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We perform a thorough theoretical analysis of resonance effects when an arbitrarily polarized plane mono-
chromatic wave is incident onto a double periodically modulated metal film sandwiched between two trans-
parent media. The proposed theory offers a generalization of the approach that had been developed in our
recent papers for the simplest instance of one-dimensional structures to two-dimensional ones. A special
emphasis is placed on the films with the modulation caused by cylindrical inclusions; hence, the results
obtained are applicable to the films used in the experiments. We discuss a spectral composition of modulated
films and highlight the principal role of “resonance” and “coupling” modulation harmonics. All the originating
multiple resonances, associated with the surface plasmon-polariton leaky modes, are examined in detail. The
transformation coefficients for different diffraction orders are investigated in the vicinity of each resonance. We
make a comparison between our theory and recent experiments concerning enhanced light transmittance �ELT�
and show the ways of increasing the efficiency of this phenomenon. In the appendixes, we demonstrate a close
analogy between the ELT effect and peculiarities of a forced motion of two coupled classical oscillators.
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I. INTRODUCTION

It is exactly significant advances in structuring metals on
nanoscales that account for great amount of experimental
and theoretical work in the field of plasmonics, which exam-
ines resonance optic effects caused by surface plasmon-
polariton �SPP� excitation in structured conducting or semi-
conducting media.1–3 Over the recent decades, these quasi-
two-dimensional �quasi-2D� electrodynamic objects have
been thoroughly studied in solid state physics, physics of
surfaces, and diffraction optics.4 SPPs are electromagnetic
surface waves coupled to the collective electron excitation.
They attract great deal of attention due to their unique pos-
sibility of light localization and considerable enhancement of
the electric field near the surface.

Great interest in SPPs stems from the latest experiments
on enhanced light transmittance �ELT� phenomena. Since
1998, after the observation of Ebbesen and co-workers5,6 of
the violation of Bethe’s approach7 to the diffraction by sub-
wavelength periodic hole arrays in metal films, the ELT has
been the subject of numerous studies. Until recently, one of
the widely recognized explanations of the ELT through sub-
wavelength periodic hole arrays has been the excitation of
SPPs. Most of the authors, who hold on to the SPP concep-
tion of ELT, assume that the field enhancement results from
“interface” SPPs. The latter can be either single-boundary
localized �which is a common case for a nonsymmetric di-
electric surrounding of the film� or double-boundary local-
ized for the symmetric surrounding. A periodic hole array
acts as a coupler between the incident light and the SPPs. In
this context, the crucial point is the surface periodicity. The
periodicity caused by other factors, such as corrugation or
periodic modulation of the medium electromagnetic proper-
ties, etc., also gives rise to the light-matter interaction reso-

nance features, in particular, the ELT effect. Note that mak-
ing comparison between the ELT transmittance peak
positions and those caused by SPP excitation in different
diffraction orders undoubtedly points out a significant SPP
role �see numerous experiments, e.g., Refs. 5, 6, and 8–14�.

It should be noted that the observed ELT effects are
strongly dependent on the film surrounding. As the film hav-
ing the subwavelength hole array is surrounded by the di-
electrics with the same dielectric constants �for instance, a
freestanding film�, the excited SPPs are double-boundary lo-
calized, that is, the field is enhanced at both faces of the film
�see experiments8,9�. In this geometry, the ELT in zeroth dif-
fraction order is far more pronounced as compared to the
nonsymmetrical film surrounding, when the excited SPPs are
single-boundary localized, that is, the field can be increased
at a single face of the film. In general, this corresponds to the
films deposited onto the quartz substrate. Both of these in-
stances have so far been examined by using numerical
methods.8,9,14–19 Besides, it was shown numerically and ex-
perimentally that the ELT occurs for periodic conducting
hole-free structures. Basically, this is quite evident since the
type of periodicity does not play a crucial role in the excita-
tion of the interface SPPs. In most cases, these were the
structures with relief corrugations of the film faces both for
symmetrical20 and nonsymetrical21–23 dielectric surrounding
and the structures with periodically located dielectric
pillars.24

Several authors have developed an analytical approach
which qualitatively describes the ELT. They have examined
the diffraction by the film with one-dimensional �1D� peri-
odically modulated dielectric permittivity.25–30 In these
works, a study has been made in the simplest case of a
strictly normal incidence onto the symmetrically surrounded
film with harmonic modulation of the film permittivity. The
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exceptions are Refs. 27 and 30, where the theory is general-
ized to the nonsymmetric surrounding. The authors of these
works have described the zeroth-order transmittance depen-
dence on the parameters for SPP excitation in the first dif-
fraction order. In contrast to their work, we have given a
more general analytical insight31–33 by solving the problem
of vector diffraction by the film with nonsymmetric and sym-
metric dielectric surrounding for arbitrary Fourier spectra of
the modulation of the metal permittivity at an arbitrary inci-
dent angle and at an arbitrary incident light polarization. The
advantage of our analytical treatment is that we not only
have described the first-order resonances but have given a
classification of the resonances corresponding to single- or
double-boundary-localized SPP excitation in single or mul-
tiple diffraction orders. Also, we have examined a nonzeroth-
order ELT that was observed in the experiments �Refs. 22
and 34�. In addition, we refer the reader to Ref. 35, where the
alternative analytical approach was suggested to describe the
light transmittance through metallic nanoslit structures.

Yet another important class of plasmonic structures pos-
sessing interesting diffraction resonance phenomena are me-
tallic nanoparticle arrays.12,36–38 As known, they can support
the so-called localized-SPP resonances which are strongly
dependent on the shape of individual particles.38 It is be-
lieved that the shape resonances similar to the localized ones
may affect the ELT in subwavelength hole arrays. The influ-
ence of the hole or/and nanoparticle shape was studied ex-
perimentally in Refs. 39–41. The study of the conducting
films containing periodic lattices of dielectric nanoparticles
and voids have been carried out in Refs. 42–44. However,
we are not aware of the experimental or theoretical investi-
gation into the optical properties of metallic nanoparticle ar-
rays immersed into a conducting film. Similar to a nanohole
array, such a nanoparticle array should display ELT with the
wavelength spectra which are strongly dependent on the
nanoparticle shape.

In the present paper, we go on examining the resonance
optical effects by generalizing the previously developed ana-
lytical treatment31,32 of the conducting films with 2D modu-
lation. We look into the vector diffraction problem for peri-
odically located metallic inclusions in the metal film with an
arbitrary dielectric surrounding. Since the inclusions are as-
sumed to be entirely embedded into the film �the faces of the
film being flat�, the resonances of our system result from the
excitation of purely interface SPPs and the localized-SPP
resonances do not exist. Apart from the fact that such struc-
tures are of interest by themselves, they may be thought of as
a model of subwavelength hole arrays, and the approach thus
developed is appropriate for other periodical structures �say,
for corrugated films�. Another essential aspect of our ap-
proach is that we can easily describe the polarization of light
transmitted or/and reflected by the 2D periodical structure.
The polarization properties of subwavelength hole arrays are
also a matter of interest, and they have been extensively
studied in recent years.33,45–49

The paper is arranged as follows. Following the Introduc-
tion, in Sec. II, we describe a general approach to the prob-
lem of resonance light diffraction by a 2D periodically
modulated conducting film for the conical mount and for an
arbitrary polarization of the incident light. We stress the fact

that the shape of the periodically located inclusions has an
impact on the Fourier spectra of the periodical structure and
this, in turn, influences the excited SPPs considerably. In
Sec. III, we examine the excitation of single-boundary-
localized SPPs in the nonsymmetrically sandwiched film,
considering both the total transmittance and reflectance spec-
tra and presenting a more detailed analysis of different reso-
nances. We give an explanation of the recently observed po-
larization dependence on the hole shape39 from the viewpoint
of Fourier spectra of the periodical structure. Besides, we
compare our calculations to other recent experiments. Sec-
tion IV deals with the resonance effects caused by the exci-
tation of double-boundary-localized SPPs in the symmetri-
cally sandwiched film. We make an in-depth study into the
fine structure of the two-humped resonance maxima
�minima� of the transmittance �reflectance�, thereby stressing
the role of long-range and short-range SPPs. As far as we
know, the fine structure of two-humped resonances for the
symmetrically surrounded film has not been examined thor-
oughly in experiments. In the appendixes below, we draw an
analogy between the ELT and the forced oscillations of a
well-known classical system of two weakly coupled linear
damping mechanical oscillators.

The problem under consideration not only is of profound
interest from the purely physical viewpoint but can be widely
applied in designing optical subwavelength devices.4,50 Spe-
cifically, SPPs in sandwiched structures have recently come
into use as surface plasmon resonance optical sensors,51–53

and some of them are already commercially available. These
sensors are based on the interaction between a waveguide
and SPP modes. The basic feature of such real-time high-
resolution SPR sensors is that it measures the refractive in-
dex variation for biological and chemical domains. It is im-
portant to mention that the ELT phenomena are studied in the
microwave �terahertz� region of electromagnetic
waves,49,54,55 which attracts great deal of attention.

II. PROBLEM STATEMENT AND MAIN EQUATIONS

A. Analytical approach

Consider an arbitrarily polarized plane monochromatic
wave with wave vector k incident onto a surface of a double
periodically modulated metal film surrounded by dielectric
media with permittivities ��, �=±, from the medium corre-
sponding to �=−. We imply that the periodicity is caused by
modulation of the dielectric permittivity of a conductor, �
=��rt�, rt= �x ,y�, so that ��rt�=��rt+m1�1+m2�2�, where
�1,2 are elementary translation vectors �see Fig. 1�. In what
follows, one has to deal with the Fourier expansion of func-
tion ��rt�=��̄ /��rt�, where �̄ is the mean value of the dielec-
tric permittivity of the metal, �̄= ���r��. The expansion of
this function over ��̄−��rt�� / �̄ coincides in the zeroth order
with the expansion of the surface impedance, 1 /���rt�, over
the same parameter. Therefore, for brevity, name the function
��rt� surface impedance. Its Fourier representation is written
as

��rt� = �O + �
M

�̃M exp�i�m1g1 + m2g2� · rt� , �1�

where �̃O=0 and M is the vector index �multi-index�, where
M= �m1 ,m2� �integers m1 ,m2 indicate a number of elemen-
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tary translations along vectors of reciprocal grating, g1 ,g2�;
the zero multi-index is O	�0,0�. The electric fields in the
dielectric media are written in the form of Rayleigh expan-
sion �the time dependence exp�−i�t� is omitted everywhere�:

E��r� = ��,−E exp�ik · r�

+ �
M

EM
� exp�ikMt · rt + ik�
Mz�z − ��,+d�� , �2�

for z�d �z�0� if �= + �−�. Here, d is the film thickness, E
denotes the electric field amplitude of the incident wave, r
= �x ,y ,z�, and the tangential �kt ,kMt� and the normal
�kz ,k�
Mz� components of the wave vectors of spatial field
harmonics, k=kt+ezkz, kM

� =kMt+ezk�
Mz, are

kz = k− cos 	, kt = k−�sin 	,0,0� ,

kMt = kt + m1g1 + m2g2,

k�
Mz = ��k�
2 − kMt

2 , k� = ���k, k = �/c , �3�

where 	 is the angle of incidence, Re��k�
Mz�, Im��k�
Mz�
�0. Similar to Refs. 31–33, we will take into account the
modulation in the boundary conditions only, so that within
the conducting film we seek the solution in the form

Ē�r� = �
M,�

ĒM
� exp��k̃z + ikMt · rt� ,

k̃ = k�− �̄, 0 � z � d . �4�

We introduce polarization unit vectors,

eM
�
+ =

ez 
 kMt

kMt
, eM

�
− =
eM

�
+ 
 kM
�

k�

,

e−
+ =
ez 
 kt

kt
, e−
− =

e−
+ 
 k

k−
, �5�

where eM
�
� are for TM �TE� or p �s� polarization for �

=−�+� in the Mth diffraction order in the dielectric media �,

and e−
� are polarization basis vectors for the incident wave.
In terms of the polarization vectors, the electric and magnetic
fields in the dielectric media are

�EM
�

HM
� � = �

�
�EM

�
�

HM
�
�̄�eM

�
�, �E

H
� = �

�
�E�

H�̄�e−
�, �6�

where �̄	−�. As we neglect the permittivity modulation
inside the film, the internal fields are divergence-free. Thus,
they can be decomposed into a form similar to Eq. �6�.

Introducing the transformation coefficients �TCs� TM
�
���,

EM
�
� = �

��

TM
�
���E��, �7�

and excluding the internal fields from the boundary condi-
tions, we arrive at the following infinite linear system for the
TCs of the outer fields:

�
M�,��,��

DMM�
���
���TM�

��
���� = VM
�
���. �8�

The matrix DMM�
���
��� and the right-hand side vectors VM

�
��� are
linear relative to the modulation,

DMM�
���
��� = �MM�����bM

���
� + dMM�
���
���,

VM
�
��� = �M,O����VO

�
� + vM
�
���. �9�

The modulation-independent terms are diagonal both with
respect to the diffraction order and polarization. Explicitly,

bM
���
� = �����������

−�1+��/4���
M
�1−��/2 tanh 


+ ��̄��1−���/2���+1�/2�O����
M�����
�1+��/2�


�cosh 
��1+����/2,

VO
�
� = ���,−�−

−�1+��/4�−
O
�1−��/2 tanh 


+ ����+1�/2�O��−
O��−��1+��/2��cosh 
��1−��/2.

�10�

Here,


 	 k̃d , �11�

the real part of 
 is the film thickness in the skin depths, and
��
M is the normalized z component of the Mth spatial field
harmonic wave vector, which is related to the tangential
component �M as

��
M =
�k�
Mz

k��

=
��� − �M

2

��

, �M = kMt/k . �12�

The nondiagonal terms are

dMM�
���
��� = ���+1�/2��1−���/2�����1−���/2SMM�

�·�� �̃M−M�


����
M�
�����

�1+���/2�cosh 
��1+����/2,

k

k0

−3 −2
−1 0

1 2
3

−3−2−10 1 2 3

0
0.05
0.1
0.15

m2m1

(b)(a) ξ

∆ξ
m1m2

FIG. 1. �Color online� �a� Geometry of the problem. Diffraction
by the nonsymmetrically sandwiched 2D modulated metal film �pe-
riodical modulation is due to the cylindrical inclusions�. �b� Fourier
spectrum of a periodical array with �1=�2=�, a /�=1/3 shown in
�a� �see Eq. �38��.
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vM
�
��� = ��dMO

�−
���. �13�

SMM�
+ �SMM�

− � are sines �cosines� of the angle �MM�

= ��M ,�M�
ˆ � between vectors �M and �M�,

SMM�
� 	


�M · �M�

�M�M�
= cos �MM�, � = +

ez · ��M 
 �M��

�M�M�
= sin �MM�, � = − .�

�14�

The resonances in the system are due to the existence
of the eigenmodes in the film, i.e., SPPs. When an evanes-
cent field harmonic is close to the grazing one, its amplitude
increases substantially as the process of eigenmode excita-
tion occurs. For infinitesimal modulation, the eigenmodes of
the film are initial SPPs, with the dispersion relation corre-

sponding to the determinant of the matrix �DMM�
���
���� vanish-

ing in zeroth-order approximation in modulation. Then,

det�DMM�
���
���� becomes an infinite product of �bM

���
�� determi-
nants, so that each of them corresponds to a certain SPP
eigenmode of the unmodulated film. The equation
det�bM

���
��=0 has the physical roots for �=− only, which
conforms to p polarization:

��+
M tanh 
 + �O���−
M tanh 
 + �O�cosh2 
 − �O
2 = 0.

�15�

For a rather thick film, exp�
���1 �here and below, the
prime � �� and the double prime � �� indicate the real and the
imaginary parts of the physical value�, SPPs in the film are
close to those existing at the boundary between the metal and
each of the dielectric half-spaces, and are single-boundary-
localized �SB� SPPs. These modes are governed by the dis-
persion relation

��
M + �O = 0, �16�

where �= + �−� is for the metal-substrate �superstrate� SB
SPP. The symmetric surrounding �for instance, a freestanding
film� is a particular instance because the solutions of Eq. �16�
for different � coincide.56 Then, the initial SPPs existing at
the boundary of the metal and dielectric half-space become
coupled due to the finite film thickness, and one obtains the
two double-boundary-localized �DB� SPP modes: long-range
�LR� and short-range �SR� SPPs.57,58 For �+=�−	�, and,
respectively, �+
M=�−
M	�M, one finds from Eq. �15� the
two roots, �M=�M

± ,

�M
l = − �O tanh�
/2�, �M

s = − �O coth�
/2� , �17�

that is, the single-boundary-localized modes coupled into
double-boundary-localized ones. Therefore, the frequencies
of initial SPPs are split, the spectral degeneration vanishes,
and we arrive at two different eigenfrequencies described by
Eq. �17�. Here, superscript l �s� stays for the LR �SR� SPP.
The LR �SR� mode possesses a high- �low-� frequency and is
related to the antisymmetric �symmetric� surface charge dis-

tribution with respect to the midplane z=d /2 and the spatial
distribution of the electric field component tangential to the
film faces. As a result, the SR SPP is characterized by higher
Ohmic losses.

Since the modulation is assumed to be small, the eigen-
modes of the modulated film �“dressed” modes� differ
slightly from those existing in the unmodulated film. If the
dressed SPP eigenmodes include the propagating field har-
monics, they become leaky modes and thus can be coupled
with ingoing waves. The dispersion relation of the dressed
SPP modes defines the resonance conditions. However, to
identify the resonance type, the modulation can be neglected.
Bearing in mind that �M
� depends on the incidence angle 	
and the wavelength �, it is possible to consider the imaginary
part of Eq. �16� as the “resonance curve” in a 	-� plane. In
fact, the left-hand side of Eq. �16� is nothing else than the
denominator of the SPP propagator �Green’s function of the
boundary of the metal half-space�. Therefore, the imaginary
part of Eq. �16� yields the closest-to-the-pole point on the
imaginary axis in a complex � plane. This point is related to
strong peculiarities in TCs when the pole is close to the
imaginary axis �that is, when ��� 
��
, which holds for noble
metals starting from the visible region of the spectrum�. For
instance, in the case of rectangular symmetry, g1�g2, g1
=g2, the imaginary part of Eq. �16� reads

�sin 	 cos � + m1�1�2 + �sin 	 sin � + m2�2�2 = K�
2, �18�

where � is the angle of the incident plane orientation relative
to g1 �say, “tilting” angle�, �1,2=g1,2 /k=� /�1,2, and K�

=���+��
2� O�

2 is the SPP dimensionless wave vector. We des-
ignate the curve given by Eq. �18� as �m1 ,m2��. All points
of the 	-� plane may be classified as follows.59 If a point
does not belong to any resonance curve, we have a nonreso-
nance diffraction case. If a point belongs to a single curve
with a fixed M and �, we obtain a single diffraction-order
single-boundary resonance. If a point serves as the intersec-
tion of several curves having different multi-indexes
�M ,M� ,M� , . . . �, but the same � value, then we obtain a
multiple diffraction-order single-boundary resonance. Note
that for specific geometry of high symmetry, �=0 and �
=� /2, the curves for different signs of m2 and m1 coincide;
when �=� /4, curves �m1 ,m2�� and �m2 ,m1�� are indistin-
guishable as well. The intersection of two resonance curves
with different � yields the point of a double-boundary reso-
nance. When DB SPPs have a unique multi-index M, we
then arrive at a single diffraction-order double-boundary
resonance �SDB�. SDB resonance only occurs for the sym-
metric surrounding of the film, �+=�−. Here, the initial sur-
face modes are coupled mainly through the finite film thick-
ness and, by and large, the corresponding dependences of the
reflectance and/or transmittance are of two-valley �two-peak�
shape due to splitting of LR and SR modes. The explicit
form of the resonance curve corresponding to LR �SR� SPP
resonances coincides with that given by Eq. �18�, if � O� is
replaced by � O� tanh�
� /2� �� O� coth�
� /2�� in the designa-
tion of K� in Eq. �18�. When DB SPPs are related to different
multi-indexes �multiple diffraction-order double-boundary
resonance�, which occurs under very specific conditions,
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they are simultaneously coupled through periodicity and the
finite film thickness.

Now, take up the solution of the system �8�. In a small
region of the 	-� plane, which is of order of the resonance
width, the solution is strongly dependent on the number of
resonance curves passing through this region. Hence, it is
convenient to subdivide the set of the diffraction orders into
a resonance subset, R, which contains the multi-indexes
relative to the above-mentioned curves, and a nonresonance
subset, N. Thus, we subdivide the initial infinite system into
the resonance subsystem with the resonance TCs and the
nonresonance subsystem having the nonresonance TCs. The
resonance TCs are related to p components of the TCs de-
fined by the resonance multi-indexes, and the nonresonance
TCs correspond to s components of amplitudes with the reso-
nance multi-indexes, TR

�
+�, and both p and s components of
TCs with nonresonance multi-indexes, TN

�
���, N�N.
In the main approximation,31–33 which assumes retaining

the quadratic-in-modulation amplitude terms in the matrix
elements, and the linear terms in the right-hand sides, the
resonance subsystem becomes

�
��,R�

BRR�
��� TR�

��
−� = ṼR
�
�, �19�

where

BRR�
��� = �RR�bR

���
− + dRR�
���
−

− �
M,��

�
��,��

dRM
���
−���b̂−1�M

����
��dMR�
����
��−, �20�

ṼR
�
� = VR

�
� − �̄
RO
�1−��/2 �

��,��

dRO
���
−��b̂−1�O

����
�VO
��
�. �21�

Here, b̂	�bM
���
��, and the sum with the overline ��̄� means

that the terms with the superscript ��=− and a resonance
diffraction order M=R�R have to be omitted. The func-

tion �̄RO is equal to 0 if within the resonance indexes there is
the zeroth one, and to 1 otherwise. The zero value of matrix

B̂ determinant yields a dispersion relation of the SPP modes
in the film in the main approximation. As was discussed
above, the block, bR

���
−, being diagonal relative to the diffrac-
tion order, contributes to the unperturbed dispersion relation.

The nondiagonal, linear-in-modulation block, dRR�
���
−−, con-

tains the “inter-resonance” or “coupling” modulation har-

monic, �̃R−R�, which is chiefly responsible for the SPP dis-
persion curve splitting and for the appearance of the spectral
band gap.60,61 The third term in Eq. �20� is quadratic in
modulation and describes the second-order scattering pro-
cesses which results in the broadening and the shift of the
dispersion branches.

The nonresonance TCs, TN
�
���, are expressed in terms of

the resonance TCs as

TN
�
��� � �N,O����TF

�
� − �
��,��

�b̂−1�N
���
�dNR

����
�−TR
��
−��,

�22�

where TF
�
� is a transmission �for �=+� or a reflection �for �

=−� coefficient associated with p �at �=−� or s �at �=+�
polarization for an unmodulated film. s components of the
TCs with the resonance multi-indexes, TR

�
+�, are expressed in
terms of p components, TR

�
−�, and are small as compared
with the latter; they are of no interest, and we do not present
them herein. The diffraction efficiencies are

�M =

EM

+ 
2


E
2
·
Re�k+
Mz�

kz
, �M =


EM
− 
2


E
2
·
Re�k−
Mz�

kz
.

From the energy conservation, it evidently follows that

1 − �
M

��M + �M� = P � 0, �23�

where P����
Ē
2dz is the absorbed part of the energy flux
density.

B. Single diffraction-order resonance

If a certain point of the �-	 plane belongs to one or two
curves �Eq. �18�� having a single multi-index R= �r1 ,r2� �for
other parameters being fixed�, the vicinity of this point de-
fines a single diffraction-order resonance. Moreover, accord-
ing to the above classification, a SB resonance is associated
with a curve characterized by a single �, while the intersec-
tion of two curves with different � values yields a DB reso-
nance. The resonance TCs are then similar to those obtained
for 1D modulation �see Ref. 33�,

�TR
�
−+

TR
�
−−� = �− cos 	 sin �RO

cos �RO
�LR

� �̃R�exp�− 
���1+��/2,

�24�

where

LR
� = 2���̃�̄
R − ��,+�R��R, �25�

�̃�
R = ��
R tanh 
 + �O + GR
� , �26�

�R = �̃+
R�̃−
R − �R
2 cosh−2 
, �R = �O + GR

+ + GR
− ,

�27�

GR
� = − �

N

�̃R−N�̃N−R
��
N

�cos2 �RN + ����
N
2 sin2 �RN� .

�28�

Note that TR
�
+��O��̃R�, 
TR

�
−�
� 
TR
�
+�
. The resonance TCs

have two poles. For a nonsymmetric surrounding, these poles
are related to SPPs existing at the opposite film faces, while
in a symmetric surrounding, they are related to LR and SR
SPP modes.
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The structure of the resonance TCs reveals that the cou-
pling strength between the incident wave and the SPP excited
is proportional to the scalar product of the SPP and the
incident-wave magnetic fields. Note that the SPP magnetic
field is orthogonal to its propagation direction and is parallel
to the interface. Therefore, the SPP is dramatically excited by
the projection of the tangential component of the incident-
wave magnetic field onto HRt

� �or, alternatively, by the scalar
product of tangential components of the electric SPP fields

and the incident wave�. As to p �s� polarization of the inci-
dent light, the projection is Ht cos �RO �Ht cos 	 sin �RO�,
where �RO is the angle between HRt

� and Ht. For instance,
with the incidence of purely p- �s-� polarized light, the SPPs
propagating parallel �perpendicular� to the incidence plane
cannot be excited, even if wave vector kRt is close to the
poles in Eq. �24�.

The zeroth-order polarization matrix is

�TO
�
++ TO

�
+−

TO
�
−+ TO

�
−− � = �TF
�
+ 0

0 TF
�
−� + �2 cos 	� cos 	 sin2 �RO − cos 	� sin 2�RO

− � cos 	 sin 2�RO 2� cos2 �RO
�LO
R

� , �29�

where

LO
R
� = −

����̃R�̃−R
cos 	� �R

��̃�̄
R + ��̃�
R − �R��cosh 
��−1�


�cosh 
�−�1+��/2. �30�

	� is the angle of propagation of the zeroth-order wave in the
� th dielectric media relative to the Oz axis �in the superstrate
	−		�. The structure of these coefficients shows an interfer-
ence caused by the competition between the nonresonance
channel �the terms T F

�
�� and the resonance channel �the sec-

ond terms in Eq. �29�, which are proportional to �̃R�̃−R /�R�.
The nonresonance term should be retained for the zeroth-
order reflectance, since it is of order of unity, 
T F

−
�
�1. Oth-
erwise, for a rather strong resonance it can be neglected for
the transmittance in the vicinity of the resonance maxima,
since 
T F

+
�
�
�O
exp�−
���1 and is much smaller than the
resonance input into the transmittance.

The wavelength resonance width, �� /�, is contributed
both from the dissipation losses, being proportional to �O� ,
and from the radiation losses due to SPP scattering into the
outgoing propagating waves. It is of order �� /��
�O� 
��O�

+O�
�̃2
��, as it follows from Eqs. �24�–�30�. The term pro-

portional to O�
�̃2
� results from the radiation losses and in
the simplest case may be represented approximately as

�NCN�̃R−N�̃N−R /��
N, where 
CN
�1, and the summation is
done over those N that satisfy Im���
N�=0. According to the
formulas describing the resonance and zeroth-order TCs, the

optimal amplitude of the resonance harmonic is 
�̃R
���O�
and this gives rise to the resonance width of order �� /�
��O� 
�O� 
. The optimal amplitude is related to the maximal
SPP excitation and, consequently, to the minimal �maximal�
reflectance �transmittance� value. Although we assume the
modulation to be rather small, let us make a rough estimate
of the resonance width for the hole arrays. For Ag films in
the visible and near infrared frequency region, the impedance
of the film is 
� f
�10−1, while for the holes the impedance

is 
�i
�1. Therefore, 
�̃R
�
��
�1��O� and �� /��
�O� 


�10−1. For wavelength of order ��1 �m, the resonance
width can be estimated as ���100 nm, which is in good
qualitative agreement with numerous experimental results
�see, e.g., Refs. 5, 6, and 8�. In the experiments, the reso-
nance width is equally affected by the nonplane character of
an input light wave and the finiteness of the periodic array.

Note that the resonance width is very important for sub-
diffraction-limited optical imaging �optics of volume or sur-
face “superlenses”�. Sufficiently broadened SPP resonances
may be efficiently used to enhance the evanescent modes and
thus to gain the subwavelength information on nanoobjects
�see Ref. 62�.

C. Multiple resonances

The approach that we have developed allows considering
the diffraction problem for the resonances of arbitrary mul-
tiplicity on 2D periodical structures with an arbitrary sym-
metry. However, from the experimental point of view the
resonances of fourfold multiplicity, which occur in the nor-
mal incidence, 	=0, on the square and rectangular periodical
arrays are of special interest. Here, and in what follows, we
will concentrate on the structures with C2v symmetry:

�̃�Ĉ2vrt�= �̃�rt�; the geometrical symmetry �Brillouin zone
symmetry� is assumed to be C4v, i.e., g1 is perpendicular to
g2 and their modules are equal, g1=g2. As evident from Eq.
�18�, at normal incidence the multiple SPP resonances arise
at wavelengths of �r1,r2

� =�K� /�r1
2+r2

2, where � is the period
of the structure. Points 	=0, �=�r1,r2

� in the 	-� plane are the
intersections of four resonance curves for the single � �SB
resonance� or eight curves for both �=± �DB resonance in
symmetric surrounding�. We label a fourfold SB resonance
as �r1 ,r2��, which is consistent with the intersection of the
following resonance curves: �r1 ,r2��, �−r1 ,r2��, �r1 ,−r2��,
and �−r1 ,−r2��. A fourfold DB resonance is denoed as
�r1 ,r2�. In addition, if all the values of a certain function FM
with subscripts from the above subsets are equal, we desig-
nate it by F�r1,r2�.

Similar to the single resonance, the pair of field harmonics
with wave vectors k�r1,r2�t=r1g1+r2g2 and k�−r1,−r2�t=−r1g1
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−r2g2 for the fourfold resonance is efficiently generated by
the projection of the incident-wave magnetic field onto the
direction perpendicular to k�r1,r2�t �the direction of the SPP
magnetic field with this wave vector�, viz., by H sin �r1,r2

,
where �R is the angle between kRt and Ht=H. By analogy,
the amplitudes of the field harmonics with diffraction in-
dexes �±r1 , �r2� are proportional to H sin �−r1,r2

. Thus, for
special polarization of the incident wave, at �R=0, ±�, ±R
the resonance field harmonics are not excited via the first-
order scattering process �but rather via the higher-order pro-
cesses�. This leads to twofold reduction in multiplicity of the
resonance in the main approximation. For an arbitrary polar-
ized incident wave, the polarizations of the zeroth-order
transmitted and reflected waves are formed mainly due to
single backscattering by the interference contribution of all
resonance field harmonics. Also, they are contributed from
the zeroth-order components related to the “scatteringless”
reflection and transmission for an unmodulated film. Other-
wise, the polarizations of both propagating and evanescent
nonresonance field harmonics are formed chiefly by single
scattering from the zeroth diffraction order and from all the
resonance diffraction orders.

For the structures with C2v modulation symmetry, the so-
lution of Eq. �19� is substantially simplified in the vicinity of
normal incidence. For �r ,0� or �r ,0�� resonance, the reso-
nance TCs are similar to those given in Eq. �24� �see the
explicit expressions in Appendix B, Eq. �B1��. Nevertheless,
in �̃�
R a linear-in-modulation term ��̃2R� arises, which is the
inter-resonance harmonic responsible for the splitting and
shifting of the resonance.

To get a better understanding of the resonance diffraction,
consider the eigenmodes of C2v structures. They are defined

approximately by the relation B̂T̂=0. In particular, the eigen-

frequencies may be found from the equation det B̂=0. For a
rather thick film, exp�−
���1, the eigenmode structure of
SB SPPs can be obtained in the approximation of the half-
space problem �see the detailed analytical treatment in Ref.
60�. Thus, we restrict ourselves to the eigenmodes that are
close to those existing at the metal-dielectric interface and
not coupled through a film thickness. Bearing in mind the
homogeneous problem statement, we must make some
change in the notations so that one of the resonance k vectors
in the diffraction problem, kRt, becomes the SPP quasi-
wave-vector q ending in some Brillouin zone. The other
wave vectors close to the resonance conditions are for the
“resonance satellites” that constitute a coupled SPP state.

Concentrate first on the simplest example of a twofold
coupling through the periodicity. Suppose that the resonance
wave vectors are kRt→q and kR�t→q�. Then, we can con-
sider the diagonal in � homogeneous subsystems of the reso-
nance system �19� which has two TCs, for the diffraction
orders R= �r1 ,r2� and R�= �r1� ,r2��. Using Eqs. �10�–�14�
�and assuming tanh 
=1�, we present it as

� ��
R + �O �̃�R cos �RR�

�̃−�R cos �RR�
��
R� + �O

�� ERz
�

ER�z
� � = 0. �31�

Here, �R=R−R�, and we omit the quadratic-in-modulation
amplitude terms, supposing that they do not exceed the

linear-in-coupling harmonic �̃±�R term. We take into account
that in the � th dielectric half-space, the SPP electric field has
predominantly a z component, and therefore, we replace
TR

�
−� for ERz
� . It follows immediately from this system that

the initial SPPs with wave vectors oriented at �RR�= ±� /2
are not coupled, and thus it is the instance where the qua-
dratic coupling terms have to be retained.63 Note that here
the 2D problem is reduced to the 1D one that corresponds to
the twofold SPP coupling through the harmonic grating of

the period 2� / 
kR1t−kR2t
 �and with amplitude �̃±�R�, where
the quasi-wave-vector of the dressed SPP, q, and of the sat-
ellite, q�=q+ �r1�−r1�g1+ �r2�−r2�g2, refer to the sides of a
Brillouin zone �see Fig. 2�. Then, ��
R=��
R�	��, where
��=���− �qc /��2 /��, and the dispersion relation becomes

����±� = − �O � ��̃�r�̃−�r
cos �RR�
 . �32�

It should be recalled that �RR� is the angle between q and
q�. Hence, we obtain the two roots: the first one is for the
high-frequency mode �+ and the second one is for the low-
frequency mode �−. Specifically, by neglecting the modula-
tion of the small real part of the surface impedance as com-

pared with that of its imaginary part, we have �̃−m=−�̃ m
* , and

q

q = kK

g

g

ψ′q

I BZ II BZII BZ

τ

1

g +1

g 2

g 2

FIG. 2. �Color online� An example of a twofold coupling of the
SPPs for �R= �1,1�. The top �bottom� figure is for the 2D �similar
1D� problem.
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��̃�R�̃−�R= i
�̃�R
. Hence, the eigenfrequencies are

�±/�ph � 1 + ���O
2 /2 ± i���O
�̃�R cos �RR�
 ,

�ph = qc/���, �33�

where the upper �lower� sign is for high- �low-� frequency
SPP. It is important to note that the quality �Q� factor for the
high-frequency mode is higher than that for the low-
frequency mode.

For the specific choice of coordinate origin, such that

�̃�R= i
�̃�R
, ��rt�=�O+ ¯ +2i
�̃�R
cos��q−q�� ·r�+¯, the
electric field amplitudes of the eigenmodes obey the relation
�EzR

� /EzR�
� �±= ±sgn�cos �RR��. As the coupled SPPs propa-

gate in the opposite directions, �= ±�, we get q=−q�, and
the field structure at the interface for the eigenmodes is

Ez
��−��rt� � cos�q · r�, Ez

��+��rt� � sin�q · r� . �34�

Note that when the coupling in the first-order scattering is
prevalent, or, in other words, with the coupling harmonic

dominating over the others, 
�̃�R
� 
�̃M
2, the structure of the
spatial field distribution is governed by the coupling har-
monic. In other words, the field maxima of the high-
frequency mode coincide with the “less metallic” regions
�where 
�
 is higher� relative to the coupling harmonic and
vice versa for the low-frequency mode �see Fig. 3�.

Now, let us examine the eigenmodes of the fourfold SB
SPP resonance. We limit ourselves to �r ,0� resonance such
that k�r,0�t=−k�−r,0�t, k�0,r�t=−k�0,−r�t, and k�0,±r�t�k�±r,0�t. Re-
member that the resonance amplitudes corresponding to per-
pendicularly oriented vectors are not coupled in the first scat-
tering order. One can make sure that four eigenmodes exist.
Two of them are “mixed,” that is, all resonance amplitudes
are nonzero: E�±r,0�z

� , E�0,±r�z
� �0, and moreover, E�r,0�z

�

=E�−r,0�z
� and E�0,r�z

� =E�0,−r�z
� . Thus, the field structure has the

form of the linear combination of two cosines having their
periods along g1 and g2. These modes cannot be excited at
normal incidence. Other two modes, which may be excited,

have zero resonance amplitudes: for one mode E�r,0�z
�

=−E�−r,0�z
� and E�0,±r�z

� =0, and for the other mode E�0,r�z
�

=−E�0,−r�z
� and E�±r,0�z

� =0. Consequently, the spatial structure
is specified by sinuses. Thus, the structure of the eigenmodes
in this particular instance of fourfold SB SPP resonance is
similar to that of twofold SB SPP resonances; they have the
form of a pair of standing SPPs, which is appropriate to the
sinus-type spatial field distribution, and higher-frequency
�and also higher Q factor� branches. This means that in Eqs.
�33� taking “�” we should set 
cos �RR�
→1, �r→ �2r ,0�,
and the first �second� standing SPP quasi-wave-vector q be-
comes parallel to k�r,0�t �k�0,r�t�.

The solution of the inhomogeneous problem is the super-
position of the above standing SPPs with the “weights” pro-
portional to cosines of the angles between H�r,0�t

� , H�0,r�t
� , and

H. The eigenmodes for other SB fourfold resonances may be
treated in a similar way: they are the combinations of the
simplest SPP modes as well.

The field structure of DB dressed SPPs is defined by the
coupling of the initial SPPs both through the modulation and
through the finite film thickness. The field structure resulting
from the coupling through the film thickness may be under-
stood from the example of the undressed SPP existing in the
unmodulated film. The eigenfrequencies for this instance are
defined by Eq. �17�. Note that in contrast to the dielectric
half-spaces, the amplitude of the tangential-to-interface com-
ponent of the electric field inside the metal is higher than the

z component, 
Ēt / Ēz
�
��
�1. Remind also that the z de-
pendence of the electric field inside the film for LR and SR
eigenmodes is1,2

Ēt
�L� � sinh�k̃z − 
/2�, Ēt

�S� � cosh�k̃z − 
/2� , �35�

where �L� stands for LR SPP and �S� for SR SPP.
For dressed DB SPPs with the twofold coupling, the dis-

persion relations are

��L±� = − ��O ± �̃�R
cos �
�tanh�
/2� ,

��S±� = − ��O ± �̃�R
cos �
�coth�
/2� , �36�

where ��¯�=��d− �qc /��2 /�d, �+=�−=�d, and the super-
scripts in brackets mark the eigenmodes. Here, the initial
SPPs �and their diffraction indexes� are the same as those
forming the dressed twofold SB SPP. The spatial field distri-
bution of eigenmodes inside the film for �=� �q=−q�� has
the form

Ēt
�S−��r� � êq cosh�k̃z − 
/2�sin�q · r� ,

Ēt
�L−��r� � êq sinh�k̃z − 
/2�sin�q · r� ,

Ēt
�S+��r� � êq cosh�k̃z − 
/2�cos�q · r� ,

Ēt
�L+��r� � êq sinh�k̃z − 
/2�cos�q · r� . �37�

The z components of the electric field in the dielectrics at
the film faces are of the same form as in Eq. �34�, i.e.,

+ + - --- ++ +

FIG. 3. �Color online� Spatial distribution of the squared electric
field z components of the eigenmodes. The solid �dashed� curve is
for the low- �high-� frequency mode. The “more metallic” regions
of the coupling harmonic contribution are shown by the darker re-
gions of the contour plot. Pluses and minuses refer to the signs of
the surface charge density.
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Ez
��S−��r��Ez

��L−��r��cos�q ·r� and Ez
��S+��r��Ez

��L+��r�
�sin�q ·r�. It is possible to obtain the eigenfrequencies and
the field structure for the fourfold DB SPP, proceeding in the
same way, in which we generalized the twofold SB SPP to
the fourfold SB SPP.

Analyzing the denominator of TCs, one can make certain
that the excited DB SPPs are related to � modes only. In-
deed, with the film thickness tending to infinity, we see that
the two poles of TCs in Eq. �B1� of Appendix B, �R=0,

become ��
R+�O+ �̃2R=0, when neglecting the second-order

scattering processes. Choosing an origin such that �̃2R
= i
�̃2R
, the poles coincide with the � branch of Eq. �32�,
where �̃2R is replaced by �̃�R and 
cos �RR�
=1. This corre-
sponds to the upper frequency branch �Eq. �33�� and, hence,
to the “sine” field distribution in the x-y plane.

Under the assumption of C4v modulation symmetry, the
zeroth-order TCs for SB �r ,0�� resonance have the structure
similar to Eq. �29� as well �see Appendix B�. However, the
difference is that identity TO

�
��̄=0 holds, which ensures that
the polarization of the zeroth-order transmitted wave coin-
cides with that of the incident wave.

Along with the anomalies resulting from SPP excitation,
there exist Rayleigh anomalies. They are related to the
boundary between homogeneous �propagating� and inhomo-
geneous �evanescent� waves in different diffraction orders,
viz., to the vanishing of the z component of one of the wave
vectors, k�
Mz=0, or �M
�=0. Mathematically, the Rayleigh
anomalies are the branch points; they give rise to the discon-
tinuity of the incident angle or wavelength derivative of the
transformation coefficients. In what follows, we will denote
the Rayleigh anomalies as �m1 ,m2��

R �which points out to the
vanishing of ��
m1,m2

� or as �m1 ,m2��
R �this indicates the van-

ishing of ��
�m1,m2��.
Since modulation harmonics play a crucial role in SPP

excitation, let us consider in the following section the Fou-
rier representation of the structures widely used in the ex-
periments.

D. Modulation spectra

Most of experimental works deal with hole arrays in
metal films deposited onto a dielectric substrate �predomi-
nantly onto quartz� �see Fig. 1�. Instead of holes, we will
consider cylindrical inclusions in the film. The inclusions are
supposed to consist of a metal or a semiconductor with the
dielectric permittivity different from that of the film. Both
the inclusions and the film must be highly conducting. As
seen below, this structure may qualitatively describe the op-
tical properties of nanohole arrays, even though the film does
not contain holes as such. Furthermore, the results from our
studies may be used to model and describe the arrays of
cylindrical nanoparticles, so far examined experimentally. In-
deed, the structure considered may be fabricated by making
an array of cylindrical nanoparticles with impedance �i,
which are inserted into a conducting film.

For the inclusions of a round cross section with radius a,
we have

�̃M =
2�a��

� · gM
J1�agM�, �O = � f +

�a2��

�
,

gM = m1g1 + m2g2, � = 
�1 
 �2
 , �38�

where ��=� f −�i is the difference between the film �� f� and
the inclusion ��i� surface impedance, and J1 is the first-order
Bessel function. A typical example for the Fourier spectrum
of the array of cylindrical inclusions for the square symmetry
structure is shown in Fig. 4. The square symmetry structure
implies that the angle between translation vectors is � /2 and
their modules are equal, �1=�2. In the following calcula-
tions, we take � f to be equal to the impedance of Ag �using
the wavelength dependence from Ref. 64�; the impedance of
inclusions will be modeled as �i=w� f, where w is a dimen-
sionless parameter.

As seen from Eq. �24�, the amplitude of the resonance

�Rth� diffraction order is proportional to �̃R, HR
�
���̃R; there-

fore, the efficiency of SPP excitation in this order is strongly

dependent on the “resonance” amplitude �̃R. For large values

of r1, r2, the Fourier amplitude �̃R tends to zero as

�̃R � gR
−3/2, 
R
 � 1. �39�

Thus, the resonances in high diffraction orders are less effi-
cient. If the inclusion diameter is far smaller than the modu-
lation periods, the low-order amplitudes are approximately
independent of their order:

�̃M � ���a2�−1�1 + O�agM�� for agM � 1. �40�

So, for very thin inclusions the Fourier amplitudes of the
structure decrease slightly when 
M
 decreases, which is
valid for an arbitrary cross section of the inclusions. In its
turn, it significantly broadens the SPP resonances: they be-
come “diffusive” due to equal contribution from many scat-
tering processes of the excited SPPs.

Also, we give the Fourier expansion of the structure hav-
ing the inclusions of a rectangular cross section as

0 0.1 0.2 0.3 0.4 0.5
−0.1

0

0.1

0.2

a/ρ

[0,1]

[1,1]

[0,2][1,2]
[2,2]

2 3 4

1 1 1 1

ξ

∆ξ
m1m2

FIG. 4. �Color online� Modulation harmonics �m1,m2
dependence

on the ratio of the cylindrical inclusion radius to the period of the
square array, a /�. Arrows 1, 2, 3, and 4 indicate a /� values of the
hole arrays examined in Refs. 5, 6, 14, and 9, respectively.
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�̃M =
4a1a2��

�a1 · gM��a2 · gM��
sin

a1 · gM
2

sin
a2 · gM

2
,

�41�

where a1,2 are the vectors oriented along the sides of the
rectangular inclusions with modulus equal to their lengths,
a1,2.

III. SB SPP RESONANCES: NONSYMMETRIC
SURROUNDING

Bearing in mind the experiments, periodically modulated
films surrounded by two different dielectric media are of
special interest. These structures can support both SB SPPs
and, under the special conditions, DB SPPs. The latter will
be discussed separately. In the vicinity of normal incidence
that we mainly focus on, the resonances are basically related
to SBSPPs. An example of the transmittance and reflectance
wavelength spectra at strictly normal incidence is illustrated
in Fig. 5. The calculations are for the C4v array of inclusions
with a round cross section in the Ag film surrounded by air
superstrate and quartz substrate. The transmittance and re-
flectance extremes are pronounced at wavelengths for the
SPPs existing at unmodulated metal-quartz and metal-air in-
terfaces. Note that while the extremes are shifted with re-
spect to initial SPPs wavelength, which is due to the modu-
lation and finite film thickness influence, Rayleigh anomalies
are unshifted.

Now, we discuss the vicinity of the strictly normal inci-
dence. In Figs. 6�a�–6�c� and 6�e�, the transmittance contour
plot is shown as a function of the wavelength or/and photon
energy and the incident angle for different polarizations of

the incident wave. In Figs. 6�d� and 6�f�, the resonance
curves �18� corresponding to the contour plots in Figs.
6�a�–6�c� are shown. The transmittance features and the reso-
nance curves show an excellent agreement. It should be em-
phasized that there is a strong dispersion, ����, in the short-
wavelength region. In Figs. 6�a�–6�c�, the special symmetry
instances are given, viz., the coincidence of the resonance
curves is due to the orientation of the incident plane relative
to one of the reciprocal grating vectors �g1� at angles 0 �or
� /2� and � /4 �see discussion below formula �18��. The co-
incidence is noticeable in the vicinity of �1,0�+, �1,1�+, and
�1,0�− resonances. In Fig. 6, these vicinities are marked by
squares. We see that in Figs. 6�a�–6�c�, one to three reso-
nance features belong to these regions. Respectively, in Figs.
6�d� and 6�f�, one to three resonance curves intersect these
regions. Alternatively, four resonance “mountain ridges” in-
tersect in the vicinity of a single point �see Fig. 6�e��, which
illustrates the transmittance contour plot for the nonspecific
value of angle �.

Note that the intersections of solid and dashed resonance
curves in Figs. 6�d� and 6�f� and the intersections of corre-
sponding resonance mountain ridges in the transmittance
contour plots are due to DB SPP resonances. The latter com-
ply with the excitation of dressed SPPs, resulting from the
coupling of initial SPPs of different film faces through the
modulation.

In the following sections, we examine in detail some of
SB fourfold resonances.

A. †1,0‡+ resonance

Consider first the longest-wavelength resonance �at
1.4 �m in Fig. 5� in the vicinity of close-to-normal inci-
dence. This resonance arises due to excitation of the fourfold
�1,0�+ SB SPP at the metal-quartz interface with C4v modu-
lation symmetry.

In Figs. 7�a� and 7�c�, the enlarged fragments of Figs. 5
and 6�a� are shown in the vicinity of �1,0�+ resonance for the
incident plane orientated parallel to g1 and the polarization of
the incident wave such that E �g1. Note that the resonance
features are heavily dependent on the polarization of the in-
cident wave and the orientation of the incident plane �see
transmittance dependences shown in Figs. 6�a�–6�c� and
6�e��. For instance, for p polarization, when E belongs to the
incident plane parallel to g1 ��=0�, in the vicinity of normal
incidence, only the pair of the resonance waves are excited
�see Sec. II C�. These waves are of �±1,0� diffraction orders
�although TCs T0,±1

+
−− are equal to zero�. In Figs. 6�a� and 7�a�,
one can observe the intersection of the two resonance fea-
tures relevant to �1,0�+ and �−1,0�+ resonance curves in Fig.
6�d�. In deflecting from the normal incidence, the projection
of Ht onto H0,±1

+ becomes nonzero, and it reveals itself as a
feature in Fig. 6�a� close to the coinciding resonance curves
�0, ±1�+ in Fig. 6�d�. When E is perpendicular to the incident
plane parallel to g1 ��=0� �s polarization, see Fig. 6�b��, the
only excited pair of resonance waves comply with the dif-
fraction orders �0, ±1� �resonance coefficients T0,±1

+
−−�. If the
incident plane is oriented at ��0, � /4, then two pairs of
resonance waves are excited both for p and s polarizations of
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FIG. 5. �Color online� Wavelength-dependent transmittance and
reflectance for the normal incidence from the air superstrate onto
the silver film bounding with the quartz substrate. The parameters
of the C4v array are �1=�2=�=0.9 �m and a /�=1/3. The incident-
wave electric field E is parallel to g1 �to the Ox axis, see Fig. 1�.
The inclusion impedance �i is taken to be �i=2� f. The film thick-
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the unmodulated boundaries and Rayleigh points, respectively.
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the incident wave in the vicinity of normal incidence �in
Figs. 6�c�–6�e�, the s-polarization case is shown�. The reso-
nance waves are of diffraction orders �±1,0� and �0, ±1� and
their dispersion branches in the form of four resonance
curves ��±1,0�+ and �0, ±1�+ coinciding for �=� /4� inter-
sect, as seen in Fig. 6�f�.

The wavelength dependence of the zeroth-order wave has
the typical Fano-type profile which consists of the neighbor-
ing minima and maxima �see Fig. 7�c��. This is due to the
interference �see Sec. II B� between nonresonance and reso-
nance transmittance mechanisms. The maxima of the Fano
profile are red shifted as compared with the wavelength of

the SPP existing at the nonmodulated metal-quartz interface.
This shift is mainly due to the scattering by modulation
through the diffracted inhomogeneous waves, and partially
due to the finite film thickness.

The amplitude of the excited resonance waves is propor-
tional to �̃�10� Fourier harmonic amplitude, while the zeroth-
order transmittance and reflectance are proportional to its
squared value, as it follows from Eqs. �24�–�30� �see also
Appendix B�. Therefore, this harmonic plays the most impor-
tant role in the excitation of the SPP eigenmode for �1,0�+
resonance. Actually, the structure of the eigenmodes in the
modulated film �dressed SPPs� defines the distribution of the
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near field completely. As indicated in Sec. II C, only high-
frequency eigenmodes are excited. For instance, when E is
oriented along g1, the distribution of the squared field on the
quartz side takes the form 
E+
2�sin2�k�1,0�t ·r�=sin2�g1 ·r�
similar to the spatial field distribution for the twofold cou-
pling given by Eq. �34�. Indeed, this is in compliance with
the left-hand part of Fig. 8�a�. In the general case, when E is
oriented relative to g1 at an arbitrary angle �, the near-field
structure is formed by the interference of the eigenmodes.
One of them corresponds to sin�g1 ·r� and the other is for
sin�g2 ·r�. As a result, the field of the interface is expressed
as 
E+
2���1 sin�g1 ·r�+�2 sin�g2 ·r��2, where the weight co-
efficients �1 ��2� are proportional to cos � �sin ��. This in-
terference is clearly seen in the right-hand part of Fig. 8�a�.
Thus, the near-field structure is in good agreement with the
experiment �see Ref. 14�.

Consider the field distribution along the z axis �Fig. 8�b��.
Since the far-side SB SPP resonances provide small reflec-
tance dips �the lowest reflectance is of order of 93%, see Fig.
7�c��, we notice an interference pattern along the z axis in the
air half-space. The field penetrating into the film decays ex-
ponentially and excites a SB SPP at the quartz-metal inter-
face. The SPP field has a well-pronounced “torch” structure.
It decays exponentially into the film at a distance of order of
skin depth �, where � /��1/ 
��̄ 
 �1, and decays into the
dielectric medium �quartz� at a distance of �+, where �� /�
��
�̄ /��
 /2��1. Note that the field pattern along the x axis
in the film is shifted to a half-period with respect to the
pattern in the quartz. This is because the SPP electric field in
the metal has predominantly tangential-to-interface compo-
nent as compared with a dielectric where the electric field
has predominantly normal-to-interface component. The in-
tensity of the far field in the quartz half-space is constant,
since there exists only one propagating wave �at zeroth dif-
fraction order�.

B. Polarization properties of †1,0‡+ resonance: Dependence
on the inclusion shape

In this section, we give a theoretical interpretation of the
recent experiments39,41 with the influence of the hole shape
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on ELT through periodic hole arrays within the framework of
our theory. Moreover, we describe the transmittance behavior
while changing the polarization of the incident light.

Consider a silver film sandwiched between an air
superstrate and a quartz substrate with C2v modulation sym-
metry resulting from the rectangular cross section of the in-
clusions. This symmetry reduces to C4v symmetry for a cir-
cular cross section of inclusions. Now, let us scrutinize the
�1,0�+ SB fourfold SPP resonance at strictly normal inci-
dence. As was discussed above, for C2v symmetry structures
the polarization of the transmitted radiation depends on the
polarization of the incident wave. Suppose that the direction
of g1 is parallel to the small side of the rectangular cross
section, a1. If the incident-wave electric field is oriented
along g1 �g2�, the incident-wave magnetic field is then
matched with that of �±1,0�+ ��0, ±1�+� SPP pairs having
wave vectors ±g1 �±g2� for normal incidence �see Fig. 7�b��.
According to our approach, the transmittance coefficient �O
is proportional to �̃±1,0

4 ��̃0,±1
4 � with a polarization along

g1 �g2�. This leads to �O�����4�a /��4J1
4�2�a /�� for

circular cross section and �O�����4�a2 /��4sin4��a1 /��
��O�����4�a1 /��4sin4��a2 /��� for rectangular cross section
with E orientation along g1 �g2� �see Eqs. �38� and �41��. We
take the same geometrical parameters for periodic arrays as
in Ref. 39, i.e., �=425 nm, a1
a2=75
225 nm2 for small
rectangles and a1
a2=150
225 nm2 for large ones, and
2a=190 nm for the circle diameter which corresponds to the
resonance position at ��0.72 �m. Assuming the film thick-
ness to be equal to 3 skin depths, 
�=3, and the inclusion
impedance to be �i=2� f, where � f is taken for the silver, we
obtain the transmittance of order 2%, which is nearly seven
times higher than the transmittance through the unmodulated
film.

When E is directed along g1, the zeroth-order transmit-

tance amplitude is proportional to a squared �̃±1,0 harmonic
amplitude. This amplitude increases for large rectangles as
compared with the circles and this results in a redshift and in
a rise of the transmittance maximum �see Fig. 9�a��. This
tendency agrees with the experiment. However, for the small
rectangles the resonance harmonic amplitude is the smallest
one and this leads to a blueshift and a decrease in the trans-
mittance maxima as compared with the circles and large rect-
angles. This is not what was observed experimentally. We
may eliminate this discrepancy only by adjusting the imped-
ance of the inclusion. We use this adjustment because, in our
approximation, we do not allow for the influence of the
modulation on the volume of the film, but the modulation
appears in the boundary conditions only. In other words, the
fields decay into the film with the same decrement at any
cross section by a plane parallel to axis Oz. On the other
hand, it is evident that under a strong modulation, with the
impedances of inclusions and the film differing greatly, the
fields in the inclusion and in the volume of the film decay in
a different way. For instance, inside the holes the field show
a weaker decay than in the metal regions. Thus, adjusting the
impedance, we have found that for �i�2.67� f the transmit-
tance maximum corresponding to the small rectangles is red-
shifted and increased as compared with the large rectangles
and circles as it was in the experiment. If we rotate the po-

larization plane by � /2 so that E is directed along g2 �see
Fig. 7�b��, the transmittance will depend on the inclusion
shape in a different manner. In Fig. 9�b�, the transmittance is
shown for different inclusion shapes both with equal �i for all
shapes and when the modulation amplitude is taken from the
previous case for the small rectangles.

On the one hand, supposing the inclusion impedance �i to
be constant, but at the same time changing the inclusion
shape, we can predict the true transmittance through arrays
of nanoparticles immersed into the film �each nanoparticle
corresponds to an inclusion�. On the other hand, by adjusting
the inclusion impedance for different shapes, we may pro-
vide the qualitative coincidence with experimental measure-
ments of ELT through hole arrays.

Consider the experiment of Ref. 41, where the effect of
aspect ratio of rectangular holes on the transmittance of pe-
riodic arrays of subwavelength holes in optically thick metal
films was measured. It was found that as the electric field E
of the incident light is directed along the short axes of the
holes, a1, the zeroth-order transmittance peak �corresponding
to the �1,0�+ SPP resonance� increases and suffers a redshift
when the aspect ratio of the holes, a2 /a1, is enlarged. Con-
versely, it was discovered that as E is directed along the long
axes of the holes, a2, the �1,0�+ transmittance peak decreases
and undergoes a blueshift when the aspect ratio of the holes
is enlarged. The experimental measurements were also con-
firmed by strict numerical calculations. The authors attribute
the discovered polarization dependence of the transmittance
on the ratio of the rectangular holes to a result from interac-
tion between SPP resonances at the surface of the metal and
shape resonances inside the holes.

We hold to a different, simpler point of view. It is obvious
that the localized eigenmodes are not supported by the struc-
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FIG. 9. �Color online� The wavelength dependence of transmit-
tance for the inclusion with different cross sections at strictly nor-
mal incidence onto the Ag film deposited onto the quartz substrate.
The polarization of the incoming light E is perpendicular to the
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tures under examination. However, the calculations we do
not present here within the framework of our simple model
exhibit the same behavior of the transmittance, as in Ref. 41.
We have taken the geometrical parameters of the inclusions
the same as in Ref. 41. When E is parallel to a1, the ampli-

tude of the excited �±1,0�+ SPP is proportional to �̃±1,0,
which increases as the aspect ratio increases. Therefore, this
leads to the transmittance peak growth and redshift. On the
contrary, when E is parallel to a2, the amplitude of the ex-

cited �0, ±1�+ SPP is proportional to �̃0,±1, which decreases
with an increasing aspect ratio. This brings about the trans-
mittance peak decrease and blueshift. Thus, the polarization
behavior may be successfully described under the assump-
tion of the excitation of purely interface SPPs.

C. †1,1‡+ resonance

Now, examine the resonance near 1 �m �1.65 eV� in the
vicinity of close-to-normal incidence �see Figs. 5 and 6�.
This fourfold �1,1�+ resonance is consistent with excitation
of a SB SPP at the metal-quartz interface �see Fig. 10�b��.
�-	 dependence is shown in Fig. 6 �square regions� for dif-
ferent polarizations and orientations of the incident plane.
Figures 10�a� and 10�c� are the enlarged fragments of Figs.
6�a� and 5.

Let us focus on the dependence of the transmittance on �
and 	 in the vicinity of the �1,1�+ resonance �see the second
�from above� solid square regions in Fig. 6�. For p polariza-
tion, when E belongs to the incident plane parallel to g1 ��
=0�, both the pairs of the resonance waves corresponding to
�±1, ±1� and ��1, ±1� diffraction orders are excited in the
close-to-normal incidence region. Accordingly, in Figs. 6�a�
and 10�a�, one can see the intersection of the two features
that are relevant to two pairs of coinciding resonance curves,
�1, ±1�+ and �−1, ±1�+, in Fig. 6�d�. Obviously, similar de-
pendences take place if E is perpendicular to the incident
plane parallel to g1 ��=0� �s polarization, see Fig. 6�b��. If
the incident plane is oriented at �=� /4, then for s polariza-
tion of the incident wave �see Fig. 6�c�� the magnetic field H
is parallel to g2−g1, and the only excited pair of resonance
waves in the vicinity of normal incidence corresponds to the

diffraction orders �±1, �1� �resonance coefficients T±1,�1
+
−− �.

This pair provides an extremum of the transmittance close to
the coinciding resonance curves �±1, �1�+ in Fig. 6�f�. For
the nondegenerated case ��=30° � �Fig. 6�e��, there is the
intersection of four features in the transmittance which con-
forms to four distinct resonance curves: �1,1�+.

The principal difference of the �1,1�+ resonance from the
�1,0�+ resonance considered above is that additional propa-
gating waves exist in the quartz substrate. In other words, the
waves having �1,0� diffraction orders provide the nonzeroth-
order ELT31,32 due to the scattering of the resonance waves

through amplitudes �̃�1,0�. This scattering contributes addi-
tionally to the resonance width. Black dots, placed within the
solid circle in Fig. 10�b�, indicate the positions for tangential
components of wave vectors of these waves. On the other
hand, the resonance �1,1�+ is less pronounced as compared
with the �1,0�+ one not only because of additional radiation

losses. As seen in Fig. 4, the amplitude �̃�1,1�, which is re-
sponsible for resonance wave excitation within the limits of

the main approximation, is smaller than amplitude �̃�1,0�, and
hence, the SPP excitation is less effective. It should be noted
that the SPP is excited not only owing to first-order scatter-
ing of the incident wave by �1,1� resonance harmonics but
also due to the higher-order scattering processes. While the

cubic processes �proportional to �̃3� can be neglected, the
second-order scattering may compete with the linear one in
some regions of parameter a /�, going beyond approxima-
tions �19�–�22�. Thus, for a /��0.35, the contribution to the
amplitude of the resonance wave from the second-order

term, proportional to �̃�1,0�
2 , is of the the same order as the

contribution from the linear term proportional to �̃�1,1�.
All the propagating field harmonics contribute to the

transmitted energy flux in the substrate media. Although the
parts of the energy flux relating to the zeroth and nonzeroth
diffraction orders are well separated at a great distance from
the film, they overlap in the region sufficiently close to the
film. Therefore, when making the experimental measure-
ments, the detector position is crucial: if it is far away from
the film, it fixes either zeroth-order flux, �O �see Fig. 10�c�,
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solid curve�, or nonzeroth one, ��1,0� �see Fig. 10�c�, dotted
curve�, depending on detector orientation relative to the film.
In case the detector is in the close-to-the-film vicinity, it fixes
the total flux �see Fig. 10�c�, dashed curve�. The interference
pattern resulting from the existence of several homogeneous
waves is quite noticeable in the far-field region in Fig. 11�b�.
The near-field structure may be understood in the same way
as in the case of the �r ,0� resonance. For instance, when E is
oriented along g1+g2, the intensity distribution on the quartz
side for strictly normal incidence is proportional to 
E+
2
�sin2�k�1,1�t ·r�=sin2��g1+g2� ·r� �see the right-hand part of
Fig. 11�a��. When E is oriented with respect to g1+g2 at �
=� /4, the near-field structure is formed by the interference
of the eigenmode for sin��g1+g2� ·r� and the eigenmode for
sin��g1−g2� ·r�, so that the field at the interface takes the
form 
E+
2��sin��g1+g2� ·r�+sin��g1−g2� ·r��2. This agrees

with the left-hand part of Fig. 11�a�. It is interesting to note
that the field intensity is increased additionally in the regions
where the inclusions are located.

D. †1,0‡− resonance

It should be pointed out that SB SPP resonances pertinent
to the superstrate face provide strong nonzeroth-order ELT
on condition that �− �+. It is clear from the geometrical
reasons. Since the moduli of the wave vectors in the super-
strate media are less than those of the substrate media, the
metal-superstrate SPP wave vector �kSPP

− �k��−� corre-
sponds to the propagating wave in the substrate media. This
enables SPP leakage without scattering via the modulation.
Another feature of superstrate resonances is far deeper
minima in the zeroth-order reflectance as compared to the
resonance on the substrate face. This is because the zeroth-
order reflectance is strongly dependent on the efficiency of
SPP excitation. The incident light excites SPP on the super-
strate face directly via the modulation, while for excitation
on the substrate face, the amplitude of the light decreases
prior to the excitation caused by the tunneling through the
film �thereby making the excitation process less effective�.

Let us discuss the SB metal-air �1,0�− SPP resonance that
is consistent with the transmittance �reflectance� maximum
�minimum� at ��0.92 �m in Fig. 5. The enlarged fragments
of the wavelength-dependent zeroth- and nonzeroth-order
transmittances are shown in Fig. 12�a�. While the zeroth-
order transmittance profile is similar to that relating to the
�1,0�+ resonance �their maximal amplitudes are almost
equal, being of order �O�exp�−2
���, the reflectance has
considerably deeper minima �cf. Figs. 12�a� and 7�c��, in
accordance with the above-mentioned general property of su-
perstrate resonances. The amplitudes of the nonzeroth-order
outgoing transmitted waves exceed significantly the zeroth-
order amplitude �compare the solid curve for �O and the
dotted curve for ��1,0� in Fig. 12�a�� since their amplitudes are
of order ��1,0���O�

−1 exp�−2
��. The latter statement follows
from Eq. �B1�. This estimation is quite universal and coin-
cides with that made using Eq. �24� for the simplest reso-
nance. The enhanced nonzeroth-order transmission may be
used to develop the light splitters, since the waves propagate
at an angle arccos��r
+��+� relative to the z axis. The unique
feature of such a splitter is that all the four nonzeroth-order
waves are linearly polarized. Their polarization coincides
with that of SPPs excited.33

Note that not only �1,0� diffraction orders are responsible
for the nonzeroth-order ELT. As seen in Fig. 12�b�, the dif-
fraction orders �1,1� correspond to the propagating waves in
the quartz substrate as well. The resonance scattering con-
tributes to these amplitudes so that they are proportional to

�̃�1,0�
2 . Their intensities have been taken into account when

calculating the total transmitted energy flux shown by the
dashed line in Fig. 12�a�.

It has to be stated that the transmittance behavior with
respect to the polarization of the incident-wave variation, in
the vicinity of �1,0�− resonance, is similar to that in the
vicinity of �1,0�+ resonance. This is described in Sec. III A
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�cf. the dashed square regions of �-	 and the upper solid
square regions in Fig. 6�. The near-field distribution in the
X-Y plane is likewise equivalent to that corresponding to the
�1,0�+ resonance, but now the field is localized at the air-
metal interface. This is clearly seen in Fig. 13�b�. Note that
the far-field structure has the form of the interference pattern
both in the air and in the quartz half-spaces. The pattern in
the air superstrate is due to the interference between incident
and reflected zeroth-order waves: as seen in Fig. 12�a�, the
reflectance is of order of 20% in the resonance. The pattern
in the quartz substrate results from the interference between
the transmitted zeroth-order and nonzeroth-order waves.

Let us illustrate the dependence of the zeroth- and
nonzeroth-order transmittance on the modulation amplitude.
The transmittance �reflectance� has the well-defined maxi-

mum at �i�2� f, where 
�̃�1,0�
�0.6��O� ���O� �see Fig.
12�c��. So, as expected, this value of the modulation ampli-
tude exactly provides for the resonance harmonic optimal
magnitude, �see discussion below Eq. �30�� and, therefore,
leads to the optimal transmittance.

E. Double-boundary SPP

DB SPPs for nonsymmetrically surrounded film exist un-
der a specific relation between angle of incidence, wave-
length, structure spacing, and dielectric permittivities of the
surrounding media.32 For instance, given strictly normal in-
cidence, the excitation of four resonance waves in the super-
strate ��= + � with multi-indexes �r+ ,0� and four resonance
waves in the substrate ��=−� with multi-indexes �r− ,0� may
occur if K+ /K−=r+ /r−. We do not consider this specific set of
parameters in the present paper, but study DB SPPs in a
symmetrically surrounded film below.

IV. DB SPP RESONANCES IN THE SYMMETRICALLY
SURROUNDED FILM

As far as we know, the earliest observations of the ELT
through hole arrays due to the DB SPP excitation were de-
scribed in Refs. 8 and 9. Moreover, in Ref. 8 the array was
formed in the metal film surrounded by quartz from one face
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and by a liquid with a close-to-quartz dielectric constant
from the other face, while Ref. 9 deals with a freestanding
film. In the above experiments, the wave vectors at the op-
posite interfaces were matched to excite a DB SPP. This led
to a considerable increase of the ELT efficiency in the zeroth
diffraction order as compared to the SB SPP excitation for a
nonsymmetrically surrounded film.

Two SPP modes are known to exist in the nonmodulated
symmetrically surrounded metal film �see Sec. II�. One of
them, i.e., a LR mode, is characterized by the nonsymmetric
surface charge distribution, and a higher frequency and Q
factor as compared to the other, a SR mode. It is interesting
that a similar situation is inherent to the mechanical system
of two coupled damping oscillators, which is nothing else
but a classical analog of coupled SPPs in the film �see Ap-
pendix A�. If the modulation is not too high, LR and SR
modes undergo shifting and widening, but remain well sepa-
rated from one another. This is not exactly what is observed
in the experiments using subwavelength hole arrays. The
modulation amplitude of the arrays is too high to clearly see
the difference between LR and SR modes.

The transmittance spectra of a symmetrically surrounded
film are shown in Fig. 14. One can observe the four peaks:
the first pair is 0.663 �m, 0.683 �m in the vicinity of
�1,1�S,L DB SPP resonance, and the second one is 0.918 �m,
0.929 �m in the vicinity of �1,0�S,L DB SPP resonance. In-
dexes S and L refer to LR and SR modes. In Figs.
15�a�–15�c� and 15�e�, the transmittance spectra are shown
as functions of the wavelength and/or energy and the inci-
dent angle for different polarizations of the incident wave. In
Figs. 15�d� and 15�f�, the resonance curves are shown by
solid lines.

Consider the deviations from the normal incidence. In
Figs. 15�a�–15�c�, the special symmetry is depicted, that is,

the incident plane is oriented relative to g1 at 0 and � /4. This
corresponds to the coincidence of the resonance curves �see
discussion below formula �18��, which is seen in the vicinity
of the �1,0� resonance shown by square regions in Fig. 15. In
Figs. 15�a�–15�c�, these regions contain two to six resonance
features �respectively, the highlighted regions in Figs. 15�d�
and 15�f� contain two to six resonance curves�. On the con-
trary, in Fig. 15�e� the transmittance contour plot is shown
for nonspecific geometry, and therefore, eight features �or
eight curves� belong to each vicinity according to fourfold
DB SPP.

Note the two features in Fig. 14. Firstly, the widths of
resonance peaks �dips� are less for LR modes than for SR
modes. This is due to the higher Q factor of the LR mode as
compared with that of the SR mode, which can be easily
explained in terms of the field structure of SPP modes in the
metal. The z dependence of the electric field tangential com-
ponent for LR and SR eigenmodes is defined by Eq. �35�.
Since the amplitude of the tangential component of the elec-
tric field is higher than the z component within the film,

vector Ēt makes the principal contribution to the loss power
P so that

P �� ��
Ē
2dv � �
0

d


Ēt
2dz , �42�

In view of Eq. �35�, one can see that the Ohmic losses of the
SR mode are higher than those of LR mode, Ps / Pl
��sinh 
�+
�� / �sinh 
�−
���1, which leads to the
higher Q factor of the LR mode as compared with that of the
SR mode.

Secondly, the resonance peaks for the LR and SR modes
are strongly dependent on the exponential index appearing in
the field approximation inside the film. In other words, as-

suming k̃ in Eq. �4� to be complex and taking into account
both real and imaginary parts of the impedance of the con-
ductor in Eq. �4�, the transmittance maxima �reflectance
minima� for the LR mode are higher �deeper� than those for
the SR mode, and vice versa if dissipation losses are ne-
glected. As was indicated in the experimental paper,65 where
plasmons were dealt with in the symmetrically surrounded
corrugated silver film, “this process has a complex distance
�film thickness� dependence.” That is, “for thin silver films
� 30 nm�, the symmetric coupled SPP is strong but ex-
tremely sharp, whereas the antisymmetric SPP is broad but
weak. As the silver thickness increases, the symmetric mode
weakens and broadens, whereas the antisymmetric mode
sharpens and intensifies.” Thus, in our view, the discussed
question of the resonance peaks for LR and SR modes needs
further careful examination.

A. [1,0] resonance

Now, consider the �1,0� DB fourfold SPP resonance for
strictly normal incidence. The enlarged fragment of Fig. 14
in the vicinity of the peaks is shown in Fig. 16�a�. The LR
and SR resonances are blueshifted as compared with the
wavelengths for nonmodulated film SPPs marked by the ver-
tical lines. Similar to the SB SPP resonance, the amplitudes
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of the resonance waves are proportional to �̃�10�, and the reso-
nance contribution to the amplitude of the only propagating

zeroth-order wave is proportional to 
�̃�10�
2.
For a SDB resonance, the transmittance and reflectance

have two extrema. This results from the excitation of
LR and SR SPPs having the dispersion relations which
coincide with the zeros of denominators ��1,0� in Eqs.
�29� and �30� �and Appendix B�. The peak value of the
transmittance for optimal modulation amplitude is estimated
as �O��O�

−1 exp�−
��, which exceeds the transmittance
through the unmodulated film by a factor of �O�

−1�1.

The distance between the two extrema of the trans-
mittance �reflectance� can be estimated by extracting
the difference between the wavelengths of SR �LR�
SPPs from the dispersion relations of Eq. �17�. Using

�M
L,S=�−1/2�1− �cq /���L,S�2 �where we have replaced

kMt by the SPP wave vector q�, we find for the fre-
quencies �L,S=cq /��BL,S, where for the LR mode
BL=1−��O

2 tanh2�
 /2� and for the SR mode BS=1
−��O

2 coth2�
 /2�. We have ��S−�L� /��
�O� 
2 exp�−
�� for
the relative difference between the wavelengths, where � is
of order of �S, �L. The modulation contributes additionally to
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this difference, and this contribution can be found from the
dispersion relation �R=0 �Eq. �27�� �see Ref. 32�. As the
film thickness increases, the distance between �S and �L de-
creases �see Figs. 16�a� and 16�c��. When the resonance
width, �� /��
�O� 
�O� , assumes the value of order of the
splitting between the LR and SR modes, ����S−�L �which
occurs for film thickness 
�! ln�
�O� 
�O�

−1��, the two maxima
of the two-humped resonance curve become indistinguish-
able.

The near-field distribution for LR and SR SPPs is shown
in Figs. 16�d� and 16�e�. One can see that the LR �SR� mode
is antisymmetric �symmetric� with respect to the tangential
component of the electric field and the surface charge distri-
bution �the surface charge sign coincides with the sign of the
product nzEz, where nz is the z component of the surface
normal vector directed out of the metal�.

V. CONCLUSIONS

We have performed an analytical treatment of the reso-
nance optical properties of 2D periodically modulated opti-
cally thick metal films. Explicit analytical expressions for
transformation coefficients related to any diffraction order

have been derived. In studying the complicated multiple
resonances, we have ascertained that most of the physical
properties of ELT may be thoroughly understood in terms of
the simplest example of a solitary resonance �when a SPP is
excited in a single diffraction order�. We have examined and
explained not only the amplitude and polarization depen-
dences of the transmittance and reflectance on the parameters
�such as angle of incidence, wavelength, tilting angle, film
thickness, etc.� but also the field structure of the diffracted
light. We have shown that according to the conception of
interface SPPs excitation, the polarization dependences of
the light diffracted by the periodical array may be adequately
described. We have made a comparison between our theoret-
ical calculations and recent experiments, thus having found
excellent agreement. We have shown that it is difficult to
make a distinction between the resonance features that are
related to the excitation of the long-range and short-range
SPP modes for hole arrays �which are, in most cases, used
for the experimental study of ELT� because the radiative
broadening is dominant over the splitting between these
modes for relatively thick films. In this sense, weak-
modulation structures �say, the periodical arrays of metal
nanoparticles immersed into a metal film, corrugated shallow
diffraction gratings� are more preferable. Moreover, the effi-
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FIG. 16. �Color online� �a� The dependence of the zeroth-order transmittance �O and reflectance �O on the wavelength for the �1, 0�
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ciency of SPP excitation may be much higher for the struc-
tures with weak modulation as compared to the structures
with holes being included. This is due to the existence of the
optimal modulation amplitude. It has been demonstrated that
in some cases the energy flux of nonzeroth diffraction orders
exceeds that of zeroth-order. This can have a strong impact
on the results of experimental measurements.

A highly instructive analogy has been drawn between the
ELT effect and the motion of two weakly coupled classical
oscillators driven by the monochromatic force.
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APPENDIX A: TWO COUPLED DAMPING
OSCILLATORS

The enhanced transparency and other resonant properties
of the periodically modulated metal film can be described by
analogy with a simple mechanical system consisting of two
weakly coupled harmonic oscillators under the action of the
harmonic force applied to one of them �see Fig. 17�a��. The
second oscillator amplitude is strongly dependent on the fre-
quency of the force applied to the first oscillator and can
reach values of order of the first uncoupled oscillator ampli-
tude. We will concentrate on the system of two identical
oscillators which is similar to the ELT through symmetrically
surrounded film. Lagrangian of this system is

L =
1

2
�ẋ1

2 + ẋ2
2� −

1

2
�x1

2 + x2
2� + �x1x2 + F1�t�x1 + F2�t�x2,

�A1�

where dots denote time derivatives, the term �x1x2 is respon-
sible for weak coupling, ��1, and the two last terms are for
the forces acting on the oscillators. Adding to the Lagrangian

−k�x1
2+x2

2� /2, we arrive at the two masses linked by a string
with elasticity coefficient k. The dimensionality of the vari-
ables is such that the unperturbed frequency is equal to unity.
The losses are taken into account by the dissipative
function66

F = �1�ẋ1
2 + ẋ2

2� + 2�2ẋ1ẋ2, �A2�

where �1� 
�2
�0 �non-negativeness of F�. Below, the dis-
sipation is supposed to be small, 
�1,2
�1. Then, the equa-
tions of motion are written as

d

dt

�L
�ẋi

=
�L
�xi

−
�F
�ẋi

, i = 1,2. �A3�

In normal coordinates, X�= �x1±x2� /�2 for the inphase
�X−� and antiphase �X+� oscillations �symmetric and antisym-
metric with respect to transposition 1�2 modes�, we split
the system �A3�,

Ẍ� + �1 � ��X� + 2��1 ± �2�Ẋ� = F�, �A4�

where F�= �F1±F2� /�2.
The solution of the corresponding homogeneous system is

X± = A± exp�− i"±t� , �A5�

where the complex eigenfrequencies are "� and −"�
*

�Re "��0, Im "��0�,

"� = − i��1 ± �2� + �1 � � − ��1 ± �2�2

� 1 �
�

2
−

��1 ± �2�2

2
− i��1 ± �2� . �A6�

The eigenfrequency of the inphase �symmetric� mode is
lower than that for antiphase �antisymmetric� one, Re "−
 Re "+ if the damping is small, ��1±�2�2��. This is in
compliance with the modes of the symmetrically sandwiched
film. Specifically, the eigenfrequency of the LR �antisymmet-
ric� SPP is lower than that for the SR �symmetric� one �see
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FIG. 17. �Color online� �a� The geometry of the diffraction problem and the mechanical analogy. �b� The dependence of “free” oscillator
amplitude on the period 1/". The coupling parameter and the damping are �=0.05, 0.03, 0.015, and 0.01 for the solid, dash-dotted, dotted,
and dashed curves, respectively, and #1=0.004 and #2=0.001 are for all curves. �c� The “free” oscillator amplitude as a function of period
1/" and coupling parameter �.

KATS, NESTEROV, AND NIKITIN PHYSICAL REVIEW B 76, 045413 �2007�

045413-20



discussions in Sec. IV A�. The decrement #���1±�2 is, in
turn, higher �lower� for �2�0 ��2 0�. Note that the case
with �2�0 holds for different active losses for symmetric
and antisymmetric SPP modes. This difference results from
the high-frequency mode having a lower mean value of the
electric field in the film and, hence, lower losses and a higher
Q factor.

The particular solution of the dynamic equations �A4� for
harmonic driving forces being applied, F1,2= f1,2 exp�−i"t�,
is

X±�t� = A±�"�exp�− i"t�, A± = f±/D±, �A7�

where f±= �f1� f2� /�2 and

D± = D±�"� = − �" − "±��" + "±
*� . �A8�

Thus, displacements of the forced oscillations are xi�t�
=ai�"�exp�−i"t�, i=1,2,

a1,2�"� =
A− ± A+

�2
=

f1 + f2

2D−
±

f1 − f2

2D+
. �A9�

Let the system be excited by a driving force applied to the
first oscillator, f1=4, f2=0. This is analogous to the diffrac-
tion problem, in which only one wave is incident onto the
metallic film face. If the dissipation is small, ��1±�2�2��,
then two pronounced maximal magnitudes of a1,2 arise in the
neighborhood of the frequencies "="�� , where a1,2�"−��
�2/D−�"−��� i /#−, a1,2�"+��� ±2/D+�"+��� ± i /#+. The
splitting of the resonance maxima is approximately �, and
the high- �low-� frequency resonance widths are �"±=2#±.
As � decreases, the distance between resonance peaks dimin-
ishes, and for ��#++#− they overlap �see Figs. 17�b� and
17�c��. The mechanical coupling factor � is similar to that
arising in the EM problems: for the splitting of the SPP
modes in the film, this factor is exp�−
�� �cf. Figs. 17�c� and
16�c��.

For �1=�2=0, the amplitude of the enforced oscillator
vanishes at unperturbed eigenfrequency, "=1. This well-
known resonance damping effect �which is extensively used
in shipbuilding� also highlights an analogy with the ELT
problem, where Fano minima appear in the field amplitudes.

In a similar way, one can make an analogy for the non-
symmetrically sandwiched film. In this particular case, the
mechanical system consists of two oscillators of different
masses.

Thus, some physical properties of the ELT phenomena are
sufficiently general. At least, the similarities to the simplest
classical mechanical systems may be established.

APPENDIX B: TRANSFORMATION COEFFICIENTS
FOR FOURFOLD RESONANCE IN CASES OF C2v

AND C4v SYMMETRIES

In the case of C2v symmetry which implies the following
properties of modulation impedance,

�̃n1,n2
= �̃−n1,n2

= �̃n1,−n2
= �̃−n1,−n2

,

the resonance matrix possesses the symmetry properties. The
resonance TCs in the vicinity of normal incidence for the
�r ,0� or �r ,0�� resonance are related as Tr,0

�
−�=−T−r,0
�
−�, T0,r

�
−�

=−T0,−r
�
−�. This allows Eqs. �19� and �22� to be significantly

simplified: the resonance 8
8 matrix can be reduced to a
2
2 matrix. Thus, the TCs are written as

TR
�
−� = −

2����−SRO
�̄ �̃R�−
O

�1+��/2

�R
��̃�̄
R − �R�cosh 
��−1�


�cosh 
�−�1+��/2, �B1�

where R= �r ,0� or R= �0,r�,

�R = �̃+
R�̃−
R − �R
2 cosh−2 
 ,

�̃�
R 	 ��
R tanh 
 + �O + �̃2R + GR
� ,

�R = �O + �̃2R + GR
+ + GR

− ,

GR
� = − �

N

�̃R−N��̃N−R + �̃N+R�
��
N

�CRN
2 + ����
N

2 SRN
2 � ,

�B2�

TN
�
��� = �N,O��,��TF

�
�

+ AN
�
� �cosh 
�−�1+��/2�

R

�̃RSNR
�̄ SRO

�� ��̃N−R + �̃N+R�
�R


��̃�̄
R + ��̃�
R − �R��cosh 
��−1� , �B3�

where AN
�
� =2����1−��/2��

�1+��/4�−
�1+���/4�−
O

�1+���/2��
N
��−1�/2. If the

modulation has C4v symmetry, the zeroth-order TCs permit
additional simplifications,

TO
�
�� = TF

�
� +
2�AO
�

� �̃R
2

�R
��̃�̄
R + ��̃�
R − ��r,0���cosh 
��−1�


�cosh 
�−�1+��/2, TO
�
��̄ = 0. �B4�

Note that the zeroth-order TCs are diagonal in polarization,
i.e., the polarization of zeroth-order reflected and/or trans-
mitted wave is the same as that of the incident wave.
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