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The valley-orbit splitting in silicon quantum dots with shallow donors has been theoretically studied. In
particular, the chemical-shift calculation was carried out within the frames of k ·p approximation for single-
and many-donor cases. For both cases, the great value of the chemical shift has been obtained compared to its
bulk value. Such increase of the chemical shift becomes possible due to the quantum confinement effect in a
dot. It is shown for the single-donor case that the level splitting and chemical shift strongly depend on the dot
radius and donor position inside the nanocrystal. In the many-donor case, the chemical shift is almost propor-
tional to the number of donors.
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I. INTRODUCTION

The ability of silicon nanocrystals to emit electromagnetic
energy in the near infrared and even visible range makes
them attractive for researchers. Optical properties of the
crystallites depend on their shape and size, as well as on the
structure defects such as dangling bonds at the nanocrystal
surface or impurity centers. The role of the latter has not
been studied completely yet.

The goal of the present paper is to find the electron struc-
ture of silicon nanocrystals doped with shallow donors. In
fact, it is a logical continuation of the two other problems
which have been already more or less successfully solved
earlier. The first of these two problems is connected with the
study of impurity states in bulk semiconductors, in particular,
in silicon. Various aspects of this problem have been the
subject of detail and successful investigation for several de-
cades. One can find the discussion of the wide range of prob-
lems relating to the impurity states in bulk semiconductors,
e.g., in Refs. 1–3. The second problem covers electron and
optical properties of undoped silicon nanocrystals of small
sizes �less than 10 nm�. Substantial progress has also been
attained in this field for the past 15 years. Carried out theo-
retical and experimental studies shed light to the structure of
electron states and energy spectrum, transition probabilities,
mechanism of light emission and absorption in nanocrystals
�quantum dots�, etc. Integration of these two different prob-
lems is interesting in terms of modification of electron and
optical properties of silicon quantum dots by their doping
with shallow impurities.4–9

Investigations of the spatial charge distribution in a quan-
tum dot with impurity,10 formation of impurity centers inside
silicon nanocrystals from the energy point of view,11 inter-
valley scattering,12 hyperfine splitting and optical gap,13 and
screening of the point-charge field14–20 have been performed
in the past years. No doubt, these investigations contributed
to more thorough understanding of the properties of the sys-
tem nanocrystalline Si + impurity. At the same time, a lot of
questions are still waiting to be solved. In this paper, we are
going to carry out theoretical analysis of electron states in
silicon nanocrystals with diameter of 2–5 nm doped with
substitutional V-group donors.

Frequently, when considering impurity states in bulk
semiconductors, the so-called hydrogenlike model is used.

Within this model, the electron potential energy in the do-
nor’s field equals

VH = − e2/�sr , �1�

where −e stands for electron charge and �s is a dielectric
constant of the semiconductor surrounding the donor. How-
ever, such a model does not take into account individual
features of the embedded donor. In particular, the binding
energy is the same for any donor in bulk silicon regardless of
the chemical-element number in the Periodic Table. In this
case, the number of equivalent valleys in a conduction band
determines the degeneracy of the ground-state energy that is
sixfold degenerate �without spin�. This result is in conflict
with the experiment that shows a great difference in binding
energies of different donors. Moreover, experiments show
the splitting of the sixfold level into a singlet, doublet, and
triplet.

Kohn and Luttinger21,22 explained the divergence of hy-
drogenlike model and experiments by some extra short-range
potential that exists in the nearest vicinity �about the Bohr
radius� of the donor nucleus. This supposition was confirmed
later by theoretical analysis and calculations.23,24 Due to the
short-range character, this potential is sometimes referred to
as the “central-cell correction.” Its presence leads to two
main consequences. First, because of strong spatial localiza-
tion, the central-cell potential is weakly localized in k space.
This provides a mixing of electron states of all the six val-
leys, which is usually called valley-orbit interaction.21,22 As a
result, the sixfold degenerate energy level splits into three
ones corresponding to the singlet, doublet, and triplet with
typical splitting energy of about 10–20 meV for various do-
nors. Second, this potential shifts the ground-state energy
with respect to the value obtained within the hydrogenlike
model, which is known as a chemical shift.

According to Zhou et al.25 and our calculations, in doped
quantum dots, the valley-orbit splitting plays a crucial role as
well. Similarly to a bulk semiconductor, this leads to the
degeneracy removal and chemical shift. Using the local den-
sity approximation, the authors of the Ref. 25 have found an
anomalously strong splitting ��eV� of the ground-state en-
ergy level above the optical gap �“up” states� for silicon
quantum dot doped with the V-group donor. That value of the
energy splitting highly exceeds the bulk value that is about
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10–20 meV as it was already mentioned. Unfortunately, the
authors of the Ref. 25 have considered the only structural
configuration Si86XH76 with a single central-located impurity
atom X of III or V group. Correspondingly, the nanocrystal
size equals 1.6 nm in accordance with the authors’ estima-
tions.

In the present paper within the framework of the
envelope-function approach, we will obtain the ground-state
splitting in the up band of a silicon nanocrystal with a donor.
We find the up-state energies as functions of the dot size and
donor displacement from the dot center. The wave functions
and energies of electrons will be calculated also for many-
donor case assuming the homogeneous impurity distribution
over the dot volume. We will show that the quantum con-
finement, increasing as the dot size decreases, is the main
reason of the anomalously strong level splitting and chemical
shift.

It should be noted that the first-principles calculations of
the electronic structure for undoped silicon quantum dots,
employing pseudopotential,26 tight binding,27,28 or
density-functional29 approaches, exhibit as well a weak split-
ting �from �20 to �5 meV for 2–5 nm nanocrystals� of the
ground up-band electron state into a singlet, doublet, and
triplet. Such a splitting is also due to the weak valley-orbit
interaction and point-group Td symmetry of the structure.

In contrast to the mentioned above first-principles meth-
ods, in the envelope-function approximation, the valley-orbit
interaction does not arise automatically. If the k ·p Hamil-
tonian does not include a connection between the states of
different valleys, the ground-state energy level remains six-
fold degenerate.30,31 We do not attempt to introduce the
valley-orbit coupling into the Hamiltonian operator for the
quantum dot without donors, since this problem is rather
difficult and the splitting is weak. Therefore, we assume that
the lowest energy level in undoped quantum dot is sixfold
degenerate. In the following, this model will be used as a
zeroth order approximation for the quantum dot with a donor
�donors�.

The paper is organized as follows. First, the single-donor
system is considered. For this case, we introduce the electron
potential energy in the dot with a donor �Sec. II� and the k ·p
Hamiltonian operator �Sec. III�. Basic equations of the prob-
lem and a perturbative approach for their solving are formu-
lated in Sec. IV. In Sec. V, we discuss electron states in the
case of asymmetric donor position inside the dot. Section VI
is devoted to the symmetric donor distribution. Both single-
and many-donor cases are considered therein. Eventually,
Sec. VII contains some concluding remarks.

II. ELECTROSTATIC POTENTIAL AND SCREENING OF
THE ION FIELD

First, we consider the nanocrystal containing one donor.
Later, in the Sec. VI, we will generalize the obtained results
with the many-donor case.

The starting point of our study is the single-particle
Schrödinger equation for an “extra donor’s” electron that be-
longs to the whole nanocrystal after the donor substitutes an
atom of silicon in the lattice:

H1��� = E��� . �2�

Here, the single-particle Hamiltonian operator is

H1 =
p2

2m0
+ Vlatt + VC, �3�

where m0 is the free electron mass and Vlatt is the self-
consistent lattice potential. Inside the quantum dot of radius
R, the lattice potential is assumed to be coinciding with that
for bulk silicon, while outside the dot, it equals infinity. The
last term VC in Eq. �2� represents the Coulomb interaction of
the electron with its own image and the donor ion.

Determination of the total Coulomb potential energy VC
in the quantum dot is not a simple task. As it was mentioned
in the Introduction, the use of the hydrogenlike model with
the macroscopic dielectric constant is obviously insufficient
for an analysis of electron states and fine structure of the
spectrum. In connection to this, some authors described the
screening properties of a nanocrystal with a modified dielec-
tric constant ��R� that depends on the dot radius.16,32 Such a
model, indeed, gives some increase of dielectric properties
due to the finite size of the crystallite but does not correctly
reflect the local structure of the electric field influencing the
state of the test electron.

A stricter approach has shown the necessity of self-
consistent first-principles calculations of a microscopic
charge distribution and electrostatic fields in the
nanocrystal.17,18,20,33 Nevertheless, the obtained microscopic
picture permits clear qualitative interpretation using the static
dielectric function ��r� depending on electron position vec-
tor. Calculations of Trani et al.20 have shown that the charge
response in the dot remains almost the same as that in the
bulk. The authors of Ref. 20 have found the electron density
oscillations near the donor ion. However, the oscillations
damp the further one gets from the donor in a distance of a
few bond lengths. At the same time, some excess positive
charge accumulates near the dot boundary. This surface ef-
fect that is due to the dangling bonds at the dot boundary
explains significant weakening of screening in the nanocrys-
tal.

From the point of view of macroscopic electrodynamics,
the above results may be interpreted as follows. The positive
point charge polarizes the electron subsystem and causes
charge redistribution in the nanocrystal. A negatively charged
electron cloud is induced around the donor in a distance of
the order of the Bohr radius. Consequently, the same uncom-
pensated positive charge goes to the dot boundary and cre-
ates polarization fields which may be treated as the fields of
images.

In the case of bulk semiconductor, an explicit form of the
electron potential energy in the field of donor’s ion has been
obtained by Pantelides and Sah.24 It is convenient to separate
it on two components describing the long-range and the
short-range parts of the Coulomb interaction. The long-range
component represents a macroscopic Coulomb field in a me-
dium. It is described with function �1�, where �s is silicon
permittivity equal to 12. The short-range part W�r� can be
expressed as24
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W�r� = −
e2

r
�Ae−�r + �1 − A�e−�r −

e−�r

�s
� , �4�

where parameters �, �, � equal 0.7572, 0.3123, and 2.044 of
the reciprocal Bohr radius, respectively, and A=1.175. The
short-range term W�r� represents an interaction of the test
electron with the electron cloud having the charge �1/�s

−1�e and the part of the ion charge of the same magnitude
and opposite sign. The other part of the ion charge equal to
e /�s remains unscreened and creates the long-range hydro-
genlike field �Eq. �1�	 weakened by �s times.

Evidently, if the quantum-dot radius considerably exceeds
the Bohr radius, the short-range part W�r� does not change its
form.18,20 On the contrary, the long-range part undergoes sig-
nificant changes in view of the appearance of the polarization
fields. As a result, Eq. �1� in a quantum dot transforms into
V�h ,r�=Vie�h ,r�+Vsp�r�, where Vie�h ,r� denotes an
electron-ion interaction including not only the direct Cou-
lomb attraction but also an interaction between the electron
and ion image:

Vie�h,r� = −
e2

�s�r − h�
−

e2��s − �d�
�sR

�

l=0

�
hlrl

R2l

l + 1

l�s + �l + 1��d
Pl�cos �� . �5�

Here, �d is the static dielectric constant of the wide-band
matrix surrounding the nanocrystal, h stands for the donor’s
position vector, � is the angle between r and h, and Pl�cos ��
is the Legendre polynomial.

Interaction between the electron and its own image �self-
polarization field� depends only on the distance r between
the electron and the dot center:

Vsp�r� =
e2

2R
� 1

�d
−

1

�s
� +

e2��s − �d�
2�s��s + �d�R

r2

R2 − r2

+
e2��s − �d�

2��s + �d�2R
ln� R2

R2 − r2� +
e2��s − �d�

2��s + �d�2R


n=1

�

�

− ��nsn�r� , �6�

where sn�r�=
l=1
� �r /R�2l / ln+1 and �=�d / ��s+�d�. For typical

dielectrics, such as SiO2 or Al2O3, we may set �d of the order
of 2.5–3. Then, the parameter � turns out to be 1/5–1/6,
which is small enough.

Thus, one can write the Coulomb term VC in Eq. �3� as the
sum VC=V�h ,r�+W�h ,r�. Let us formally introduce the lo-
cal dielectric function ��r� in the dot within the framework
of macroscopic picture but taking into account the field
W�h ,r�. We consider the central donor location �h=0� and
write the function ��r� as the ratio

��r� = −
e2

r�Vie�0,r� + W�0,r�	
. �7�

The results of calculations with formula �7� for 1.2 nm nano-
crystal are presented in Fig. 1 for �d=1. The value �d=1 and
the nanocrystal size equal to 1.2 nm correspond to the calcu-
lations of Trani et al.20 and Ogut et al.17 for a doped silicon

nanocrystal Si35H36 in vacuum. The results of the Refs. 17
and 20 are also presented in the figure to be compared. One
can see a quite good agreement between function �7� and the
ones obtained by the local density20 and pseudopotential17

methods. This is an evidence in favor of the suggested model
for VC.

The case �d=3 corresponds to the dielectric surrounding
such as SiO2. This is the case considered in our work. In Fig.
2, we present the dielectric function �Eq. �7�	 at �d=3 for
three different radii of the dot. It is seen that the dielectric
function ��r� for �d=3 is considerably greater than that for
�d=1. However, the common essential decrease of ��r� in a
nanocrystal compared to the bulk value takes place. As was
pointed out earlier,15,18,20 such a decrease is mainly due to the
polarization charges at the dot boundary, which causes wide
decaying area on the dependence ��r�. The monotonous de-
crease of ��r� goes up to the nanocrystal boundary, where the
value of the dielectric function becomes equal to �d.

III. HAMILTONIAN OPERATOR OF THE PROBLEM

Direct solving of Eq. �2� is a problem complicated
enough. Therefore, it is usually replaced by a more simple
approximate method. In the following, we will exploit the

FIG. 1. Dielectric function of the dot vs the distance �in atomic
units� from the dot center for �d=1. Solid line, present work;
dashed line, Trani et al. �Ref. 20�; dotted line, Ogut et al. �Ref. 17�.

FIG. 2. Dielectric function of the dot at �d=3 for �1� R=1 nm,
�2� R=1.75 nm, and �3� R=2.5 nm.
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k ·p approach to find the wave function ��� and the electron
spectrum.

Let us now construct the k ·p Hamiltonian operator of the
problem. Frequently, when describing various processes in
bulk silicon, it is sufficient to consider only one valley in a
conduction band but not all the six ones. In this case, the
electron wave function is written as a product of a slowly
varied envelope function and Bloch function corresponding
to the energy minimum of the valley �	 direction�. Accord-
ingly, the k ·p Hamiltonian is represented as a scalar operator
with “longitudinal” ml=0.92m0 and “transverse” mt
=0.19m0 effective masses in a kinetic-energy term. However,
such description is correct if �i� electron energy is close to
the band minimum, i.e., obeys the inequality �E−E	�
 �E
−EX�, where EX and E	 are the energies of the X and 	
points; and �ii� perturbing external fields, such as a donor
one, are sufficiently fluent and almost invariable within a
unit cell.

The situation we consider is strongly different. Typical
size-quantization energies for �2–5 nm nanocrystals are of
the order of the energy difference between X and 	 points or
even considerably greater. Besides, the central-cell potential,
which we treat as a main reason of the splitting, varies rap-
idly. In this case, we need the k ·p Hamiltonian which would
correctly describe not only the smallest vicinity of the band
minimum but also essentially the wider energy range. More-
over, due to the presence of effective valley-orbit coupling,
we should take into account all the six valleys in the conduc-
tion band.

At first sight, it seems possible to write the electron wave
function in the dot by analogy with the bulk case24 as the
sum over the six valleys:

� = 

n=1

6

Dn�r��	n� . �8�

Here, �	n� are the Bloch functions of the six energy minima,
and Dn�r� stand for the slowly varied envelope functions.
The Bloch-state basis �	n� is quite convenient in describing
the states with low energies near the dispersion-curve mini-
mum. However, as was already mentioned, the energies we
consider are substantially greater. In this case, following
Kopylov,34 we shall use the other Bloch-state basis including
six Bloch functions of three different X points in the Bril-
louin zone. We denote three pairs of these functions as �X�,
�X��; �Y�, �Y��; and �Z�, �Z��. Each pair belongs to the twofold
degenerate irreducible representation X1 of the corresponding
X point. The Bloch functions without prime have nonzero
value at the lattice site, while the primed functions equal zero
at those points. The choice of the X1 functions as the Bloch
basis allows us to correctly describe a dispersion-law nonpa-
rabolicity that mainly originates from the energy-branch
crossing in the X points. As a result, we write the electron
wave function in the form

� = 

J=X,Y,Z

�FJ�J� + FJ��J��� , �9�

where FJ and FJ� are smooth envelope functions.

In order to obtain the k ·p Hamiltonian, we have to mul-
tiply Eq. �2� by any conjugate Bloch function �J� or �J�� and
then integrate the obtained equation over the unit-cell vol-
ume �. As a consequence, the external field VC appears in
the k ·p Hamiltonian in some averaged form.

Since the long-range part V�h ,r� is a fluent function, it is
strictly diagonal in the Bloch-state basis. The averaging over
the unit-cell volume does not change this function, which
gives rise in diagonal elements of the k ·p Hamiltonian.

On the contrary, the central-cell potential varies sharply
and contributes in both diagonal and off-diagonal elements.
However, averaging over the unit cell yields nonzero only
for the unit cell containing the donor. Such elements may be
approximated by the Dirac � functions, as it has been done in
Refs. 12 and 35:

WXY � �X�W�Y�� = �Z�W�X�� = �Y�W�Z�� = − Q0��r − h� ,

WAA � �X�W�X�� = �Y�W�Y�� = �Z�W�Z�� = − Q��r − h� ,

WAA� � �X��W�X��� = �Y��W�Y��� = �Z��W�Z���

= − Q���r − h� . �10�

Here, �A�W�B����−1�A*�r�W�h ,r�B�r�dr, and indices A
and B describe the Bloch states X, Y, or Z. Q0, Q, and Q� are
some parameters independent of r and h, which will be de-
termined below. Since the donor is of substitutional kind, the
parameter Q� should be much less than Q0 and Q because the
primed Bloch functions equal zero at the donor site.

The eigenstate and eigenvalue problem is formulated in
the form of the Schrödinger-like matrix equation

H�F� � �Hx U U

U Hy U

U U Hz
��

FX

FX�

FY

FY�

FZ

FZ�

� = E�
FX

FX�

FY

FY�

FZ

FZ�

� . �11�

We have introduced here the matrix Hamiltonian operator H
acting in space of the six-dimensional �6D� envelope-
function vectors. The origin of the E axis coincides with the
X-point energy. Each element of the matrix H is a block 2
�2 defined by the following expressions:

U = �WXY 0

0 0
� , �12�
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Ha =�
pa

2

2ml
+

p2 − pa
2

2mt
+ V�h,r� + WAA + U0�r� � 1

mt
−

1

m0
�pbpc + i

p0

ml
pa

� 1

mt
−

1

m0
�pbpc − i

p0

ml
pa

pa
2

2ml
+

p2 − pa
2

2mt
+ V�h,r� + WAA� + U0�r� � . �13�

Here, p0�0.14�2� /a0� is the distance in the p space from
any of the energy minima to the nearest X point, and a0 is the
lattice constant of silicon. The confining potential U0�r�
equals zero inside the dot and infinity elsewhere. Each of the
small indices �a ,b ,c� runs over the values x, y, or z and
always differs from each other. In the absence of the confin-
ing and Coulomb potentials, the matrix �Eq. �13�	 transforms
into the Kopylov’s k ·p Hamiltonian operator 2�2 written in
the Bloch-state basis of a single X point.34

In order to completely define the k ·p Hamiltonian opera-
tor H, one needs to find the exact expressions for Q0, Q, and
Q�. All these parameters are, exclusively, the characteristics
of the donor core creating the short-range central-cell poten-
tial. As it has been mentioned above, its typical scale is the
Bohr radius. On this reason, an explicit form of the central-
cell potential does not depend, in fact, on the donor sur-
rounding: it is a bulk material or a nanocrystal with the ra-
dius significantly exceeding the Bohr radius. Therefore, we
may now find the values of Q0, Q, and Q� from experimental
data for the energies of donor levels in bulk silicon.

As has been already mentioned, experiments show the
ground-state splitting into singlet with the symmetry of the
irreducible representation A1 of the point group Td, doublet
�E representation�, and triplet �T2 representation�. Let us de-
note the experimentally observed energy shifts related to the
sixfold degenerate theoretically calculated value �−31.3 meV
according to Faulkner36� as 	�A1�, 	�E�, and 	�T2� for the
singlet, doublet, and triplet states, respectively, as it is shown
in Fig. 3. We define the shift as the difference between the
experimental value and the sixfold degenerate theoretical
one. The numbers Q0, Q, and Q� can be found similarly to
the method suggested in Refs. 12 and 35. Using the trial
function22 of Kohn and Luttinger, it is easy to express Q0, Q,
and Q� through the above shifts as follows:

Q0 = −
a2b

3
�	�A1� − 	�E�	 ,

Q = −
a2b

3
�	�A1� + 2	�E�	 ,

Q� = − a2b	�T2� , �14�

where a and b are the variation parameters introduced by
Kohn and Luttinger.22 They are a=1.02aB and b=0.58aB,
where aB=�2�s /mee

2 is the effective Bohr radius. In the defi-
nition of aB, the isotropic effective mass me has been used. It
comes from the averaging of the electron dispersion law in
the conduction band over angles: me

−1= �2mt
−1+ml

−1� /3
��0.26m0�−1.

IV. METHOD OF SOLVING

Solving of the basic equation �Eq. �11�	 for no donor case
has been described in detail in Ref. 30. The method used
there is based on a separation of the Hamiltonian matrix on
the main isotropic part H0 and anisotropic perturbation. The
main part called hereafter as the Hamiltonian operator of the
zeroth approximation has the form

H0 = � p2

2me
+ U0�r�� � I , �15�

where I is a 6�6 identity matrix. The perturbation equals
H−H0 and contains all the terms with zero mean value.

Now, we apply this method to solve our problem, includ-
ing both the short- and long-range Coulomb terms into the
perturbation. The perturbation matrix is written similarly to
the total Hamiltonian operator H as follows

h = �hx U U

U hy U

U U hz
� . �16�

The block U is defined as before �Eq. �12�	, and the block ha

equals Ha−H0
�2�, where H0

�2� coincides with any diagonal
block 2�2 of the unperturbed Hamiltonian 6�6 �Eq. �15�	.

Because of the isotropic form of the unperturbed Hamil-
tonian, one may classify its eigenstates similarly to atomic
systems as the states of types s, p, d, etc. Then, we expand
the envelope-function eigenvector �F� over this basis with
some constant 6D vector coefficients to be determined

�F� = �Cs��s� + 

a=x,y,z

�Cp
�a���pa� + 


i=1

5

�Cd
�i���di� + ¯ .

�17�

Here, �s�, �pa�, �di�, etc., are the s-, p-, d-type, etc., eigen-
states of the unperturbed operator �Eq. �15�	.

FIG. 3. Schematic representation of the ground-state splitting in
bulk silicon.
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As was shown in Ref. 30, it is sufficient to keep in the
expansion �Eq. �17�	 only the s and p states to determine the
ground-state envelope functions, because all the other unper-
turbed states have too high energies and weakly mix with the
lowest states. After this simplification, the matrix differential
equation �Eq. �11�	 transforms into the algebraic ones:

�E − E0 − �s�h�s���Cs� = 

a=x,y,z

�s�h�pa��Cp
�a�� ,

�E − E1 − �pa�h�pa���Cp
�a�� = �pa�h�s��Cs� + 


b�a

�pa�h�pb��Cp
�b�� .

�18�

Here, E0=�22 /2meR
2 and E1=�2�2 /2meR

2 are the eigen-
values of the unperturbed s and p states, respectively, and
��4.4934 is the first root of the spherical Bessel function
j1�x�.

In order to proceed with Eq. �18�, we have to calculate the
matrix elements of s-s, s-p, or p-p type for all terms of the
perturbation matrix h. Below, we write down the nonzero
matrix elements which are necessary for the subsequent cal-
culations. In particular, the matrix elements of the central-
cell operators �Eq. �10�	 are given by

�s�W�s� = − Q̃
j0

2�q�
2R3 ,

�s�W�pa� = − Q̃
�3na

2R3j0���
j0�q�j1��q� ,

�pb�W�pa� = − Q̃
3nanbj1

2��q�
2R3j0

2���
, �19�

where q=h /R, na=ha /h. W is any of the operators in Eq.
�10�, and Q̃ is the corresponding parameter. Anisotropic
terms of the bulk Hamiltonian matrix also give rise to the
perturbation. Their matrix elements are as follows:

i
p0

ml
�px�px�s� = i

p0

ml
�py�py�s� = i

p0

ml
�pz�pz�s� =

2�p0

�3mlR

�

�2 − 2

� Hsp,

�px�p2 − 3pz
2�px� = �py�p2 − 3pz

2�py� = −
�pz�p2 − 3pz

2�pz�
2

=
�2

R2

2�2

5
�

6mtml

ml − mt
Hpp. �20�

Finally, the long-range part of the Coulomb interaction has
matrix elements of the following kind:

�s�V�h,r��s� =
e2

2R
� 1

�d
−

1

�s
� + 0.2

e2

�sR
−

e2

R
� 1

�d

−
1

�s
� sin�2q�

2q
− J�2,2q��� � Vss�q� ,

�pa�V�h,r��pa� =
e2

2R
� 1

�d
−

1

�s
� + 0.29

e2

�sR
−

e2

R
� 1

�d

−
1

�s sin2 �
�2 cos2 � −

sin�2�q�
2�q

−
sin2��q�

��q�2 + J�2�,2�q��� � Vpp�q� ,

�s�V�h,r��pa� =
8

�3

e2na

�sR
� cos�q�cos��q�

2q��2 − 2�sin �
+

�2 + 2

�2 − 2

sin�q�sin��q�
4�q sin �

−
q

4�
− �1

2
+

3�2 − 2

q2��2 − 2�2� cos�q�sin��q�
2� sin �

+ �1 +
4�2

q2��2 − 2�2� cos��q�sin�q�
4 sin �

− q
�2 − 2

8� sin�
�J�� + ,� − � − J„�� + �q,�� − �q…	

+
�s − �d

�s + 2�d

�q

��2 − 2�2� � Va�q� . �21�

The numbers 0.2 and 0.29 in Eq. �21� come from the numeri-
cal integration, J�y ,x�=x

ydt�1−cos�t�	 / t. We should note
that the term �pa�V�h ,r��pa� has some nonzero anisotropic
addition, which has not been included into expressions �21�.
Also, matrix elements �pa�V�h ,r��pb�, with a�b, have not
been presented here. However, both these terms are negligi-
bly small. We omit them in order to simplify the cumber-
some expressions for the matrix elements.

V. ASYMMETRIC DONOR POSITION

Generally speaking, Eq. �18� is solved numerically except
for the two special cases of spherical symmetry. If the donor
occupies some arbitrary position inside the dot, any symme-
try in the structure is absent. The main result in this case is
the total degeneracy removal. Consequently, the ground state
in the dot splits into six different states. The solutions of Eqs.
�18� for this case have been obtained by the computational
methods. As a result, the energies of the six “lowest” states
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are shown in Fig. 4 as functions of the dimensionless donor
displacement q from the dot center for two different dot ra-
dii.

One can see that the twofold and threefold levels weakly
split into two or three levels, respectively, if q�0. As q
increases, their energies slowly rise. The energy of the
ground state drops to some minimal value and then rises
approaching the doublet and triplet groups of levels. At the
point of the ground-state energy minimum, the level splitting
in the nanocrystal becomes maximal, since the off-diagonal
matrix elements of s-p-type Va�q� have maximal values.
Such a splitting is a consequence of the strong entanglement
of all the six states, which is accompanied by the “repulsion”
of their energy levels.

We have calculated the electron wave functions of the six
lowest states for qx=0.24, qy =0.15, qz=0.1. Chosen values
of qa correspond to some arbitrary donor position that has no
any symmetry with respect to the basic crystallographic di-
rections and the dot boundary. As the calculations show, the
ground electron state has the wave function being predomi-
nantly a product of the s-type envelope function and Bloch
function �A1�= ��X�+ �Y�+ �Z�� /�3. The latter belongs to the
irreducible representation A1 of the point group Td. For R
=2 nm, the quota of this term in the ground electron state
equals 0.7, while the quotas of the products �px��A1�, �py��A1�,
and �pz��A1� equal 0.11, 0.04, and 0.014, respectively. Thus,
the overall “weight” of the Bloch state �A1� in the ground-
state wave function is approximately 0.9. The remaining
10% is almost homogeneously distributed over the Bloch
states �X��, �Y��, and �Z��, which are the functions of the
irreducible representation T2 of the Td group. At the same
time, the Bloch states �E�1��= ��X�− �Y�� /�2 and �E�2��= ��X�
+ �Y�−2�Z�� /�6, transformed in accordance with the irreduc-
ible representation E of the tetrahedral group, are not in-
volved into the ground state. The similar situation takes place

for the ground state in the symmetric case q=0 �see expres-
sion for �1 in Eq. �24� below	, in which the Bloch functions
�E�1,2�� are absent. On the other hand, in the symmetric case,
the products �pa��A1� do not appear in the ground state. That
is in contrast with the asymmetric case.

Figure 5 shows the quota of the s-type envelope function
in the ground state versus the dot radius in the asymmetric
and symmetric cases for q=0.3 and q=0, respectively. The
dashed line indicates the weight of the s-type envelope func-
tion for q=0.3. As is seen, the breakdown of the spherical
symmetry in the system reduces the quota of the s-type part
compared to that for q=0 �upper curves in Fig. 5�. Corre-
spondingly, the p-state weight rises.

VI. SYMMETRIC DONOR POSITION

Now, we present some general analytical expressions for
the symmetric case. For example, it is easy to find an ana-
lytical solution of Eq. �18� if a single donor occupies the dot
center, or the great amount of donors is almost uniformly
distributed over the dot volume.

In these symmetric cases, system �18� is simplified be-
cause all the off-diagonal s-p-type matrix elements vanish.
Solving of system �18� exhibits the splitting of the ground
electron state in the dot into the singlet, doublet, and triplet,
as it was in the bulk. Related to the X-points, the energies of
these states are written in the form

E�j� = Ē + V̄ − Hpp +
Wj

�+�

2

−���E + �V − Wj
�−�

2
− Hpp�2

+ Hsp
2 . �22�

Here, index j enumerates the levels of the singlet �j=1�,
doublet �j=2�, and triplet �j=3� whose energies differ from
each other due to the presence of the central-cell potential.
We have introduced in Eq. �22� the mean values of the size-
quantization energy and long-range Coulomb matrix ele-

ment: Ē= �E0+E1� /2 and V̄= ��s�V�h ,r��s�+ �p�V�h ,r��p�� /2,
respectively. The notation �p�¯ �p� means, in fact, �pa�¯ �pa�
with any of the p-type envelope functions. �E is the differ-
ence of E1 and E0, and �V= �p�V�h ,r��p�− �s�V�h ,r��s�. At
last, the matrix elements of the central-cell potential for the
singlet, doublet, and triplet states are defined by

W1
�±� = �s��2WXY + WAA��s� ± �p�W�AA�p� ,

W2
�±� = �s��WAA − WXY��s� ± �p�W�AA�p� ,

W3
�±� = �s�W�AA�s� ± �p�WAA�p� . �23�

Explicit expressions for V̄, �V, and Wj
�±� are, of course, dif-

ferent for the single- and many-donor cases. We will present
them below when discussing each of these cases.

The electron wave functions of the singlet, doublet, and
triplet are described by the following expressions:

FIG. 4. Energies of the �1� singlet, �2� doublet group, and �3�
triplet group states with respect to the X-point energy in a conduc-
tion band of silicon as functions of the phosphorus-donor displace-
ment from the dot center. nx=0.8, ny =0.5, and nz=0.3.
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�1 = cos��1��A1��s� + sin��1�
�X���x� + �Y���y� + �Z���z�

�3
,

�2
�1� = cos��2��E�1���s� + sin��2�

�X���x� − �Y���y�
�2

,

�2
�2� = cos��2��E�2���s� + sin��2�

�X���x� + �Y���y� − 2�Z���z�
�6

,

�3
�1� = cos��3��X���s� − sin��3�

�2�A1� + �3�E�1�� + �E�2��
�6

�x� ,

�3
�2� = cos��3��Y���s� − sin��3�

�2�A1� − �3�E�1�� + �E�2��
�6

�y� ,

�3
�3� = cos��3��Z���s� − sin��3�

�A1� − �2�E�2��
�3

�z� . �24�

The parameter � j defines the weight of the s- or p-type en-
velope function in the electron state. Its value is given by

cos�2� j� =
�E + �V − 2Hpp − Wj

�−�

���E + �V − 2Hpp − Wj
�−��2 + 4Hsp

2
. �25�

Actually, all the parameters � j vary within the range 0�� j
� /2.

In the bulk Si, the wave functions of the six lowest donor
states are the products of the �A1�, �E�, or �T2� Bloch func-
tions and s-type envelope function.24,36 In the quantum dot,
the situation is different. The strong quantum confinement
involves into the electron states extra terms with p-type en-
velope functions, which reduce the weight of the s-type
terms. Consequently, the spherical symmetry of the envelope
functions disappears. This is an important distinguishing fea-
ture of splitting in nanocrystal compared to the one in bulk.
In the case � j =0, the spherical symmetry of the envelope
functions is completely restored because the p-type terms
vanish.

Thus, the electron wave function becomes a sum of two
parts. The first part has the bulklike form, while the second

part with the p-type envelope functions has a more compli-
cated structure. Nevertheless, the total wave function belongs
to the corresponding irreducible representation of the tetra-
hedral group as it was in the bulk. One can determine the
quota of the first part in the singlet, doublet, and triplet elec-
tron states as the probability to be in the s state: P�j�

=cos2�� j�. These probabilities will also be discussed below
for both symmetric cases.

A. Single-donor case

The general expressions for the energies and wave func-
tions of the singlet, doublet, and triplet electron states in the
quantum dot have already been obtained �see Eqs.
�22�–�25�	. Now, we should define all the matrix elements
introduced in Eqs. �22�–�25� for the case of the central-
located single donor in the dot.

The s-p and p-p matrix elements of the central-cell poten-
tial equal zero, while the s-s matrix elements are group in
accordance with the symmetry of the Td-group representa-
tions. Taking into account Eqs. �10� and �14�, this yields

W1
�±� = �s��2WXY + WAA��s� =

2a2b

2R3 	�A1� ,

W2
�±� = �s��WAA − WXY��s� =

2a2b

2R3 	�E� ,

W3
�±� = �s�W�AA�s� =

2a2b

2R3 	�T2� . �26�

Since q=0 for the central donor position, the s-p matrix el-
ements of the long-range field Va�q� equal zero, while the s-s
and p-p matrix elements have nonzero values. Correspond-

ingly, V̄ and �V are defined as V̄= �Vss�0�+Vpp�0�	 /2 and
�V=Vpp�0�−Vss�0�.

It is known that in bulk Si, the energy shift of the ground
state is usually considerably greater than those for the dou-
blet and triplet states. Therefore, it is natural to expect the
stronger shift of the singlet level compared to the other ones
in quantum dots as well. This is confirmed by the solutions
�Eq. �22�	 shown in Fig. 6.

It is seen that the energy of the singlet state �line 1 in the
figure� for three chemical elements being typical donors for
silicon is always strongly split off. On the contrary, the dou-
blet and triplet states �lines 2 and 3, respectively� have the
energies close to each other, as well as to the sixfold degen-
erate energy of the ground state in the case of no valley-orbit
interaction �dashed line in Fig. 6�. The difference between
line 1 and the dashed line coincides with the chemical shift.
As it follows from the figure, an introduction of arsenic in
the nanocrystal provides maximal chemical shift, while the
shift produced by antimony is almost two times less. Some
intermediate shift values have been obtained for the dot
doped with phosphorus.

Despite the fact that the matrix elements �Eq. �26�	 of the
valley-orbit interaction for nanocrystal turn out to be directly
proportional to the “bulk” values of the energy shifts, the
splitting in nanocrystal is not proportional to that in bulk.

FIG. 5. The weight of the s-type envelope function in the elec-
tron state. Upper curves—q=0: 1, singlet state; 2, doublet states; 3,
triplet states. 4, The weight of the s-type envelope function in the
ground electron state for asymmetric donor position: qx=0.24, qy

=0.15, and qz=0.1.
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This is due to the complicated nonlinear dependence of E�j�

on Wj
�±�. In turn, such nonlinear dependence arises from a

mixing of the s- and p-type unperturbed envelope functions
in the quantum states of a doped dot.

It is also seen in Fig. 6 that the chemical shift becomes
greater for smaller nanocrystals. This circumstance was
pointed out earlier for doped dots in connection with the
calculations of hyperfine splitting13 and electronic structure25

of the nanocrystal Si86XH76. Such behavior is explained by
the enhanced quantum confinement effect. The envelope
function of the lowest energy level is mainly of the s type. At
the same time, the Bloch function is predominantly of the A1
type, i.e., it has nonzero value at the donor site. It is well
known that the envelope function in a spherical potential
well has the normalization factor �R−3/2. As a result, the
total wave function at the center of the dot significantly in-
creases if the dot size decreases. Correspondingly, the matrix
elements of the central-cell potential defining the shift of the
ground-state energy rise quickly. Meanwhile, independent of
the envelope-function type, the Bloch functions for the ex-
cited states have mainly E or T2 symmetry. These functions
equal zero at the donor site. Consequently, the matrix ele-
ments �A�W�B��, where �A� and �B� stand for E or T2 type
functions, are considerably smaller compared to the one for
the ground state. This leads to the smaller values of the en-
ergy shifts for the doublet and triplet states and enhancement
of the level splitting shown in the figure.

It was already mentioned that the density-functional
theory25 also gives the strong splitting of the lowest level in
the Si86XH76 nanocrystal with the central-located donor atom
X. We have attempted to compare our results on the energy
splitting with the values reported by the authors of Ref. 25.
However, their calculations have been performed for the
nanocrystal with too small size of about 1.6 nm. The appli-
cability of the k ·p method for such small nanocrystals is, of
course, questionable. Nevertheless, we have calculated the
energy splitting for 1.6 nm nanocrystal by the method used
in the present paper.

Surprisingly, we have found a quite good agreement be-
tween the two works. For instance, the differences between
the doublet �upper� and triplet �middle� energy levels in the
Ref. 25 are about 0.07, 0.11, and 0.15 eV for phosphorus,
arsenic, and antimony donor, respectively. The same energies
calculated by the k ·p method used here for 1.6 nm quantum
dot turn out to be 0.11, 0.11, and 0.2 eV for these three
dopants. The singlet-doublet transition energy in the density-
functional theory25 has the values 1.12 eV �P�, 1.22 eV �As�,
and 1.07 eV �Sb�, while the k ·p method yields 1.12 eV �P�,
1.87 eV �As�, and 1.11 eV �Sb�. Evidently, only the singlet-
doublet transition energy for arsenic has an overestimate
value in the frames of the k ·p method. At the same time, all
the other splitting energies exhibit quite satisfactory �within a
few percent� coincidence.

The probabilities P�j� as functions of the dot radius are
plotted in Fig. 5 �upper lines 1–3 in the figure�. It is seen that
the ground singlet state has the greatest weight of the s-type
part compared to the other states. This weight is large but
gradually drops with increasing the dot radius, as well as for
the doublet and triplet states. Evidently, from the symmetry
point of view, the bulk and the “dot” systems are not so far

from each other. This is, of course, a consequence of the
symmetric donor position in the dot.

B. Many-donor case

Let us now consider the opposite situation to the one ex-
plored in the previous section. Accordingly, we suppose a
great number of donors in the dot: N�1. In order to examine
this case, several important assumptions will be made.

First, the nanocrystal is treated as a neutral dot, i.e., we
assume that all the electrons emitted from the donors are
kept inside the nanocrystal. Second, the spatial donor distri-
bution is assumed to be homogeneous over the quantum-dot
volume, and no donors are outside the dot. Finally, we apply
the Hartree-like approximation to describe the “slow” Cou-
lomb field V�r�. Thus, each of the N electrons within the
nanocrystal is subjected to the self-consistent electric field of
the N ions, other N−1 electrons, and the central-cell fields of
all the donors.

The Hartree procedure is equivalent to solving the single-
particle Schrödinger equation like Eq. �2�, in which the
smooth part of the potential energy V�r� obeys the Poisson
equation

div„��r� � V�r�… = 4e��r� , �27�

where e the is positive elementary charge and ��r� is the
charge density. Following the rigorous Hartree method, one
would write the function ��r� as the sum of two parts: ��r�
=�i�r�+�e�r�, where �i�r� and �e�r� are charge densities of
the N donor ions and N−1 electrons. Generally speaking, the
Hartree method represents some converged procedure based
on subsequent iterations in electron wave function and po-
tential energy. As a rule, such procedure requires a compu-
tational technique and becomes more and more complicated
upon increasing the number of particles considered.

Instead, a certain simplified model will be used to solve
the Poisson equation �Eq. �27�	. We assume the total charge
density ��r� to be independent of r within the quantum dot
and equal to zero outside the dot. It means that uncompen-
sated charge +e arising from the N donor ions and N−1
electrons is distributed homogeneously over the dot volume.
In this case, the density of charge is written as

��r� = ��r� =
3e

4R3��R − r� , �28�

where ��R−r� is the step function. Of course, it is not so in
reality, but finding of corrections to Eq. �28� is a sufficiently
laborious work not leading, however, to significant changes
in the electron energies and wave functions.

The solution of the Poisson equation �Eq. �27�	 with the
charge density �Eq. �28�	 has the form

V�r � R� =
e2r2

2�sR
3 −

e2

2�sR
−

e2

2�dR
,

V�r � R� = −
e2

�dr
. �29�

Since the barriers at the dot boundary are assumed to be
infinitely high, we are interested only in the function V�r
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�R�. It rises from the dot center as a parabolic function, and
its total change on the scale R equals e2 /2�sR, which is of
the order of a few tens of meV.

Because of the isotropic form of the function V�r�, the
off-diagonal matrix elements �s�V�r��pa� and �pb�V�r��pa� for
a�b equal zero, while the diagonal matrix elements
�s�V�r��s� and �pa�V�r��pa� have close nonzero values equal
to

�s�V�r��s� = −
e2

�dR
−

e2

3�sR
�1 +

3

42� ,

�pa�V�r��pa� = −
e2

�dR
−

e2

3�sR
�1 −

2

�2� . �30�

Thus, the screened Coulomb field in the many-donor case
leads, mainly, to the common shift of all the levels, which

equals approximately V̄=−e2�1/�d+ �1+3/82

−1/�2� /3�s	 /R. Meanwhile, the relative shift of the s- and
p-levels, defined by the difference between p-p and s-s ma-
trix elements �Eq. �30�	 and giving rise to the level splitting,
does not exceed several meV. This value is much less than
any other typical energy of the problem such as, e.g., the

splitting energy due to the valley-orbit coupling, which is
about several tenths of eV or even more according to the
previous results. Therefore, it is obvious that any other �more
accurate� form of the charge �+e� distribution inside the
nanocrystal will give the same-order contribution into the
potential energy and level splitting, which should be esti-
mated presumably as very weak. In what follows, we neglect
this contribution in the splitting and assume the matrix ele-

ments �Eq. �30�	 to be the same and equal to V̄.
In contrast to this, the valley-orbit coupling gives indeed a

substantial rise in the ground-state splitting and chemical
shift as it took place for the single-donor case. It is clear that
the Poisson equation describes only the long-range field and
does not take into account the central-cell corrections. There-
fore, it is necessary to calculate them separately. We can
easily obtain the matrix elements of the central-cell potential
as a spatial mean value of expressions �19� multiplied by N.
This yields

�s�W�s� = �pa�W�pa� = − Q̃n ,

�s�W�pa� = �pa�W�pb� = 0, �31�

where n=3N /4R3 is the donor concentration. W implies
here any linear combination of the operators in Eq. �10�, and

Q̃ is the corresponding combination of the numbers Q0, Q,
and Q�. In particular, the parameters Wj

�±� from Eq. �20� are
as follows:

W1
�±� = − n�2Q0 + Q ± Q�� = a2b�	�A1� ± 	�T2�	 ,

W2
�±� = − n�Q − Q0 ± Q�� = a2b�	�E� ± 	�T2�	 ,

W3
�±� = − n�Q� ± Q� =

a2b

3
�3	�T2� ± 	�A1� ± 2	�E�	 .

�32�

Notice that the density of impurity charges is treated as
continuous function in expressions �27�–�32�. Meanwhile,
we imply the number of donors N equal to 5–10. In other

FIG. 6. Energies of the �1� singlet, �2� doublet, and �3� triplet
electron states in a quantum dot with a donor related to the sixfold
degenerate ground-state energy in the dot without donor. The donor
occupies the dot center. The dashed line represents the shift of the
ground-state level in the case of no valley-orbit interaction in the
system. For the dot doped with arsenic, the dashed line almost
coincides with the doublet-state energy.

FIG. 7. Energy splitting in the quantum dot with N=5 �solid
curves� and N=10 �dashed curves� donors. 1, singlet state; 2, dou-
blet states; 3, triplet states.
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case, if N is considerably greater, the perturbation originating
from the central-cell interaction becomes not so small as
well. As a result, the validity of the perturbative approach,
based, in fact, on the two-level unperturbed system, is bro-
ken. We do not break the applicability of the perturbation
theory but acquire some error of calculations when we use
the model of continuous charge medium. Nevertheless, this
error seems to be of the order of 1 /N, which does not exceed
10%–20% for the mentioned values N. We will restrict our-
selves with that accuracy and apply the obtained expressions
�27�–�32� for the description of the electron states in the
nanocrystal containing several donors.

The behavior of the energy levels �Eq. �22�	 depending on
the dot radius R is presented in Fig. 7 for two different N.
The singlet state has the lowest energy that is strongly split
off from the two other levels. This provides a great value of
the chemical shift similarly to the single-donor case. It is also
seen that the level splitting and, consequently, the chemical
shift increase almost proportionally to the number of donors
in the dot.

At last, Fig. 8 shows the weights of the s-type envelope
function of the singlet, doublet, and triplet states versus the
number of donors N. Evidently, the s-type part of the wave
function is dominant for all the states at small N. On the

contrary, for large N, the s-part weights behave differently
for the ground �singlet� and excited �doublet and triplet�
states. In particular, the quota of the s-type envelope function
in the singlet state gradually increases and approaches unity
on increasing N. It means that in the case N�1, the singlet
state in the nanocrystal becomes similar to that in the bulk
from the symmetry point of view. Meanwhile, the s-type part
in the doublet and triplet states becomes more “light” as N
increases. Moreover, their weights aspire to zero when N
→�. This circumstance drastically distinguishes the excited
states in the dot and the bulk. Strictly speaking, we have no
right, of course, to make any conclusions for N→� on the
reason mentioned above. Therefore, we talk here not about
the rigorous result but on the trend only.

VII. CONCLUSION

Summarizing our consideration, we would like to make
some concluding remarks about the main features of the
level splitting and chemical shift in silicon quantum dots
with shallow donors. They can be formulated briefly as fol-
lows. �i� It has been revealed that the magnitude of the
chemical shift in nanocrystals is much greater than that in
bulk silicon. �ii� The splitting of the ground state and the
chemical shift strongly depends on the nanocrystal size,
which is a consequence of the quantum confinement effect in
quantum dots. �iii� The donor position inside the nanocrystal
crucially influences the degeneracy removal and chemical-
shift value. In particular, if the donor takes up some off-
center position, all energy levels turn out to be nondegener-
ate. However, this splitting becomes very small if the donor
is placed at the dot boundary. At last, �iv� provided that the
number of donors inside the dot becomes large, the ground
electron state acquires the symmetry of the bulklike ground
state. However, in contrast to bulk, the chemical shift re-
mains great and increases as N increases.
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