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The low-frequency vibrational density of states �VDOS� of two-dimensional nanocrystalline materials is
studied within the framework of molecular-dynamics simulations. The partial VDOS for different categories of
atoms �as determined from their local environments�, as well as the local �on-site� VDOS, is calculated. It is
shown that the low-frequency spectrum exhibits a sequence of three distinct regimes below a critical density
�*, a direct consequence of the length-scale separation in the material: a first regime, at the lowest frequencies,
corresponding to the elastic limit; a second �intermediate� regime, associated with the weak connectivity of the
material under �* and which does not necessarily show a two-dimensional behavior; a third regime, associated
with grain modes and characteristic of a usual Debye solid. The intermediate regime is found to disappear
above �*. It is further demonstrated that the excess vibrational modes in the upper low-frequency regime arise
mainly from grain-boundary atoms, while the other two regimes are related to the presence of pores in the
materials.
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I. INTRODUCTION

It is well known that nanostructured materials possess
unique mechanical and structural properties. For example,
the large proportion of grain boundaries in nanocrystalline
�NC� materials—obtained by assembling a large number of
nanometer-scale grains—influences thermal quantities such
as heat capacity, vibrational entropy, and Debye temperature.
Knowledge of the vibrational density of states �VDOS� is
crucial to understanding these novel properties. It has been
established experimentally1–8 and numerically9–14 that the
VDOS of NC materials is enhanced both at high and at low
frequencies compared to their bulk counterparts. The excess
modes at high frequencies have been attributed to phonon
lifetime broadening2,3,5 and shown to originate from strongly
localized vibrations at grain boundaries.15 In contrast, the
enhancement at low frequencies is not well understood; in
particular, there is no agreement on the precise value of the
exponent of the observed power-law behavior. These modes
have been shown to originate from vibrations of atoms at
surfaces10,12 or at grain boundaries.7,13,14 Also, it has been
proposed that the low-frequency VDOS of the excess modes
scales either linearly with frequency4,10,12 or with an expo-
nent between 1 and 2,11,13 suggesting a reduced dimension-
ality effect. Other studies have, however, found the low-
frequency VDOS to obey the “normal” Debye behavior
g�����d−1, where d is the spatial dimension.2,3,6,7

In the present work we investigate the origin of the low-
frequency excess modes in NC materials as well as the spe-
cifics of the power-law behavior in these systems. To this
effect, we have performed molecular-dynamics �MD� simu-
lations of several two-dimensional NC model configurations
containing �1�106 atoms or more. Two-dimensional sys-
tems were chosen because they allow larger length scales to

be investigated compared to three-dimensional models. This
is necessary to reach the long-wavelength regime which is of
interest here �and to recover the elastic limit�; the corre-
sponding study in three dimensions would require a 1000-
fold larger system, making the problem practically un-
tractable.

Our calculations reveal unexpected features. Anticipating
our results, we find the low-frequency VDOS to exhibit a
sequence of three distinct regimes. At very low frequencies
�“lower low-frequency regime,” hereafter referred to as “I”�,
the elastic limit, whereby the system can be regarded as a
purely elastic, homogeneous medium, is recovered. In the
“intermediate low-frequency regime” �“II”�, inhomogeneous
modes that are not Debye-like are found; the extent of this
regime decreases with increasing density and its upper limit
is directly related to the grain size. The “upper low-
frequency regime” �“III”� is associated with grain-boundary
modes and scales as a normal two-dimensional system—viz.,
linearly. The existence of these regimes is a direct conse-
quence of the length-scale separation in nanocrystalline ma-
terials. At sufficiently long wavelengths, the nanocrystalline
system acts as a homogeneous medium with reduced sound
velocity compared to the ideal crystal. As the wavelength
approaches the size of the grains and for systems not too
dense, the phonons are strongly affected by the porous struc-
ture of the material, giving rise to the intermediate regime.
Modes with even smaller wavelength—less than the size of
the grains—are unaffected by the grain structure since such
modes “see” mainly the homogeneous crystalline structure
inside the grains. The intermediate regime is found to vanish
at a density at which the material is sufficiently connected.
This implies that not only the grain size, but also the density
influences the thermal properties of nanocrystalline materi-
als.
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II. COMPUTATIONAL DETAILS

A. Model

The VDOS are calculated as described in Sec. II B. To
generate the trajectories �in time� required for this, we use
MD simulations. As mentioned above, our NC models are
two dimensional, thus allowing very large systems to be
dealt with and, as a consequence, much better statistics to be
obtained, which turns out to be crucial for the range of fre-
quencies we are interested in. While such models are of
course not truly representative of real materials, we expect
the physics to be comparable to that of three-dimensional
systems, duly taking into account the dimensionality. Our
approach should thus be viewed as “generic,” providing the
essential physics underlying the problem, not the details for a
particular material. In this same spirit, the atoms are chosen
to interact via a Lennard-Jones potential adjusted so as to
vanish at the cutoff distance rc:

ULJ�r� = �4����

r
�12

− ��

r
�6

− � �

rc
�12

+ � �

rc
�6� if r � rc,

0 if r � rc,
	

�1�

where � is the well depth and � is the atomic diameter; here,
we set rc=2.5�. The latter value—which encompasses the
first three neighbor shells on a triangular lattice—is often
used in generic simulations because the potential and the
associated force are close to zero at this point. Evidently, this
allows a considerable reduction of the computational load,
while affecting very little the physics of our problem since
the low-frequency vibrations are dominantly determined by
the elastic properties of the model, not by the exact form of
the potential. In this work, all results are reported in reduced
units—i.e., � for energy and � for length—so that tempera-
ture is expressed in units of � /kB, � /�3 for pressure, and
�m�2 /��1/2 for time. For a typical metal, ��1 eV and �
�2–3 Å. All simulations were carried out with a time step
of 0.01 ��2 fs� and at T=0.025 ��300 K�. The
Parrinello-Rahman16 and Nosé-Hoover17 algorithms were
used to simulate constant-pressure and constant-temperature
conditions.

The numerical approach used to construct the nanocrys-
talline models, akin to pressure-assisted nanoparticle sinter-
ing, is described in Ref. 14. This method allows systems with
varying degree of densification to be generated; in compari-

son, an approach based on the Voronoi construction �used,
e.g., in Refs. 9 and 15� only yields very dense model struc-
tures. Both methods are, however, found to provide very
similar VDOS for compact models.13 To initiate the con-
struction of the NC models, we generate a number of isolated
circular nanoparticles with diameters in the range 2.5–9 nm,
the atoms initially lying on a perfect triangular lattice. These
are first equilibrated over 75 000 simulation steps at T
=0.025, after which copies are distributed at random �and
with random orientations� in a square box having twice the
area of the corresponding crystalline lattice. The size distri-
bution of the nanoparticles was chosen to resemble the cor-
responding experimental distribution. Once assembled, the
nanoparticles quickly aggregate �over about 50 000 simula-
tion steps� and form a loose powder. A series of configura-
tions with higher densities can then be obtained by running
at increasingly higher pressures �see below�. For the purpose
of the present study, two different series of samples �“NC-A”
and “NC-B”� were constructed, as summarized in Table I;
these contain 1 413 988 and 999 720 atoms, respectively. We
note that, on average, the grain size in sample NC-A is
smaller than in NC-B; the difference will be used to charac-
terize the various frequency regimes.

The densification cycle proceeded as follows. First, in
both cases �NC-A and NC-B�, the initial aggregation stage
mentioned above was followed by a “predensification” run at
pressure P=0.07 ��70 MPa� for a further 50 000 steps. The
pressure Pmax was then increased gradually �cf. Table II�; for
each pressure, the systems were run over 100 000 simulation
steps, in each case restarting from the previous configuration.
Next, for each intermediate configuration �i.e., each value of
Pmax�, the pressure was gradually reduced to zero in steps of
0.05, running over 2500 time steps in each case. Finally, the
models were relaxed at zero pressure during another 100 000
simulation steps. The configurations so obtained are listed in
Table II where we also give the relative density �—that is,
the actual density of the system divided by the density of the
corresponding crystalline material. The resulting nanocrys-
talline systems are “realistic” in the sense that they exhibit a
porous structure quite similar to that observed experimen-
tally; in particular, the porosity is found in real samples �con-
solidated from clusters at room temperature� to vary from
less than 5% to about 25%.18

B. Calculation of the VDOS

The VDOS were calculated in two different ways. First,
we used the Fourier transform of the velocity autocorrelation
function19 �VACF�:

TABLE I. Initial configurations for the aggregation of nanoparticles into nanocrystalline materials; r is the
radius of the clusters, Ncl the number of clusters, and Nat the number of atoms in the clusters. On average,

r̄
8.4 and N̄at
223 for NC-A and r̄
9.4 and N̄at
278 for NC-B.

NC-A: 1 413 988 atoms NC-B: 999 720 atoms

r Ncl Nat r Ncl Nat

5 1270 73 6 720 105

8 3810 182 9 2160 236

12 952 414 13 540 490

16 318 735 17 180 832
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Cvv�t� = �v��0� · v��t�� . �2�

The VACF was extracted directly from the MD simulation;
in practice, we averaged over 2048 configurations �NC-A� or
4096 configurations �NC-B� and over 15 different runs �con-
secutive MD simulations� in order to obtain reliable statis-
tics. The contributions to the VDOS may be sorted according
to the local environments of the atoms. Here, each atom was
given an “environment label” determined using the common
neighbor analysis �CNA� method:20 “perfect” for atoms with
a perfect triangular environment at least up to second nearest
neighbors, “good” for atoms which are perfect up to first
nearest neighbors only, and “surface” for atoms with a coor-
dination number Z�5; atoms that do not fit in any of these
categories are labeled “GB” �grain boundary�. Figure 1
shows the results of these assignments for a typical configu-
ration �part of the NC-B4 sample�.

The VACF method, however, does not easily allow inves-
tigating the local �on-site� VDOS associated with particular
atoms. In order to do this, we used the on-site Green’s func-

tion method and a recursion technique, as was done previ-
ously for the high-frequency spectra of nanocrystalline
materials.15 We briefly recall the method21 here. The Green’s
operator for frequency � is given by

Ĝ�ij
	
��� = ��2Î − D̂�−1�ij

	
, �3�

where Î is the identity matrix and D̂ the Hessian matrix of
rank 2N, N being the number of atoms in the system. The
indices 	 and 
 represent the phonon polarization directions,
and i and j vary from 1 to N. This operator is related to the
local density of states gi	��� as follows:

gi	��� = −
�

�
lim

�→0+
ImGii

		��2 + i��� . �4�

It can be shown that the on-site Green’s function of a par-
ticular atom i, Gii

		, can be written approximately as an
n-level continued fraction:

Gii
		��� �

1

�2 − a0 −
b1

2

�2 − a1 −
b2

2

�

�2 − an−1 − bn
2t��2�

,

�5�

where t��2� is the square-root terminator22 given by

t��2� =
1

b�
���2 − a�

2b�
� − i�1 − ��2 − a�

2b�
�2� . �6�

The coefficients ai and bi are, respectively, the diagonal and
off-diagonal elements of the tridiagonal symmetrical form of
the Hessian matrix, obtained using the Lanczos algorithm,23

while a� and b� are the values of ai and bi after n iterations,
with n2N. The initial state �of norm unity� for starting the
Lanczos’s algorithm is set to

v1 = �0, . . . ,0,1,0, . . . ,0�T, �7�

where the �unique� nonzero entry corresponds to the atom
and polarisation for which the on-site VDOS is sought. The
use of the square-root terminator is motivated by the conver-
gence �in less than n iterations� to finite values of the ai and
bi, so that the coefficients ap and bp for p�n can be replaced
by a� and b�. In practice, we set n=5000; such a high value
is necessary to recover the low-frequency elastic limit accu-
rately. The coefficients a� and b� are taken by averaging
over the last 100 values. In order to eliminate as much as
possible the “contamination” from finite-temperature contri-
butions, the atomic positions are first relaxed to their local
minima using molecular statics.

III. RESULTS

A. Low-frequency VDOS

1. General features

We discuss first the overall features of the VDOS obtained
by the Fourier transform method. Figure 2 shows the total

TABLE II. Maximum applied pressure Pmax and relative density
� of the samples considered in the present study.

NC A NC B

Sample Pmax � Sample Pmax �

A1 0.2 0.74 B1 0.2 0.74

A1.1 0.33 0.77 B2 0.4 0.80

A2 0.4 0.80 B3 0.6 0.86

A2.1 0.5 0.82 B4 0.9 0.89

A3 0.6 0.84 B5 1.2 0.92

A4 0.8 0.87 B6 1.5 0.94

A5 1.0 0.89 B7 1.8 0.96

A6 1.2 0.91 B8 2.2 0.97

A7 1.4 0.93

A8 1.6 0.94

A9 1.8 0.95

A10 2.0 0.96

A13 2.5 0.97

FIG. 1. �Color online� Part of the NC-B4 sample �relative den-
sity of 0.89� showing the different atom types: green=perfect,
black=good, blue=GB, and red=surface.
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VDOS as well as the contributions from the different types
of atoms in model NC-A5, which is typical of our set of
samples. For comparison, the VDOS of a perfect crystal �tri-
angular lattice� containing approximately the same number
of atoms is also shown. The results are consistent with other
studies.13 As expected, the partial VDOS for “good” atoms is
intermediate between that for “perfect” and “GB” atoms;
within the interior of the grains, the VDOS is similar to that
for the bulk crystal. In this and other figures, “frequency” is
defined as � / �2��.�

We focus now on the low-frequency part of the vibra-
tional spectrum, displayed in Fig. 3�a� for three different
samples �NC-A2, NC-A5, and NC-A9, with densities �
=0.80, 0.89, and 0.95, respectively� and in Fig. 3�b� for
sample NC-A5 for the different categories of atoms. We find
that below some “critical” density �*, the low-frequency
VDOS exhibits three distinct regimes which we will refer to
as “lower,” “intermediate,” and “upper” �or as “I,” “II,” and
“III”�, respectively; this is shown more clearly in Fig. 4 for
sample NC-A5. For our two nanocrystalline models, we es-
timate that �* is about 0.93. Above �*, the intermediate re-
gime vanishes. This behavior is observed for the total VDOS
as well as for the different categories of atoms, as can be
seen in Fig. 3�b�. The VDOS in regimes I and III scales
linearly with frequency for all NC models, as illustrated in
Fig. 4; the behavior of the intermediate regime will be dis-
cussed in the next section. For regime I, the linear depen-
dence is related to the fact that, at low frequency, vibrations
are expected to be long-wavelength, acoustic waves and thus
to scale as �d−1, d being the spatial dimension of the system.
As for regime III, it will be shown below that the low-
frequency bound ��c2� is determined by a characteristic

length of the size of the grains. We thus expect the system to
behave like a continuous elastic body below this length scale
and the VDOS in regime III to exhibit a Debye behavior, as
we indeed observe. In the presence of structural disorder, this
description in terms of continuum elasticity must break down
at some scale associated with the characteristic length below
which there are inhomogeneities in the displacement
field.24,25 Actually, the translational invariance necessary for
continuum theory to apply is lost due to the strong aniso-
tropy of the system at some length scale, which gives rise to
the intermediate regime II; there is consequently no reason to
believe that the observed intermediate regime in the VDOS
of our nanocrystalline models should also scale linearly.

This pattern—the scale separation in the low-frequency
VDOS—shows similarities with the dynamics of some dis-
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FIG. 2. �Color online� �a� Normalized VDOS for model NC-A5
and the corresponding perfect crystal and �b� contributions of the
different types of atoms.
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ordered solids �e.g., aerogels,26,27 powders,28–30 jammed
packings of particles,31 fractal aggregates,32 and amorphous
materials24,25�. In some of these cases,26,27,30,32 the results are
well accounted for by the fracton theory,33 which shows that
there is a crossover in the VDOS from propagating phonons
to more localized modes called fractons. For powders, which
possess unusual thermal properties at low temperature, Ru-
therford et al.28 have proposed that the elastic regime exists
only for characteristic lengths larger than 20D, D being the
diameter of the particles. These authors further assume that
there exists inhomogeneous modes on the length scale of a
few powder grains that have a constant VDOS, while for
length scales smaller than D the modes are again Debye
phonons �and the VDOS scales quadratically with fre-
quency�; the nature of the inhomogeneous modes, however,
remains unclear. In contrast, Maliepaard et al.29 proposed
that sintered metal powders could be described as percolat-
ing systems, thus establishing an analogy between the tran-
sition from the elastic regime to the inhomogeneous modes
and the fracton edge.

For jammed packing of particles approaching the unjam-
ming transition,31,34–36 it has been shown that there exists a
correlation length � separating two regimes in the low-
frequency VDOS; � is found to decrease with density and to
diverge at some value �c below which the system loses its
mechanical stability �jamming-unjamming transition�. At �c,
the low-frequency VDOS is a nonzero constant �“plateau”�
for all frequencies down to zero. For ���c, the system be-
haves as a Debye solid at lower frequencies, crossing over to
a �c-like solid at the frequency associated with �. No evi-
dence for a fractal behavior was found. The plateau of excess
low-frequency modes in the VDOS above �c has been related
to a particular set of soft modes; it has been demonstrated
that these are a necessary consequence of the weak
connectivity35,36 �related to the number of contacts� of the
system. The similarity of these results with the pattern ob-
served in our systems suggests that nanocrystalline materials
could perhaps be regarded as weakly connected mechanical
systems, at some length scale greater than the grain size and
at sufficiently low density. We expand on this idea in the next
section and demonstrate that this is indeed the case.

2. Quantitative analysis

Following the above discussion, we write the low-
frequency VDOS as

gLF��� = �k1�d−1, 0 � � � �c1,

k2�� − �c1�d̃−1 + �1, �c1 � � � �c2,

k3�� − �c2�d−1 + �2, �c2 � � � �max,
	 �8�

where the constants �1 and �2 are given by

�1 = k1�c1
d−1, �9�

�2 = �1 + k2��c2 − �c1�d̃−1, �10�

and �c1 and �c2 are the crossover frequencies defined in Fig.
4; �max is the maximum frequency for the low-frequency

regime, which we set to 0.6. We denote by d̃ the exponent

that describes the power-law behavior in regime II, which
need not be equal to d. Since regime II vanishes for systems

with densities above �*, d̃=d and k2=k3 in this case. As will
be discussed below, the vibrational regimes are associated
with different length scales l as follows. For l��, with � a
characteristic �or correlation� length of the order of the size
of a few grains �a is the size of a single grain�, the system
behaves as an elastic continuum; this is regime I. For l�a,
the vibrational properties are dominated by single grains;
regime III is a “grain-mode” regime. Regime II corresponds
to �� l�a and is thus “intermediate.” Of course, the cross-
overs between the various regimes are not abrupt because the
grains are distributed in size.

As explained above, regime I is associated with the con-
tinuum limit. For a two-dimensional Debye solid we have,
for g��� normalized,37

k1 �
A0

vs
2 , �11�

where A0 and vs are the area per atom and the sound velocity,
respectively. The dependence of k1 on density, k1��−


�which defines the exponent 
�, is shown in Fig. 5. The de-
crease of k1 with density is well accounted for by the con-
comitant increase of the sound velocity, vs���
−1�/2, and the
decrease of the area, A0��−1. The same scaling exponent is
obtained for our two models—viz., 
�5.4. This is within the
range of values for metallic powders �Ref. 29� �
�3� or
liquid argon in the metallic phase �
�7� �see Ref. 38 and
references therein�. We note that k1 is the same for the partial
�atom-type� VDOS except for a small difference arising from
the parameter A0 for undercoordinated atoms �data not
shown�: k1 for GB and surface atoms is slightly larger than
for perfect and good atoms. We note also that the value of k1
does not approach that for the perfect crystal in the limit �
→1; this is due to the fact that it is very difficult to reach the
perfectly ordered state by compaction.

We now turn to the upper low-frequency regime III which
spans the largest frequency window. We have seen above that
the VDOS scales linearly with � �for d=2� in this regime.
Figure 6 presents the variation of k3 with density. This pa-
rameter is essentially the same for the two models—i.e., is
not affected significantly by the size of the grains, except in
the case of surface atoms, which is likely related to the fact
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FIG. 5. The coefficient k1 as a function of density for the total
VDOS of the two NC models.

LOW-FREQUENCY VIBRATIONAL PROPERTIES OF… PHYSICAL REVIEW B 76, 045409 �2007�

045409-5



that the curvature of the grains for model NC-A is on average
larger than that in NC-B: it is indeed well known that the
morphology of nanoparticles have an effect on their
VDOS.39 Also, a small enhancement of the modes for the
total VDOS in this regime with decreasing grain size is evi-
dent from the inset in Fig. 6; this is directly related to the
increased presence of grain boundary atoms in the model
with smaller grains �NC-A�, as we discuss below.

The overall value of k3 depends only weakly on density,
decreasing slightly; our calculations show that this results
from the small decrease of the number of GB atoms with
compaction, not of the larger variation of the number of sur-
face atoms. For “perfect” atoms, we observe a weak increase,
k3 approaching the value for the perfect crystal. By analogy
with the Debye theory cf. Eq. �11��, this could indicate that
the interatomic distances for perfect atoms increases with
compaction, suggesting a reduced stress inside the grains due
to the increase of the grain size and the transformation of
free surfaces into grain boundaries at higher densities. The
value of k3 for GB atoms exhibits a larger variation with �.
As we will see in Sec. III B, the low-frequency VDOS for
properly coordinated GB atoms �Z=6� is substantially larger
than that for undercoordinated GB atoms. The number of
these respectively increase and decrease with density, thus
accounting for the observed variation of k3. This is consistent
with the observation that the thermal properties of NC mate-
rials not only depend on the grain size, but also on the mi-
crostructure �or the density� of the grain boundaries.40

The lower-frequency limit of regime II, �c1, corresponds
to a correlation length � of the order of the size of a few
grains, as can be deduced from the value of the sound veloc-
ity in regime I. �In contrast, as we will see below, �c2 corre-
sponds to a correlation length � the size of a single grain.�
The system is quite inhomogeneous on this scale and there is
consequently no reason to believe that regime II may be
described by a linear power-law scaling as is the case of
regime I. The frequency �c1 is thus associated to the length
scale at which continuum theory ceases to apply; as in the
case of jammed packings of particles,31,35 it should therefore

scale with �. This is verified in Fig. 7 where �c1 is shown to
be well described by a power-law dependence on �, �c1
���, with � depending only slightly on grain size ��NC-A
=4.28 and �NC-B=4.55�. From the dispersion relation for
phonons41 we can write �c1
 vs

� , with vs the sound velocity.
�c1 should therefore be a little smaller for NC-B than for
NC-A since the latter has smaller grains and �� a few
grains; this is indeed what we find. From the above relations
we have

� � �−�2�−
+1�/2�. �12�

For our two NC models, we obtain ���−�, with �
2.2,
consistent with the fact that the correlation length decreases
with density.25 As a consequence, we would expect � to di-
verge as density is lowered, as also suggested for jammed
packings of particles.31 In practice, we do not have a density
at which � diverges i.e., for which g����0 at �=0� �Ref.
36� because the density of our systems is still well above the
value for mechanical stability to break down. One may con-
jecture that �c1 could possibly be associated with the theo-
retically predicted33 “transition” from phonons to fractons;
we will see below that this is not the case here.

We now turn to the crossover from regime II to regime
III. �c2 corresponds to a characteristic length typical of the
size of the grains, and thus regime III is associated with grain
modes. The dependence of �c2 on density for our two fami-
lies of samples is displayed in Fig. 8. We find, indeed, that
�c2 is smaller for the sample with larger grains �NC-B�. We
observe, further, that �c2 is essentially constant with density,
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except perhaps for a small drop at larger values of � which
likely results from the coalescence of grains upon compac-
tion.

As a final point concerning the �c’s, we note in Fig. 3 the
presence of “humps” upon going from one regime to an-
other; these are related to the coexistence of two regimes
about the crossover frequencies. In particular, the hump at
�c2 is due to the fact that the distribution of grain sizes has a
finite width. These humps become less important with in-
creasing density because the intermediate regime becomes
less important. We define �e as the frequency at which the
coexistence ceases for the crossover between regimes II and
III; at sufficiently high density, �e=�c2.

We consider now the variation of d̃, with density; this is
shown in Fig. 9 for model NC-A �for which statistics are

better� for both the total VDOS and the GB VDOS. d̃ does
not differ appreciably from d �=2�, but there is nevertheless a
nontrivial increase with density, indicating a small depen-

dence on the microstructure. We can relate d̃ to the spectral

dimension d̄—that is, the generalization of d �Euclidean di-
mension, here 2� to noncrystalline structures; this is equiva-
lent to the fracton dimension for fractal systems.33 The frac-

ton theory provides d̄=
Df

� �with d̄�d�, where Df is the
fractal dimension and � is a constant related to the nature of
the fractal, or more precisely to the scaling exponent for
diffusion. Chadwick42 proposed that the VDOS of nanocrys-
talline iron could be described in terms of fractons, implying
of course that the atomic structure is itself fractal. Our results

for d̃ are no evidence for a fractal structure. However, as far
as vibrational properties are concerned, the relevant length is
the acoustic correlation length and the relevant fractal di-
mension is the acoustic fractal dimension, which is associ-
ated with the connectivity of the structure rather than the
mass distribution.27 It is thus reasonable to relate the connec-
tivity to the porous structure of our NC materials. We there-
fore calculated this quantity in order to obtain the acoustic
fractal dimension Dac �see the Appendix for details�. From

Fig. 9 it appears that Dac scales the same way as d̃ with

�—i.e., d̃=
Dac

�̃
, with �̃ approximately the same for all densi-

ties as in Ref. 26. However, the variations in d̃ are too small
to conclude unambiguously that this relation is valid—i.e.,
that fracton theory applies in the present case.

As for the coefficient k2, we limit our discussion to the
qualitative observation that it clearly increases with density
�cf. Fig. 3�. In short, the intermediate regime is “abnormal”
and related to inhomogeneities in the structure. It is difficult
to assess how it changes exactly with density and what hap-
pens when regime II vanishes because there are many param-

eters that change simultaneously with � in particular �c1, d̄,
and the widths of the crossovers �or humps� between the
three regimes�.

To summarize this section, we have shown that regimes I
and II depend strongly on density, while regime III does not.
This can also be seen in Fig. 10 where we plot the relative
number of excess modes �compared to the crystal� for two
NC-A samples. This figure also clearly demonstrates that the
number of excess modes is larger for lighter materials in
regimes I and II, while the differences are very small in
regime III �and have been attributed above to the small de-
crease in the number of grain boundary atoms upon compac-
tion�. We see, further, that g��c2� is the same for both den-
sities see also Fig. 3�a��. The variation of g��� with density
in regime I is well explained by the increase of the sound
velocity with increasing density. In regime III, the number of
excess modes does not depend strongly on density, in agree-
ment with earlier results7,14 that show that the enhancement
of low-frequency modes in nanocrystalline materials is due
to the larger proportion of grain boundaries in comparison
with polycrystalline materials—the nature of the grain
boundaries in nanocrystalline materials is not fundamentally
different in terms of the degree of disorder from that of
polycrystals43—and not to some surface effects. However,
we have demonstrated that, at very low frequencies, such
surface effects do exist �if only because of variations in the
velocity of sound�. Actually, the weak connectivity of nano-
crystalline materials �proportional to the degree of compac-
tion� under �*, on the scale of a few grains, strongly influ-
ences the behavior and the number of excess modes in the
intermediate regime II, as demonstrated by Wyart et al.35 for
jammed packing of particles �or amorphous solids�. Thus, we
may speculate that regime II vanishes at the density at which
the nanocrystalline material is sufficiently connected �i.e.,
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the porous structure becomes negligibly small� that it be-
haves as a two-dimensional solid.

B. Local (on-site) VDOS

From the above discussion, we are led to conclude that
the vibrational modes in the intermediate regime are strongly
influenced by the porosity of the material. In order to assess
this, we computed the local �on-site� VDOS, which provide a
detailed, atomic-level picture of the distribution of excess
modes. Figure 11 shows the VDOS obtained using the
Green’s function method for different types of atoms �aver-
aged in each case over 1000 atoms chosen at random�. The
results are nearly identical to those obtained using the VACF
method �cf. Fig. 2�, except for the high-frequency tail which
results from anharmonic terms in the finite-temperature MD
calculations as noted earlier. We also note that the low-
frequency VDOS for the GB atoms with perfect coordination
�Z=6� is larger than that for undercoordinated atoms.

We present in Fig. 12 the on-site VDOS for a selected part
of the NC-B3 model and for phonon energies in regime II
�top� and far in regime III �bottom�. The atoms are colored
according to the logarithm of the value of the VDOS �see
caption�. These plots provide a summary of our earlier quali-
tative observations. In the intermediate regime II, the modes
tend to be more intense near the surface of the pores; in the
upper regime III, while still intense at the surface, they are
also strongly present in grain boundaries not associated with
the pores �i.e., free area�. Thus, the intensity of the modes
near the pores in regime III decreases with increasing fre-
quency.

In order to quantify these observations we may calculate
the relative contribution of selected atoms to the VDOS for
fixed �; for this purpose, we introduce the “contribution ra-
tio,” which we define as

� =

�
k

gk���

�
j=1

N

gj���

, �13�

where gi��� is the on-site VDOS at site i for frequency �, N
is the total number of atoms, and k represents the atoms for

which the relative contribution to the total VDOS is sought.
The results are presented in Fig. 13 for two NC-B models,
below and above the critical density. The upper two curves
give the relative contribution of the atoms located at, or near
�first and second neighbors�, the surface of pores, while the
bottom two curves are for atoms at grain boundaries which
are not associated with free area. The calculations were done
for exactly the same region of the two samples; the results
are robust with respect to the definition of near-surface atoms
�i.e., whether we include first, second, or third neighbors
from the surface� and are reproducible for other �randomly
selected� regions of the models. It is clear from this figure
that the contribution ratio of the modes at grain boundaries
which are not associated with free area increases with fre-
quency. In contrast, the intensity of the modes near pores
begins to decrease at some frequency close to the onset of
regime III, after reaching a maximum value near the end of
the intermediate regime, �c2 or �e, the latter being defined as
the frequency at which the crossover �“hump”� ends; �e is
lower for the denser sample �NC-B6� because the VDOS
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does not exhibit the hump resulting from the coexistence of
regimes II and III.

In order to compare the relative contributions of atoms
near a pore with those of atoms not associated with free area,
we consider the normalized relative participation ratio—viz.,
� /N�, with N� defined as the number of atoms for which � is
computed; the results are presented in Fig. 14 for model
NC-B3. It is quite interesting that the two curves cross at
�c2. This means again that, in the intermediate regime II,
those atoms �or regions� that have the largest influence on the
VDOS are those lying near a pore; in contrast, in regime III,
the dominant modes are more localized in the grains and in
grain boundaries not associated with free area. The fact that
the number of such atoms remains essentially constant upon
increasing the density demonstrates again why k3 does not
vary much with density. Actually, there is a slight increase
with density which is compensated by a more important de-
crease of the number of atoms neighboring pores. Since the
number of atoms located near pores decreases with density, it
then becomes clear why the weight of excess modes in the
intermediate regime also decreases. Summing up, the porous
structure evidently influences the behavior of the low-
frequency modes; its impact on the intermediate regime is
clearly of great importance.

IV. SUMMARY

We have studied the low-frequency vibrational properties
of model nanocrystalline materials within the framework of
molecular-dynamics simulations. We have found the low-
frequency spectrum of these materials to exhibit a sequence
of two or three different regimes, depending on density: there
exists a critical density �*, depending only slightly on the
average grain size, above which the intermediate regime van-
ishes. This regime, below �*, crosses over from the usual
elastic solid �regime I� at the frequency at which continuum
theory ceases to apply; we have shown that it is intimately
related to the weak connectivity of the material on the length
scale of a few grains and that it does not show the normal
two-dimensional behavior. The third regime is associated
with grain modes and corresponds to the usual Debye solid.
We have also shown that the excess modes in the last regime
are due to the high number of grain-boundary atoms; in con-
trast, the excess modes in the first two regimes are related to
the significant presence of free area �pores�.
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APPENDIX: CONNECTIVITY

We describe here how the connectivity of the NC models
is computed. From algebraic topology, it is known that, in
two dimensions, the connectivity number �or Euler charac-
teristic� � of a given structure is given by:44

� = nc − nh, �A1�

where nc and nh are the number of connected components
and the number of holes �i.e., pores�, respectively. If the
structure is regarded as a compact object with holes in it and
assuming it is continuous on the atomic scale, then �=1
−nh. The acoustic fractal dimension Dac is obtained from the
relation ��RDac. In order to calculate nh �which depends on
R�, we need to determine the positions of the pores. To do
this, we first subdivide the system into small cells �of length
0.28�; to each we associate the atom which is closest. These
are then used to identify surface atoms and free area. An
atom is defined to be at the surface �of a pore� if there exists
at least one cell associated to it at a distance larger than rp
=1.075. A subcell is listed as free area if there are no atom
closer than rp. Once surfaces atoms have been identified, the
pores are delimited using the Hoshen-Kopelman algorithm.45

In order to locate the positions of the pores we identify, for
each, that atom that is closest to the center O of the system.
The radial distribution nh�R� can then be calculated by count-
ing the number of pores that lie within a circle of radius R
from O.
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