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We investigate faceting mechanisms induced by electromigration in the regime where atomic steps are
transparent. For this purpose we study several vicinal orientations by means of in situ �optical diffraction,
electronic microscopy� as well as ex situ �atomic force microscopy, microprofilometry� visualization tech-
niques. The data show that faceting proceeds in two stages. The first stage is short and leads to the appearance
of a step density wave, with a wavelength roughly independent of the surface orientation. The second stage is
much slower and leads to the formation of a hill-and-valley structure, the period of which depends on the initial
surface orientation. A simple continuum model enables us to point out why the wavelength of the step density
wave does not depend on the microscale details of the surface. The final wavelength is controlled by the
competition between elastic step-step interaction and facet edge energy cost. Finally, the surface stress angular
dependence is shown to emerge as a coarsed-grained picture from the step model.
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I. INTRODUCTION

Due to its scientific and technological interest, faceting of
stepped surfaces has been a long standing subject of inten-
sive research.1–25 Indeed, from a fundamental viewpoint the
underlying mechanisms are still a matter of debate. Further-
more, faceted systems appear to be promising templates for
the “bottom-up” design of nanostructures.

One of the most important mechanisms for faceting is
current-induced step bunching. While the instability of the
surface is driven by electromigration,5,13–16 the resulting pat-
tern arises from the interplay between electromigration-
induced mass transport and the minimization of the elastic
energy variations resulting from the changes in the surface
morphology. As we shall see in the following, step bunching
also appears as a promising way to study fundamental as-
pects of step-step elastic interactions as well as to control the
surface morphology at the microscale or nanoscale. At the
nanoscale, a considerable amount of research has been de-
voted to understanding the role of surface steps in the mor-
phological evolution of vicinal Si�111� surfaces during
sublimation.1–25 These phenomena depend both on tempera-
ture and on the direction of the heating current. Stoyanov16

was the first to propose a step model based on the Burton-
Cabrera-Frank �BCF� model,26 in which electromigration is
introduced as a bias in the Brownian motion of the adatoms
on the surface.14–16 At the microscale, Marchenko27,28 and
then Alerhand et al.29 proposed a simple theory, based on
elastic minimization, to explain the micrometric periods
which appear by annealing unstable surfaces.

In this paper we study the influence of the surface orien-
tation on the instability, as well as the link between nano-
scopic and microscale models. To do so, we have performed
a systematic study of the surface morphology from the first
stages �where the vicinal surface is described as a step pat-
tern� to the microscale state �where the faceted surface is
described as a hill-and-valley structure formed by microscale
facets� for various vicinal orientations. In all cases the mor-

phological evolution proceeds in two stages: a short one
based on the formation of a step density wave �the period of
which, roughly, does not depend upon the surface orienta-
tion� followed by a much slower one, where periodic micro-
scale facets form via a step bunching mechanism. The final
faceting period seems to depend on the elastic properties of
the so-formed microscale facets.

The paper is divided into four parts. Section II is devoted
to a description of the vicinal faces under study and then to a
description of the experimental procedure. The experimental
results are reported in Sec. III. In Sec. IV we analyze the
final state �Sec. IV A� and the first stages of faceting �Sec.
IV B�. The last part �Sec. V� consists of a short conclusion.

II. DESCRIPTION OF THE SAMPLES
AND EXPERIMENTS

A. Morphological and elastic description of
the vicinal faces under study

Vicinal surfaces can be described as stairlike surfaces,
where monoatomic steps separate microscopically flat ter-
races. Since the atoms belonging to the step edges have a
different number of nearest neighbors than the atoms in the
underlying bulk, steps give rise to a lattice distortion that
mediates an elastic interaction between them. The elastic de-
scription of the steps depends upon the state of the surface
�surface of a stress-free body or surface of a stressed body,
for example30� as well as upon its structure. As a preamble,
we thus would like to provide the reader with a detailed
description of the geometry and the elastic properties of the
surfaces that will be analyzed in the subsequent sections.

As shown in Fig. 1�a�, the selected vicinal orientations
�118�, �223�, �443�, and �105� surfaces—form a closed cycle
in the stereographic projection. More precisely, in Fig. 1�a�
are shown in red the normal to the selected vicinal faces and
in blue the normal to the �001�, �113�, �111�, �110�, and �100�
surfaces which appear on the Si equilibrium shape.31 In Fig.
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1�b� are also reported the morphologies of some crystal sur-

faces with zone axis �1̄10�. We may see, e.g., that the �118�
surface is a vicinal of the �001� surface and thus is consti-
tuted of �001� terraces separated by monoatomic steps form-
ing �111� microfacets while �223� and �443� surfaces are
vicinals of the �111� surface and thus are composed of �111�
terraces separated by monoatomic steps forming �001�
microfacets. Furthermore, notice that the �001� and �111�
surfaces are flat at the atomic scale �F surfaces� while the

�113� and �101� surfaces can be considered to be flat at the
second-neighbor scale �at least for the fcc model�.

In such a terrace-step model, important differences exist
between the different vicinal surfaces under study. Let us
thus consider separately vicinals of Si�111� and vicinals of
Si�001�.

�i� Since the �111� surface is isotropic, vicinals of Si�111�
exhibit equivalent �111� terraces characterized by isotropic
surface stresses �see Fig. 2�a�� In other words, the surface

[001]

[223]

[111]

[443]

[110][100] [510]

[113]

(a)

(b)

FIG. 1. �Color online� �a� Stereographic representation of the vicinal surfaces under study. The arrows represent the normal to the vicinal
surfaces. Notice that the �001�, �113�, �111�, �110�, and �100� surfaces belong to the silicon equilibrium shape �Refs. 31 and 39� �b� Projection

along the �1̄10� direction of some of the studied vicinal surfaces of a face centered cubic material. Notice that the �111� and �001� surfaces
are flat at the atomic level and that the �113� and �101� surfaces are flat at the second neighbor �atomic stepped surfaces�. For the sake of
simplicity we only consider in Fig. 2�b� the simple case of a face centered cubic crystal and not the true diamond structure of the silicon. It
is enough for our purposes.
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stress is a scalar. From an elastic viewpoint, steps, separating
the �111� terraces, can be modeled by rows of elastic dipoles
distributed along the step edge.30 The elastic interaction be-
tween steps per unit length then scales as �−2 where � is the
inter step distance �see the Appendix�.

�ii� Si�001� is not an isotropic surface. Indeed, its number
of dangling bonds is reduced by the formation of dimer pairs
aligned along the �1̄10� direction.32 Thus, due to the diamond
structure of silicon, two neighboring terraces separated by an
atomic step do not have the same surface termination: one
terrace exhibits a �1�2� reconstructed surface with dimers

parallel to the �1̄10� direction, while the other terrace exhib-
its a �2�1� reconstructed surface with dimers parallel to the
�110� direction. In other words, two neighboring terraces ex-
hibit two equivalent surface reconstructions rotated by 90°
with respect to each other. Since the surface stress compo-
nent parallel to the dimer axis is more tensile than the surface
stress component perpendicular to the dimer axis,29 the sur-
face stress of the �001� terraces is a second-rank tensor which
reads � sxx 0

0 syy
� for one terrace and � syy 0

0 sxx
� for the other �when

written in the �110�, �1̄10� surface axis�. As a consequence,
the elastic description of the vicinal surfaces of Si�001� de-
pends upon the azimuthal disorientation angle.

More precisely, �i� ideal vicinal surfaces with �110� zone
axis �case of �113� and �118� ideal surfaces� are formed by
steps parallel to the �110� direction �see Fig. 2�b��, so that the
surface stress difference ±�sxx−syy� in the direction normal to
the step gives birth to a net force across the step. The action
of these steps on the underlying crystal can be modeled by a
line of elastic monopoles perpendicular to the steps and dis-
tributed along the step edge.30 The elastic interaction be-
tween steps thus scales as ln � where � is the interstep dis-
tance �see Ref. 30 and the Appendix�.

�ii� For vicinal faces with �100� zone axis �case of �510�
surface�, the steps are parallel to the �100� direction �see Fig.
2�c��, and the surface stress tensor reads 1

2
� sxx+syy sxx−syy

sxx−syy sxx+syy
� for

one terrace and 1
2
� syy+sxx syy−sxx

syy−sxx syy+sxx
� for the other one �when writ-

ten in the �100�, �010� surface axis�. Thus adjacent terraces
have opposite surface shear stresses ±�sxx−syy�, giving rise to
a shear stress discontinuity at the step edge. This discontinu-
ity can be described by a row of monopoles parallel to the
step edge. �Think about a piece of surface submitted to a
shear stress that means to forces acting on each side of the
elemental area and parallel to the side. When removing the
half plane to form the step, only remains a net force along
the step.� The monopoles of two neighboring steps are anti-
parallel. We show in the Appendix that the elastic interaction
between such monopoles also scales as ln �. As a partial
conclusion, from an elastic viewpoint, the action of the steps
of such vicinal faces on the underlying crystal can be mod-
eled by a line of elastic monopoles parallel to the step and
distributed along the step edges added to the usual dipolar
contribution.

In Table I are reported the structural and elastic descrip-
tions of the vicinal surfaces under study as well as the direc-
tion of the dc current �in the direction of ascending steps�.

For completeness, notice that our description of �001�
vicinal surfaces only concerns ideal surfaces. Real vicinal
Si�001� surfaces misoriented towards the �110� direction may
exhibit a transition from single-height step to double-height
step �for an other zone axis, double steps have not been
reported�. The critical angle at which the transition occurs
depends upon the sample temperature.33 At 1150 K biatomic
height steps have been found for misorientation of more than
4°.34 Extrapolating Fig. 8 of Ref. 33, Si�113� and Si�118�
surfaces should not exhibit double steps for the temperature
we use.

(a)

Vicinal (001) in the

[110] direction

Different terraces

Identical steps

Monopoles + dipoles

Vicinal (001) in the

[100] direction

Different terraces

Different steps

Monopoles

Vicinal (111)

Identical terraces

Identical steps

Dipôles

(b)

(c)

FIG. 2. Schematic representation of the various kinds of vicinal surfaces under study. According to the terrace structure, the steps can be
described as rows of elastic dipoles or by the sum of elastic monopoles and elastic dipoles. Furthermore, for the vicinal of the �001� surface
one step is rougher than the other �Ref. 32� as drawn in �b�. The couples of dots represent the dimers and the lines on the terraces represent
the rows of dimmers.
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B. Experimental procedure

The Si single crystals of size 20�2�0.3 mm3 were first
chemically cleaned and then clamped between two elec-
trodes of the sample holder in the UHV chamber. After a few
flashes heating up to 1300 °C during 2 min to clean the sur-
face, the dc current was set to heat the sample at the chosen
temperature �1100 °C, 1200 °C�. The heating current direc-
tion is parallel to the longer side of the samples and perpen-
dicular to the steps of the vicinal surfaces. The experiments
have been performed with an ascending step current direc-
tion �regime II of Ref. 35�, for which a surface instability
occurs. The current direction used for the various vicinal
surfaces is reported in Table I. Heating duration varies from
15 min to more than 100 h in order to observe the whole
kinetic behavior of the faceting process. The residual pres-
sure during heating was less than 1�10−9 mbar. Notice that
thanks to the evaporation regime, a clean surface is periodi-
cally regenerated so that the surface remains clean during the
process. The samples are observed in situ by optical diffrac-
tion �see the experimental setup in Fig. 3�a��, transmission
electron microscopy �TEM�, and ex situ by atomic force mi-
croscopy �AFM� and optical microscopy. The TEM appara-
tus is a JEOL 100C microscope modified for UHV in situ
experiments;36 the AFM is a Nanoscope III from Digital In-
struments used in the noncontact mode. Optical diffraction
experiments were performed with a laser beam ��
=0.53 nm� at an incident angle close to the normal inci-
dence. The scattered light is observed with a charge-coupled-
device �CCD� camera �see Fig. 3�a��.

III. EXPERIMENTAL RESULTS

A. In situ experiments

1. Optical diffraction

We record the light scattered by the sample as a function
of time. A few minutes are enough to obtain the diffracted
pattern of Fig. 3�b� in the case of a Si�105� surface heated at
1200 °C. The diffracted pattern reveals a periodic surface
structure with a wavelength roughly around ��4 �m. We
do not observe any pattern with a smaller period. Moreover,
during the earlier stages of annealing �a few hours�, the pe-
riod remains roughly fixed while the intensities of the dif-

fracted spots change. It can thus be concluded that as soon as
the sample is annealed, a surface undulation with a period
��4 �m appears, while the amplitude increases with time.
For longer annealing duration �several hours�, the period
slowly grows toward an asymptotic state and the diffracted
pattern is slowly blurred because of the appearance of nu-
merous defects.

2. TEM experiments

TEM has been used to follow the early stages of the in-
stability. More precisely the silicon surface is illuminated in
grazing incidence, so that the shadow of the edge of the
sample can be observed. The amplitude of the surface corru-
gation is enhanced by rotating the screen in the microscope
and observing the image also in grazing conditions �as de-
scribed in Ref. 36�. The results, given in Fig. 4, show that the
surface morphology exhibits a sinusoidal shape at the early

TABLE I. Description of the vicinal faces under study. The dc current is in the ascending direction for
step bunching to occur in the temperature range under study.

Vicinal
surfaces

Terraces
orientation

Interstep
distance a �Å�

Zone step
direction

dc direction
�perpendicular to the step�

Elastic
description

�orientation with
respect to the step�

�118� �001� 7.7 �1̄10� �441̄� Monopoles ���
+Dipoles ���

�223� �111� 15.6 �1̄10� �334̄� Dipoles ���

�443� �111� 24 �1̄10� �338̄� Dipoles ���

�510� �100� 6.75 �001� �1̄50� Monopoles �	�
+Dipoles ���

incident laser beam

screen

hole UHV Chamber

Si Wafer

diffraction peaks

I

(b)

0 +1 +2-1

hole

(a)

FIG. 3. �Color online� �a� Sketch of the optical diffraction
equipment, �b� optical diffraction pattern recorded for Si�105� after
1 h at 1200 °C. Labels 0, +1, +2, and −1 correspond to the differ-
ent orders of diffraction.
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beginning of the process. The time evolution of the ampli-
tude of the corrugation is also reported in Fig. 4. This evo-
lution can be perfectly fitted by an exponential law.

In other words, in situ experiments point out that the early
stages of annealing are characterized by the appearance of a

characteristic wavelength with an exponential “explosion” of
the amplitude, which is the characteristic feature of linear
instability with a unique unstable mode.

B. Ex situ experiments

Ex situ experiments essentially consist in “post-mortem”
examination of the samples. More precisely, the vicinal sur-
faces are heated in UHV, then taken out of the chamber and
observed by AFM, optical microscopy, and mechanical mi-
croprofilometry �Dektak 6M stylus profiler from Veeco�. A
set of AFM images measured from the Si�105� annealed at
1250 °C during different heating duration �1, 4.5, 24, 64 h�
is reported in Fig. 5. For each picture the profiles recorded
along the dotted lines are also reported. Finally, in Fig. 5�e� a
three-dimensional �3D� picture of the surface after 64 h of
annealing is shown. For the shortest annealing duration �Fig.
5�a��, we observe some local inhomogeneities on the surface,
which locally disturb the surface morphology. These points
do not behave as nucleation sites since the surface also ex-
hibits a regular wavy pattern underneath. As the heating du-
ration increases, the one-dimensional array of bunches gets
more pronounced as the size of the bunches increases. At the
longest duration the bunches look more asymmetric and
form microscale facets. An increase of surface disorder is
also observed.

The crystallographic angles formed by the facets have
been measured directly on the profiles.

C. Summary of the experimental data

All the results are summarized in Fig. 6. For the Si�105�
annealed at 1250 °C, we have shown the time evolution of

5 min 1h
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20 µm
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0 1 2
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m
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)

Time (h)

FIG. 4. �Color online� TEM observation of the first stages of the
roughening of the Si �105� surface. The images correspond to
5 min, 1 h, then 2 h of annealing �notice the two different perpen-
dicular scales due to the grazing incidence�. In the bottom right part
of the figure is also reported the time evolution of the amplitude of
the oscillation �T=1250 °C�.
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FIG. 5. �Color online� AFM images of the Si
�105� surface evolution versus time. �a�, �b�, �c�,
�d�, and �e�, respectively, correspond to 1, 4.5, 24,
and 64 h of annealing at 1250 °C. The corre-
sponding profiles �obtained along the dotted
lines� are reported just below. In �e� the 3D pic-
ture obtained after 64 h of annealing is reported.

VICINAL SILICON SURFACES: FROM STEP DENSITY… PHYSICAL REVIEW B 76, 045402 �2007�

045402-5



the period �Fig. 6�a��, the amplitude �Fig. 6�b��, and the
angle �Fig. 6�c�� of the facets. The angles are measured by
AFM, mechanical microprofilometry, and optical micros-
copy. In Fig. 6�d�, the results obtained for the various vici-
nals faces for two different temperatures are also reported.
Notice that the initial wavelength �encircled in Fig. 6�a�� is
roughly the same ��4 �m� whatever the initial vicinality
angle while the asymptotic value �surrounded by an ellipse in
Fig. 6�a�� depends upon the vicinal angle. Moreover, three
different regimes, with peculiar characteristics, are clearly
observed.

�i� In the early stages, a surface instability develops expo-
nentially with time �see also Fig. 4�. The corresponding
wavelength is roughly equal to ��4 �m. In situ optical dif-
fraction measurements as well as TEM measurements clearly
show that no smaller periodicity is observed at shorter times.
This result highlights the fact that simple mechanisms based
on step pairing, then double-step pairing, and so on �e.g.,
zipping mechanisms�, as described in Refs. 8 and 37, are not
appropriate to describe the underlying mechanism. Our opin-
ion, reinforced by ex situ AFM images, is that the instability
proceeds by a collective motion of the steps, giving birth to a
step density wave. Curiously the value of the wavelength is
roughly the same whatever the initial vicinal surface �see
Fig. 7�. In other words, at first order, this value does not
depend upon the initial distance between the monoatomic
steps on the initial vicinal surface. Some other authors have
yet noticed that the initial wavelength roughly does not
change with the vicinality angles.19,20 In Fig. 7 we report our
results �stars�. We can thus define a domain �the upper dotted
segment in Fig. 7� in which the wavelength roughly does not
depend upon the vicinality. Some authors have also studied
the wavelength change versus the vicinality, so that we can
report in Fig. 7 two other domains where the wavelength
seems to be constant whatever the initial interstep distance.

These domains are also drawn as dotted segments in Fig. 7.
The three dotted segments do not merge into a single dotted
line because the experiments have not been performed at the
same temperature while the wavelength depends on the
sample temperature.19–25 For completeness we also report
some other values “gleaned” in the literature21–25 but for
which the experimental conditions �temperature, annealing
duration, vicinal angle� are not well known. In any event, all
these values belong to the range 1.5 �m���5 �m while
the vicinality angle varies by two orders of magnitude. For
completeness, notice that some authors have reported some
weak angle dependence.19,20,38

�ii� At later stages, the kinetics of faceting becomes slow
and a hill-and-valley structure forms. The bunches then start
to form facets, the crystallographic orientation of which can
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FIG. 6. �Color online� Sum-
mary of the experimental results
obtained at 1250 °C. For the Si
�105� surface the time evolution
of the period �a�, of the amplitude,
�b� then of the angles formed by
the facet �c� are reported. In Fig.
7�d� the results obtained for a set
of vicinal surfaces at two different
temperatures are synthesized. Sec-
tions IV A and IV B of the discus-
sion will be devoted to the initial
and final part of the curves sur-
rounded in �a�, �b�, and �c�.
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FIG. 7. Wavelengths that appear at the very beginning of the
process. More precisely we report our results �stars� as well as the
results obtained by other authors in other contexts. The dotted lines
correspond to domains in which the wavelength does not change
�see text for more details�. White circle �Ref. 21�, black down-
triangles �Ref. 25�, white squares �Refs. 19 and 20�, diamonds �Ref.
60�, white up-triangle �Ref. 23�, white down-triangles �Ref. 22�, and
black cross �Ref. 24�.

LEROY et al. PHYSICAL REVIEW B 76, 045402 �2007�

045402-6



be easily obtained from angle measurements. It is found that
the angle ��� of one of the microscale facets remains con-
stant while the other ��� increases with time.

�iii� After a long time, a stationary state is reached. It is
formed by the F1 and F2 facets the crystallographic indexes
of which are reported in Table II for each initial vicinal face.
The crystallographic nature of the facets shows that the
bunches evolve towards the closest densely packed crystal-
lographic planes surrounding the initial vicinal surface in the
equilibrium crystal shape.31 Notice that the F2 facets are not
flat at the atomic scale because it is easier to reach a stepped
face than a flat one for which supplementary activation en-
ergy is needed for step coalescence. At the end of the first
regime there is a unique wavelength but the step density still
depends upon the initial vicinality. Notice further that an-
nealing by an alternative current of the so-faceted structure
restores the flatness of the nominal vicinal surface as it
should for electromigration-induced faceting.

IV. DISCUSSION

To sum up, all these experimental results are compatible
with a quick-step density-wave mechanism followed by a
much slower step-bunching mechanism as mentioned in a
previous paper,39 and as proposed in the case of nontranspar-
ent steps in Ref. 40. During step bunching, the angle � �de-
fined in Fig. 8� of the microscale facet increases with time
while the terraces of the initial vicinal surface remain flat ��
is constant�. The final state is a stationary state formed with
the two closest facets in the equilibrium shape surrounding
the initial vicinal face �see Fig. 1�a�� and thus is fixed by
crystallography. A sketch of the mechanism of kinetic face-
ting �with t the time� is reported in Fig. 8.

In the following, we will focus on the final and initial
stages of the process.

A. Analysis of the final state: Towards a
Marchenko-Alerhand description

Let us consider the usual faceting transition: an unstable
surface �thus with negative surface stiffness� decomposes
into a periodic sequence of facets with orientations �1 and �2
having different surface stresses.41 The instability originates
in the decrease of the total surface energy from the planar to
the faceted state. The slopes of the facets are given, but the
period of the sequence is fixed by elasticity.27,29 The surface
stress discontinuities at the boundaries can be modeled by

rows of monopoles perpendicular to the discontinuities.27,29

The elastic relaxation induced by these forces diverges
logarithmically27,29 so that the elastic relaxation overcomes
the energy of the domain boundaries. This results in the
spontaneous formation of periodic facets with period L.27,29

More precisely, the total energy change from the flat towards
the faceted state classically reads30

�E = �Esurf + �Ebound + �Welast,

where �Esurf is the surface energy change �negative since the
initial surface is unstable�, �Ebound the boundary energy
�positive�, and �Welast the elastic relaxation �negative�.

Notice that while �Ebound and �Welast depend upon L, this
is not the case of �Esurf which only depends upon the crys-
tallographic orientation of the facets. The equilibrium period
fixed by the condition ��E /�L=0 thus does not depend on
�Esurf.

30 Other mechanisms can also lead to a selection of an
average distance between bunches.42

In the case under study, annealing the faceted structure
without electromigration restores the nominal flat surface. In
other words, in the absence of electromigration, the final
state is unstable ��Esurf is positive�. The faceting is thus no
longer caused by the surface energy reduction but by a driv-
ing force due to the electrical field. Here we assume, as in
Refs. 8, 11, and 43, that the selection of the period remains
based on the elastic relaxation whatever the origin of the
destabilization �thermodynamic or kinetics�. It should mean

TABLE II. Decomposition of the vicinal faces in F1 and F2

facets for the stationary state. The interstep distance calculated in
the �113� and �110� surfaces are estimated �from a projection of the
interplane distance� to 2.88 Å and 4.46 Å, respectively.

Vicinal face �118� �223� �443� �510�

F1

�flat at the atomic scale�
�001� �111� �111� �100�

F2

�exhibit monoatomic steps�
�113� �113� �110� �110�

t→∞→∞→∞→∞

F
a
(∞)=F

1

F
b
(∞)=F

2

t=t
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b
(t
2
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2
)=F
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λ
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a
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)=F

1

FIG. 8. �Color online� Sketch of the faceting mechanisms. At
t=0 is the initial vicinal surface. At t= t1, a step wave density forms
by collective motion of the steps. At t= t2 the step bunching mecha-
nism starts so that the initial terrace �Fa� grows at constant angle
��� while a facet �Fb� forms with the angle ��t2�. At the end of the
process �t=	� there is a stationary state formed by the flat facet F1

and the stepped facet F2 characterized by their own surface stress
tensors. The surface stress component perpendicular to the edge are
s�1 and s�2.
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that the electromigration field role is equivalent to defining
an effective surface energy change �Esurf

ef f in the expression
of �E. Furthermore, since the electric field does not depend
upon L, �Esurf

ef f does not play a role in the selection of the
period.

Furthermore, in order to have a general picture—based on
atomic steps—which applies at all times, we describe the
final state as an elastic interaction between steps character-
ized by dipoles or monopoles rather than an interaction be-
tween microscale facets characterized by their own surface
stress tensor.

The usual approach to calculate step-induced elastic field
is �i� to describe the step in terms of localized forces distri-
butions applied at the step edge, �ii� to model the action of
these forces on the underlying crystal by point forces acting
on a semi-infinite flat crystal, and �iii� to use the Green func-
tion to calculate the strain field and then the stored elastic
energy.44 The result is well known for the surface of a stress-
free �stressed� body �for a review see Ref. 30� modeling the
vicinal surface as a periodic array of 1D rows of elastic di-
poles �monopoles� perpendicular to the step edge. In our
case, the description of the elastic interactions between the
steps is more complex for two reasons: �i� as shown in Sec.
II the vicinal initial surfaces may be described by various
configurations �alternated monopoles and/or dipoles�, and �ii�
in the final state these rows rearrange to form a hill-and-
valley structure characterized by two lengths: the step-step
distance in a bunch and the distance in between two neigh-
boring bunches. Thus the elastic description of the final state
depends on the type of monoatomic steps �which means
upon the initial vicinal surface� and on the characteristic
lengths. However, even if electromigration is known to in-
duce kinetics instability, the elastic energy we calculate is
that one of the final faceted structure consisting in large ter-
races separated by step bunches. This final state, reached for
a maximum of the step density, is driven by energetic and not
kinetics. Electromigration thus does not modify the interstep
distance in a dense bunch.

To estimate the stored elastic energy modification arising
from the faceting we will proceed in three steps: �i� calcula-
tion of the elastic interaction between two steps, �ii� calcula-
tion of the elastic energy of the faceted state, and �iii� calcu-
lation of the elastic energy difference between the initial
vicinal face and the faceted final state. Finally, we will com-
pare our results to the usual Alerhand-Marchenko microscale
approach.27,29 We will see that the comparison will give ac-
cess to the surface stress change close to a high-index sur-
face.

Notice that in the following, we will use isotropic linear
elasticity. Indeed, while isotropic elasticity fails to reproduce
the displacement field induced by the steps, it is now well
known that isotropic elasticity can be used for determining
the elastic energy with good accuracy.45

1. Elastic interaction between steps

As recalled in the Appendix, the elastic interaction energy
per unit length between two parallel steps separated by a
distance � is well known �for a review see Ref. 30�. For
elastic dipoles perpendicular to the step edge it scales as �−2,

while for elastic monopoles perpendicular to the step it
scales as ln�� /a0� where a0 is a cutoff length of the order of
a few atomic units. We show in the Appendix that the elastic
energy between two rows of antiparallel elastic monopoles
also scales as ln�� /a0� but with a different prefactor.

2. Elastic energy of the faceted surface

The elastic energy in the faceted final configuration can be
easily obtained by adequate summations of the elastic energy
interactions between two parallel rows. For the sake of sim-
plicity we will calculate separately the elastic energy due to
the interaction of steps in a bunch �containing N steps� and
the elastic interaction between the bunches �see Fig. 9 for the
geometrical definitions�. The first term will be called in-
trabunch energy, the second the interbunch energy. The ana-
lytical expressions of these energies are reported in Table III
where for the sake of simplicity we separate the dipolar and
the monopolar contributions. Thus in the following we con-
sider the step-step interaction as described by the dipole-
dipole interaction or monopole-monopole interaction but
never consider the dipole-monopole interaction.

The exact expressions can be expressed as a summation
of the elastic energy between two steps over the considered
configuration �intra or interbunch�. Approximated analytical
expressions are obtained by �i� transforming the summation
to an integral then by �ii� considering N ,M 
1. In Table III
the expressions for elastic dipoles �Table III�a�� and for elas-
tic alternated monopoles �Table III�b�� are reported.

In Fig. 10, the elastic interactions calculated numerically
by performing the exact summations but without any
monopole-dipole interaction are plotted. They are in good
agreement with the approximated analytical expressions cal-
culated by integration so that in the following we will use the
approximated expressions. The main results are that �i� the
intrabunch contributions depend linearly on the number of
steps in a bunch �for monopoles or dipoles�, �ii� for mono-
poles the intrabunch elastic energy is smaller for N even than
for N odd so that bunches prefer to be formed by an even
number of steps, �iii� the interbunch analytical expressions
are similar to the expressions given by Marchenko27 and Al-
erhand et al.29 who modeled a faceted surface as a periodic
pattern �period L� of 1D rows of elastic monopoles perpen-
dicular to the edges �see bottom of Fig. 9�, and �iv� for
bunches of monopoles the nature of the interaction �attrac-
tion or repulsion� depends upon the parity of N �see the �
sign in Table III�b��. However, in the following we will only
consider the stablest situation with even N �see point �ii��.
Point �iii� can be easily understood in the case of elastic
dipoles perpendicular to the steps. Indeed, as in electrostat-
ics, a ribbon of dipoles creates in the far field the same dis-
placements as two rows of antiparallel monopoles located at
the ribbon edges. For alternated monopoles it is quite similar
since they behave as the �-apart components of a dipole. The
main difference with the Marchenko-Alerhand microscale
approach is that in our expressions the prefactor of the
ln�1− � N

M
�2� term is proportional to the amplitude of the di-

pole or monopole prefactor while in the Marchenko-
Alerhand approach it is proportional to the difference be-
tween the surface stress of the adjacent facets.27,29 We will
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TABLE III. �a� Elastic energy W /L for dipoles. Moreover the expressions are given per unit step-length, thus the unity is an energy over

surface area. �b� Elastic energy W /L for alternated monopoles. Notice that Adip= + 1−�2


E A2 but Amonop=
�1+���1−2��


E Fy
2 �see the Appendix�. The

� and � signs arise, respectively, for N even and N odd. Moreover, the expressions are given per unit step length; thus, the unity is an energy
over surface area.

�a�
Intrabunch

Interaction between two bunches
�interbunch�

Interaction energy for an
infinite periodic surface

Exact expression Adip

a2 

i�j,j

1

�i − j�2
Adip

a2 

i,j=1

N
1

�M + �i − j��2

Adip

a2 

k



i,j=1

N
1

�kM + �i − j��2

Approximated
expression

Adip

a2 �N
2

6
−1−ln N� −

Adip

a2 ln�1− � N

M �2�
−

Adip

a2 ln�sin�
N

M �
�
N

M � �
�b� Intrabunch Between two bunches

�interbunch�
For an infinite pattern of

bunches

Exact
expression

Amon

a0
2 


i�j,j=1

N

�− 1� j−i ln��j − i�
a

a0
� Amon

a0
2 


i,j=1

N

�− 1� j−i ln��M + j − i�
a

a0
� Amon

4a0
2 


k


i,j=1

N

�− 1� j−i ln
��kM + j − i�
a

a0
��

Approximated
expression

Amon

4a0
2 �2N ln�
a0

2a �−1±ln N� ±
Amon

4a0
2 ln�1− � N

M �2�
±

Amon

4a0
2 ln�sin�
N

M �
�
N

M � �

L=Ma

(N-1)a

a

Nanoscale model

Marchenko-Alerhand model

FIG. 9. Elastic model used for the calculations. The period L=Ma consists in a flat terrace and a step bunch �interstep distance a� formed
by �N-1� steps. In the bottom part of the figure, the corresponding nanoscale and Marchenko-Alerhand models are reported. In the nanoscale
model, steps �in the bunch� are modeled by rows of point forces �in the figure are only sketched the elastic dipoles perpendicular to the steps,
at which could be added elastic monopoles according to the description of the vicinal faces under consideration as shown in Fig. 2�. In the
Marchenko-Alerhand model, the bunch itself is considered as a microscale facet modeled by rows of elastic monopoles located �and
perpendicular� to the facet edges.
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see in Sec. IV B that the comparison between the nanoscale
and the microscale models enables us to propose an analyti-
cal expression of the surface stress angular dependence close
to a high-index facet.

3. Elastic energy change due to faceting

Let us consider the energy change due to the faceting
process that means the energy change due to the transforma-
tion from a vicinal surface towards a faceted system. This
energy change per unit length reads

�W

L
= �f�p� +

�

L
−

Ā

L
ln� L


a
sin�
p�� , �1�

where Ā=Adip /a2 and Ā=Amonop /4 for dipoles or monopoles,
respectively.

The first term in Eq. �1� is the elastic energy change due
to the step coalescence. It can be written as a simple function
�f�p�= f�p�− f�p0��1− p�+ f�p1�p, where p=N /M is the rela-
tive coverage of one phase with respect to the other �see Fig.
9� and p0 and p1, are the slopes of the facets F1 and F2. The
exact analytical form of f�p� depends upon the monopolar or
dipolar nature of the step but this is not essential. More im-
portant is the fact that f�p� does not depend on the period
L=Ma. The term � has been introduced to take into account
the boundary energy between both domains. It does not ap-
pear naturally in the simple sketch given in Fig. 8 but should
appear when considering that because of the symmetry
breaking, the steps located at the edges of the bunch cannot
have the same energy as the steps inside the bunch. Finally,
the last term describes the interbunch elastic interaction. It
does not depend upon the nature of the step interaction ex-
cept the prefactor.

When considering that the surface occupation of each do-
main is, at least for the final state, fixed by crystallography
�since the facets in the final state correspond to cusps of the
� plot31�, the energy change per unit length is a simple func-
tion of L, so that its minimum value is reached for
� ��W/L

�L �p=0. The equilibrium period thus reads

� =

a

sin�
p�
exp� �

Ā
� . �2�

This expression can be compared to that obtained by
Marchenko27 and Alerhand et al.29 They considered the final
state as formed by microscale facets characterized by their
own surface stress which components perpendicular to the
facet edges are drawn in Fig. 8 at t= t	:

� =

a0e

sin�
p�
exp� 
E�

2�1 − �2��s�1 − s�2�2� . �3�

The fit of the experimental results give the ratio � /A for the
vicinal surfaces under study �see Table IV where the value of
a has been estimated from Table II�.

Thus, within the experimental error bars, we find at T

=1150 °C, �� / Ā��6.5±0.5 whatever the initial surface.
More precisely, for the �223� and �443� surfaces �for which
the steps only bear elastic dipoles� one obtains, when using
Adip�10−30 J m �see Sec. IV A�, ��8.6�10−11 J m−1 for
the �223� surface and ��3.1�10−11 J m−1 for the �443� sur-
face. For the �118� and �510� surfaces the steps bear elastic
dipoles and monopoles �see Table I� so that we cannot sim-
ply extract � from Table IV. Indeed as reported at the begin-
ning of Sec. IV A 2 the dipolar and monopolar contributions

do not simply add so Ā is an unknown composition of Adip
and Amon. However, if the amplitude of the monopoles can be
neglected with respect to the amplitude of the dipole, we get

TABLE IV. Experimental values of the period, the relative oc-

cupation, and the so-deduced ratio � / Ā values for T=1150 °C.

� �Å� p=tan �1 / �tan �1+tan �2� � / Ā

�118� 6.6�103 0.39 6.50

�223� 12�103 0.38 7.10

�443� 13�103 0.19 6.25

�510� 8�103 0.23 5.93

(d)(c)

(b)(a)
numerical calculation
analytical approximation

Number of steps per bunch (N)
0 100 200

0

1

E
la

st
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er

gy
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.)

0 100 200

N=50

Inter-bunch separation

FIG. 10. �Color online� Graph of the elastic
energies reported in Table III: �a� intrabunch term
calculated for dipoles, �b� interbunch term calcu-
lated for dipoles, �c� intrabunch term calculated
for monopoles �the upper curve is for N odd, the
lower curve for N even�, and �d� interbunch term
calculated for monopoles with even N.

LEROY et al. PHYSICAL REVIEW B 76, 045402 �2007�

045402-10



��7.9�10−11 J m−1 for the �118� surface and ��3.0
�10−11 J m−1 for the �510� surface. On the contrary if we
only consider the monopolar contribution, with Amonop /a0

2

�3�10−12 J m−1 �see Sec. III A�, there is ��2
�10−11 J m−1 whatever the vicinal surface under consider-
ation. Notice that in both cases �monopoles or dipoles� �i� the
order of magnitude of � is comparable to the step energy
reported for the Si�111� surface �3�10−11 J m−1� �Ref. 46�
and that �ii� when considering only the dipolar contribution
we obtain two set of values, one around ��8�10−11 J m−1

when the facet edges separate a �001� or �111� from a �113�
facet, the other around ��3.0�10−11 J m−1 when the facet
edges separate a �001� or �111� from a �110� facet �see Table
II�.

4. Link between the nanoscale and the microscale model:
The surface stress angular dependence

The nanoscale and microscale models are equivalent if the
cutoff length a0 of the microscale model �Marchenko, Aler-
hand� depends upon the initial interstep distance a �more
precisely a0e=a� and if from Eqs. �2� and �3� we can write
the equality

Ā = 2
1 − �2


E
�s�1 − s�2�2, �4�

with again Ā=Adip /a2 and Ā=Amonop /4 for dipoles and
monopoles, respectively.

For dipoles, introducing the step height h �so that a
=h / tan � where � is the angle of the vicinal facet� and using
Adip=2 1−�2


E A2 �compare Eqs. �A2� and �A3� in the Appendix�,
Eq. �4� reads

A2

h2 tan2 � = s1
2 + s2

2 − 2s1s2 cos � . �5�

However, in the Appendix we show that �see Eq. �A2��

A2 = A1
2 + �hs1�2, �6�

where s1=sxx is the surface stress component perpendicular
to the step.

For weak values of � one obtains from comparison of the
two previous relations

s2 = s1 −
���
h

A1. �7�

This expression is analogous to the one found by Salanon
and Hecquet for stressed solids47 where the steps are de-
scribed by the sum of rows of dipoles and monopoles �both
perpendicular to the step� and the surface stress expression is
developed up to second order in �.

Equation �7� means that since the presence of steps leads
to surface stress relaxation, the surface stress is maximum for
a low-index surface and thus decreases with ���. On the con-
trary, the energy cost to create surface steps implies that the
surface energy increases with ���. In other words, local
minima �cusps� of the surface energy plot �� plot� corre-
spond to local maxima �anticusps� of the surface stress
plots.30,39,47

Beyond this approach it is also possible to use our experi-
mental results to obtain absolute values of surface stress.
Indeed, using the microscale model of Marchenko27 and Al-
erhand et al.29, the measurement of the final period gives the
difference �s1−s2� between the surface stress components
�normal to the step� of the facets F1 and F2. Using a set of
vicinal surfaces �labeled k� chosen to form a closed cycle on
the stereographic projection, we measure �k�s1

k ,s2
k� and thus

obtain a set of values s1
k −s2

k corresponding to the surface
stress differences between the facets F1 and F2 that appear
on the vicinal faces k. Since we are working on a closed
cycle, the measurement of the periods �k is enough to obtain
the absolute values s1

k and s2
k. The method has been extended

to all intermediate faceted stages obtained after a time t
smaller than the duration needed to reach the final state. In
this case it is necessary to measure the period �k�s1

k ,s2
k� as

well as the angles �t
k ,�t

k formed by the facets obtained at t
and then to solve the systems of equations �t

k�s1,t
k ,s2,t

k ,�t
k ,�t

k�
to obtain the values si,t

k of the facets � and � appearing at
time t and characterized by the angles �t

k and �t
k. Many nu-

merical solutions exist but only one set of si
k values verifies

the fact that all the facets that belong to the equilibrium
shape exhibit a maximum of surface stress. This procedure
has been used to obtain, for the first time, the complete
surface-stress plot of Si.39

B. Analysis of the initial-step density waves:
Towards a unique wavelength �É4 �m

In this section, we discuss the origin of the robustness of
the wavelength of the initial step density waves with respect
to the vicinality of the original surface. Most of the previous
models concerning the step bunching instability are based on
the Stoyanov approach of the step bunching instability in-
duced by the electromigration.16 More precisely, different re-
gimes have been studied to calculate the most unstable mode
in the linear regime. For slow attachment kinetics the main
period of the instability depends upon the transparency
parameters at the steps and reads �=2
a0

−1�6A��1/2� a0

l
�

for opaque or moderately transparent steps18 and �

=2
a0
−1�6A��1/2� a0

Ql1/2
� for very transparent steps.40 In both

expressions a0 is an atomic distance unit, A an elastic quan-
tity describing the dipolar forces at the steps, � the reduced
electromigration force, and Q a characteristic length varying
from a tenth of an atomic distance up to some atomic
distances.40 Both expressions can be put in the generic form
of a characteristic lengthscale �=2
a0

−1�6A��1/2 times a
“geometric factor,” which is a dimensionless combination of
atomic scales. Indeed, the interstep distance � is of the order
of some atomic distances in the experiments presented
above. We show here that this generic form can be derived
within the frame of a continuous model, which does not refer
to microscale details.

For this purpose, we consider a model in which the initial
surface is rough since the vicinal surfaces under study have
high slopes. We write a continuum model based on macro-
scopic quantities having smooth orientation dependence. We
use a 1D model, along the variable x, and we neglect subli-
mation or growth.
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From the mass conservation equation,

�h

�t
= −

�j

�x
, �8�

with h the local height and j the surface flux.
We then consider the diffusion process driven by the

variations of the chemical potential � and the electromigra-
tion force:

j =
M

kT
c� f −

��

�x
� , �9�

where M, f , and c are, respectively, the orientation-
dependent mobility, migration force, and concentration of
adatoms at the surface.

We write the free energy of the surface as

F =� ��p�dx =� ��0 + �1� �h

�x
� + �3� �h

�x
��dx , �10�

where �0 and �1 are constants and �3 is a function of the
local slope p=�h /�x. More precisely, for the usual vicinal
surfaces described as a 1D array of elastic dipoles �0 is the
terrace energy, �1 is the step energy, and �3=�3��h /�x�2 de-
pends upon the step-step interaction energy �3 and is propor-
tional to the square of the local slope so that ��p� reads
��p�=�0+�1�p�+�3�p�3. In the following, we consider �3 as
a simple unknown function of the local slope p=�h /�x to
take into account different types of vicinal surfaces.

The chemical potential is defined as

� =
�F

�h
��N

�h
�−1

, �11�

where N=�h /a0
2dx is the number of atoms of the solid.

A variational calculation then leads to the usual Herring
expression48 of the surface energy variation:

�F = −� �

�x

��

�p
�h , �12�

so that for a positive slope one obtains

� = − a0
2�̃3� �h

�x
�� �2h

�x2� , �13�

with �̃3=2
��3

�p +
�2�3

�p2 p.
Putting Eq. �13� into Eqs. �8� and �9�, we obtain the time

evolution equation of the surface height as

�h

�t
= −

�

�x
�Mc

kT

 f +

�

�x
��̃3a0

2�2h

�x2��� . �14�

For small height perturbations around the mean orientation
of the vicinal surface of average slope p̄, we have h= p̄x
+�h which leads to

�th = − �p
Mcf

kT
�

p=p̄
�xx�h − a0

2
�̃3
Mc

kT
�

p=p̄
�xxxx�h ,

�15�

where the partial derivatives are denoted �h /�i=�ih.

Considering in Eq. �15� a wavelike perturbation of the
height �h=exp�i�t+ ikx� leads to the following equation:

i� = �p
Mcf

kT
�

p=p̄
k2 − a0

2
 �̃3Mc

kT
�

p=p̄
k4. �16�

A criterion for the bunching instability to occur is that the
prefactor of the term in k2 should be positive. The maximum
growth rate is reached for:

� = 2
��2�̃3a0
2�Mc�p=p̄

�p�Mcf�p=p̄
� . �17�

Let us now separate the amplitude from the angle depen-
dence of M, c, and f . For this purpose we define

M = M0gM���, c = c0gc�p�, f = f0gf�p� , �18�

where gi�p� are dimensionless functions of the order of 1.
The wavelength then reads

� = 2
�2�̃3a0
2

f0
� gcgM

�p��gMgcgf��p=p̄
, �19�

where we omit, for the sake of simplicity, the p dependence
by writing gi�p̄�=gi.

An inspection of Eq. �19� shows that the wavelength does
not depend on the amplitude M0 of the mobility or on the
amplitude of the mobile concentration c0.

It is important to note that since the vicinal surfaces at
high slopes are far from singular facets, the orientation de-
pendences gi�p� do not exhibit any singularities, so that the
last term of the previous relation must have a weak slope
dependence.

Let us discuss more precisely the different terms of Eq.
�19�. In the absence of growth or sublimation, the mobile
adatom concentration should be at equilibrium, c0=ceq, so
that gc�p�=1. In this case there are two possible expressions
of the wavelength according to the p dependence of �3 which
means according to the monopolar or dipolar nature of the
steps. The results are summarized in Table V.

Let us calculate the order of magnitude of the wavelength
�.

�i� For the dipolar case the value of the dipolar moment of
Si is known to be roughly Adip


2 /6�10−30 J m.49,50 Using
the electromigration force expression f0=zeEm where z is the

TABLE V. Expressions �̃3 and � obtained for dipoles and mono-
poles. The interaction energies used for the calculations are given
by Eqs. �A4� in the Appendix.

�̃3 �

Dipoles Adip
2p /a0
2

2
2�2Adip

f0 � p̄gM�p̄�

��p�gMgf��p=p̄ �1/2

Monopoles Amonop / pa0
2

2
�2Amonop

f0 � gM�p̄�

�p̄�p�gMgf��p=p̄ �1/2
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effective charge �0.01�z�0.1�,51,52 and e is the electronic

charge and Em=400 V m−1, there is 8��2
2�2Adip

f0
�20�.

This result is slightly larger than our experimental value �

�4 �m so that there should be � p̄gM�p̄�

��p�gMgf��p=p̄ �1/2
�1.

�ii� For the monopolar case Amonop can be roughly esti-
mated from the surface stress of the Si�001� surface. Since
s1+s2�1 N m−1,29,53 and using formula �A2� of the Appen-
dix one obtains Amonop /a0

2�3�10−12 J m−1 so that 3�

�2
�2Amonop

f0
�11�.

The fact that the wavelengths are comparable for mono-
poles and dipoles can be easily understood, since in elasticity
the only dimensional constant is the Young’s modulus E and
the only specific length scale is the atomic distance a0. As
Adip and Amonop scale as Ea0

4,54 it is thus possible, from
Eq.�12�, to write for monopoles and for dipoles,

� = 2
�2a0
2� E

f0
�1/2
 �g̃3gcgM�p=p̄

��p�gMgcgf��p=p̄
�1/2

, �20�

where we have defined �̃3�p�=a0
2Eg̃3�p�. Therefore, the order

of magnitude of the wavelength has to be the same for di-
poles or monopoles. Nevertheless, because of rough approxi-
mations, the orders of magnitude of the Adip and Amonop val-
ues appear to be larger here than the experimental ones. Our
experimental results are consistent with the fact that the
brackets in Eq. �20� must be a very weak function of the
slope, at least for the vicinal faces under study characterized
by high vicinality angles.

V. CONCLUSION

The main characteristics of the faceting mechanism, in the
transparency regime, of vicinal surfaces characterized by a
high density of steps are the following.

�i� In the early stages, the instability takes the form of a
step density wave, with a fixed wavelength and amplitude
that increases exponentially with time. The corresponding
wavelength is roughly equal to ��4 �m. Considering a
continuum model based on macroscopic quantities having a
weak orientation dependence, we have shown that the order
of magnitude of the wavelength does not depend upon the
details of the surface at the atomic level, such as step trans-
parency and kinetic properties, elastic description of the ini-
tial vicinal surfaces �dipoles or monopoles�, or the vicinality
angle �at least to leading order�.

�ii� At later stages, the kinetics of faceting becomes slow
and a hill-and-valley structure forms by a process in which
the terrace orientation is conserved but the facet orientation
increases with time. We have not studied in detail the kinet-
ics of the mechanism, which will be reported in a forthcom-
ing paper.

�iii� Asymptotically, a stationary state is reached. The sta-
tionary facets are the closest densely packed crystallographic
planes surrounding the initial vicinal surface in the equilib-
rium crystal shape. Because of the activation energy needed
for step coalescence, the facets �F2� are not flat at the atomic
scale, while the terraces �F1� remain flat at the atomic scale.
For both situations �dipoles or monopoles�, the final state

was described in terms of energetic competitions between
elastic relaxation and the cost needed to create the facet
edges, as described by Marchenko27 and then Alerhand et
al.29 by directly using a microscale model. The comparison
between the analytical expressions issued from the two ap-
proaches: step models and the microscale approaches, gives
access to the angular dependence of the surface stress. This
can be used to study the surface stress anisotropy as first
reported in Ref. 39.

Last but not least, our results show that it is possible to
tune the period of the faceting in the micrometric range. The
goal now is to be able to tune the faceting at the nanoscale. It
could be possible by using growth instability55 or externally
applied stress.56
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APPENDIX: ELASTIC INTERACTION BETWEEN STEPS

The elastic energy stored in an elastic body is simply half

the work done by the surface force distribution P� �x�� �char-
acterized by its components P��x��� against the surface dis-
placement. It can be written �for a review see Ref. 30�

W =
1

2

�,�

� � P��x��D���x�,x���P��x���d3x d3x�, �A1�

where D���x� ,x��� �with � ,�=x ,y� is the Green tensor that
means the displacement field u��x�� associated with a point
force of amplitude unity located at x��.44

For two �parallel or antiparallel� monopoles located in
�x1 ,y1 ,0� and �x2 ,y2 ,0� the force distribution reads30

P��x�� = F����x − x1���x − y1� ± ��x − x2���x − y2����z�

with the sign � for parallel monopoles and � for antiparallel
monopoles ���x� is the Dirac “function”� where F� has the
dimension of a force ��=1,2 ,3�.

For two �parallel or antiparallel� dipoles perpendicular to
the y direction �parallel to the step�, the force distribution
reads30

P��x�� = A��� ���x�
�x �

x−x1
��x − y1� ± � ���x�

�x �
x−x2

��x − y2����z�

where A� has the dimensions of a mechanical torque. Here
again, the sign � is for parallel dipoles and � for antiparallel
dipoles. For a step dividing the surface in two equivalent
terraces, the surface stresses s11 of the two neighboring ter-
races exert a mechanical torque per unit length of moment
s11hŷ �h being the step height� which has to be equilibrated
by the torque of the force dipolar distribution so that57,58,30

A3=s11h. On the contrary, the A1 component can only be
calculated by means of interatomic potentials �see, for ex-
ample Ref. 59�.
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Let us now consider two �-apart steps parallel to the y�
direction bearing identical dipoles parallel to the x� direction
or antiparallel monopoles in the y� direction. Using the prop-
erties of the Dirac “function” there is for the monopoles

Wmonop = Fy
2�

−	

	 �
−	

	

�Dyy�0,y − y�� − Dyy��,y − y���dydy�

and for the dipoles

Wdip = A2�
−	

	 �
−	

	 
� �Dx,x

�x
�

0,y−y�
� +

�Dxx

�x
�

�,y−y�
�dydy�,

where

Dii = 1−�2


E � 1
r −

��i−i��2

�1−�� r3�
with r=��x−x��2+ �y−y��2 for i=x ,y and now A2=A1

2+A3
2.

Performing thus the integral there is, when defining the
density of elastic energy of interaction per unit length of the
step w=limL→	

W
L ,

wdip = + 2
1 − �2


E
A2 1

�2 with A2 = A1
2 + �s11h�2, �A2�

wmonop = − 2
�1 + ���1 − 2��


E
Fy

2 ln� �

a0
� ,

where the quantity a0 is an atomic unit introduced as a cutoff
in order to avoid local divergences in the calculation of the

integrals. In both cases the rows repulse each other. Notice
that wmonop diverges while wdip converges.

Let us note that when performing the same summation for
parallel monopoles in the x� direction one recovers the well-
known result wmonop= +2 1−�2


E Fx
2 ln� �

a0
�.

In the following, Eq. �A2� will be written

wdip =
Adip

�2 , wmonop = −
Amonop

a0
2 ln� �

a0
� . �A3�

Notice that with these notations, Adip and Amonop have the
same units: energy times length.

The previous results �A3� can now easily be extended to
the case of an infinite array of parallel rows. For this purpose
it is enough to use the superposition principle and thus to do
the corresponding summations. For vicinal surfaces formed
by a periodic pattern of parallel rows, the results simply
reads

wdip
vic =


2

6

Adip

�2 , wmonop
vic = −

Amonop

2a0
2 ln� 2�


a0
� . �A4�

For faceted surfaces formed by step bunches separated by
flat terraces the summations are less easy to perform. They
are given in Table III where the approximated expressions
obtained by substituting integrals to sums are also given. The
exact and approximated expressions are compared in Fig. 10.
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