2�:

�1± =
�1↑ + �2↑ + 2U

2
−

i

4
�2

2�0 ±
1

2

J2 − ��2

2�0/2�2, �29a�

�3± =
�1↑ + �2↑ + 2U

2
−

i

4
�1

2�0 ±
1

2

J2 − ��1

2�0/2�2. �29b�

The poles �2± and �4±, for the spin ↓ channels are obtained
by letting ↑→↓ in the equations above. From the form of the
poles, we deduce that in the spin-degenerate case, there may
be sharp localized states only in the case when J��n�0 /2.
In the symmetric case, it should be possible to measure J in
cases where the singlet-triplet splitting is small. Then, the
theory presented in the previous sections applies, and there-
fore we proceed with our discussion for the spin-dependent
case.

The spin-dependent case we consider is based on the as-
sumption �1=�2=�0 and that the level spin split is uniform,
i.e., 	1=	2=	0. We also assume that the levels in the
sample couple symmetrically to the substrate. In this case,
we can use one-electron states given in Eq. �6� and the cou-
pling matrices given in Eqs. �17� and �18�. Considering spin-
dependent transport enables studies of the spin splitting of
the two-electron triplet states. The singlet state couples to all
triplet configurations, through the one-electron states, which
therefore will display sharp localized states at different ener-
gies. These different energies correspond to the spin splitting
of the triplet configurations. Due to the spin dependence,
there appear four sets of poles which couple the singlet with
each of the triplet states through the one-electron states. For
transitions to the one-electron spin ↑ states, we have

�1±
�2,2� = �0 +

	0

2
+ U �

J

2
−

i

8
�0�1 � 1� , �30a�

�3±
�2,2� = �0 +

	0

2
+ U �

J

2
−

i

8
�0�1 ± 1� , �30b�

�1±
�2,3� = �1±

�2,2� − 	0�1 � 1� , �30c�

�3±
�2,3� = �3±

�2,2� − 	0�1 � 1� , �30d�

while the poles associated with transitions to the one-
electron spin ↓ states are given by

�2±
�2,2� = �0 −

	0

2
+ U �

J

2
−

i

8
�0�1 � 1� , �31a�

�4±
�2,2� = �0 −

	0

2
+ U �

J

2
−

i

8
�0�1 ± 1� , �31b�

�2±
�2,4� = �2±

�2,2� + 	0�1 � 1� , �31c�

�4±
�2,4� = �4±

�2,2� + 	0�1 � 1� . �31d�

Note that the poles are equal in pairs according to
�1±

�2,2�3��=�2±
�2,4�2�� and �3±

�2,2�3��=�4±
�2,4�2��. Due to these equali-

ties, we expect four sharp peaks in the local DOS of the
sample which are associated with the two-electron states,
two for the singlet and two for the triplet states. The reason is
clear since the one-electron spin ↑ states do not at all couple
to the triplet state �2,4�=d2↓

† d1↓
† �0�. Therefore, there cannot

appear any sharp peak associated with the corresponding
transitions. The same argument applies to the spin ↓ channel.
In any other respect, each spin channel can be treated sepa-
rately by means of the theory developed in Secs. III A and
III B.

IV. SUMMARY

We have presented a theoretical prediction of the possibil-
ity to measure the singlet-triplet exchange interaction param-
eter J through Fano-like interference effects. We argue for
measurements of d2I /dV2 for extraction of J, since the level
broadening in many realistic situations is larger than the
singlet-triplet splitting. The level broadening therefore effec-
tively smears out possible identification features in the dif-
ferential conductance, which makes the readout of J difficult.
We also address the issue about asymmetric coupling be-
tween the sample levels and the substrate, and find that mod-
erate asymmetries preserve a reasonably good measurability
of J. Finally, we address the question of nonresonant levels.
There will not be any Fano-like interference effects which
enable singlet-triplet splitting readout unless the levels are
resonant. However, uniform spin splitting of the levels does
not destroy the measurability of the singlet-triplet readout. In
the spin-split case, we predict four sharp features in the
d2I /dV2 instead of two, which enable pairwise readout of �i�
the spin split and �ii� the singlet-triplet splitting. Experimen-
tal results on two-level systems using the addressed setup
would be very intriguing and may open different approaches
to information storage.
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