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Anisotropic states at half-filled higher Landau levels are investigated in the system with a finite electric
current. We study the response of the striped Hall state and the anisotropic charge density wave �ACDW� state
against the injected current using the effective action. Current distributions and a current dependence of the
total energy are determined for both states. With no injected current, the energy of the ACDW state is lower
than that of the striped Hall state. We find that the energy of the ACDW state increases faster than that of the
striped Hall state as the injected current increases. Hence, the striped Hall state becomes the lower energy state
when the current exceeds the critical value. The critical value is estimated at about 0.04–0.07 nA, which is
much smaller than the current used in the experiments.
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I. INTRODUCTION

In the two-dimensional �2D� electron system subjected to
a strong perpendicular magnetic field, which is called the
quantum Hall system, the half-filled states at each Landau
level �LL� exhibit much attractive features. Around the half-
filled lowest LL, isotropic compressible states, which are
widely believed to be the Fermi liquid of composite fermi-
ons, have been observed.1,2 Around the half-filled second LL,
the 5/2 fractionally quantized Hall conductance has been
observed.3 The p-wave Cooper pairing state of composite
fermions, which is called the Pfaffian state, has been pro-
posed to explain this state.4,5 Around the half-filled third and
higher LLs, highly anisotropic states, which have extremely
anisotropic longitudinal resistivities and unquantized Hall re-
sistivities, have been found in ultrahigh mobility samples at
low temperature.6,7 Many theoretical works have been done
to study the anisotropic states.8–19 In the present paper, we
focus on two different Hartree-Fock �HF� states, i.e., a uni-
directional charge density wave state,8,9 which is called a
striped Hall state in the present paper, and an anisotropic
charge density wave �ACDW� state.19

The experimental features of the anisotropic states sug-
gest that the anisotropic states are the striped Hall states. The
striped Hall state has the anisotropic Fermi surface, which
has an energy gap in one direction and is gapless in the other
direction. The anisotropic longitudinal resistivities and the
unquantized Hall resistivities are naturally explained by this
anisotropic Fermi surface.20,21 On the other hand, the ACDW
state has energy gaps in both directions so that it is difficult
to explain the experiments with the ACDW state. However,
the ACDW state has a lower energy than the striped Hall
state in the system with no electric current. This has been a
contradiction between the experiments and the theories for
the anisotropic state.

In the experiments of the anisotropic states, current is
injected. This current effect has not been taken into account
in the previous calculations of the total energy. MacDonald
et al. have studied the injected current effect on the integer
quantum Hall system about two decades ago.23 They have
calculated the current and charge distributions and found that
charges accumulate around both edges of the sample with the

opposite sign, as expected from the classical Hall effect.23–26

The charge accumulation causes the energy enhancement via
the Coulomb interaction between charged particles. The
same type of energy corrections may exist even in highly
correlated quantum Hall states. However, the effect of the
injected current on the anisotropic state has not been studied.

In the present paper, we calculate the correlation energies
of the striped Hall state and the ACDW state in the system
with the injected current, no impurities, and no metallic con-
tacts. It is important to know if the ACDW state has a lower
energy even in the system with the injected current. For this
purpose, the dependence of the correlation energies on the
injected current is studied in detail. Effects of impurities and
metallic contacts are ignored in our calculations of the cor-
relation energies since these effects are expected to be small
in the experiments of the anisotropic states in the ultrahigh
mobility samples and are outside the scope of this work. The
effects of the injected current are investigated using the re-
sponse functions for electromagnetic fields. The current and
charge distributions, are determined and the energies of the
two states are calculated from these distributions. It is found
that the energy of the ACDW state increases faster than that
of the striped Hall state as the injected current increases.
Hence, the striped Hall state becomes the lower energy state
when the current exceeds the critical value. The critical value
is estimated at about 0.04–0.07 nA, which is much smaller
than the current used in the experiments. Our result suggests
that the anisotropic states observed in the experiments are the
striped Hall states. Hence, the contradiction between the ex-
periments and the theories is resolved.

This paper is organized as follows. In Sec. II, the two HF
states, i.e., the striped Hall state and the ACDW state, are
constructed in the von Neumann lattice formalism. In Sec.
III, electromagnetic response functions of the two HF states
are calculated in the long wavelength limit. Using these re-
sponse functions, we determine the current and charge dis-
tributions and calculate the energy corrections due to cur-
rents in Sec. IV. A summary is given in Sec. V.

II. HARTREE-FOCK GROUND STATES ON THE VON
NEUMANN LATTICE

In this section, the striped Hall state and the ACDW state
are constructed in the HF approximation using the von Neu-
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mann lattice base. The von Neumann lattice base is suitable
for studying spatially periodic states. We first review the von
Neumann lattice base for the completeness of the present
paper.

A. von Neumann lattice base

Let us consider the 2D electron system in a uniform ex-
ternal magnetic field B= ���A�z. The spin degree of free-
dom is ignored, and the natural unit ��=c=1� is used in the
present paper. We introduce two sets of coordinates, i.e., the
relative coordinates �= �� ,�� and the guiding center coordi-
nates X= �X ,Y�:

� =
1

eB
�− i�y + eAy�, � = −

1

eB
�− i�x + eAx� ,

X = x − �, Y = y − � , �2.1�

where e�0. Each set of coordinates satisfies the canonical
commutation relations

�X,Y� = − ��,�� = i/eB ,

�X,�� = �X,�� = �Y,�� = �Y,�� = 0. �2.2�

Using these variables, the one-particle free Hamiltonian is
written in the form

H0 =
1

2
m�c

2��2 + �2� , �2.3�

where �c=eB /m is a cyclotron frequency. Since H0 is
equivalent to the Hamiltonian of a harmonic oscillator, the
eigenvalue splits into each LL as follows:

H0�f l� = El�f l�, El = �c�l + 1
2� �l = 0,1,2, . . . � . �2.4�

It is convenient to use a discrete set of coherent states of
guiding center coordinates,

�X + iY���mn� = zmn��mn�, zmn = a�rsm + i
n

rs
� , �2.5�

where m and n are integers. The completeness of the set
	��mn�
 is ensured,27,28 and this set is called the von Neumann
lattice �vNL� base.29 These coherent states are localized at
the rectangular lattice point a�mrs ,n /rs�, where a positive
real number rs is an asymmetry parameter of the unit cell and
a=�2	 /eB is a lattice constant. We set a=1 unless otherwise
stated. Note that the number of lattice points is equal to the
number of states in one LL. By Fourier transforming these
states, we obtain the orthonormal basis in the momentum
representation,

�
p� = �
m,n

eipxm+ipyn��mn�/
�p� ,


�p� = ��2rs�1/2e−�rspy�2/4	�1� px + irs
2py

2	
irs

2� ,

�
p�
p�� = �
N

�2	�2�2�p − p� − 2	N�ei�p�,N�, �2.6�

where �1 is a Jacobi’s theta function of the first kind, N
= �Nx ,Ny� is a vector with integer values, and �p ,N�
=	�Nx+Ny�− pxNy. The two-dimensional lattice momentum
p is defined in the Brillouin zone �BZ�, �pi��	, and 
�p�
obeys a nontrivial boundary condition


�p + 2	N� = ei�p,N�
�p� . �2.7�

The Hilbert space of a one-particle state is spanned by the
state �l ,p�= �f l� � �
p�. We use this base throughout our cal-
culation.

The electron field operator is expanded by the vNL base
as

��x� = �
l=0

� �
BZ

d2p

�2	�2bl�p��x�l,p� , �2.8�

where bl�p� obeys the same boundary condition as Eq. �2.7�
and satisfies the following anticommutation relation:

	bl�p�,bl�
† �p��
 = �l,l��

N
�2	�2�2�p − p� − 2	N�ei�p,N�.

�2.9�

The Fourier transform of the density operator ��k�
=�d2xeik·x�†�x���x� is written as

��k� = �
l,l�
�

BZ

d2p

�2	�2bl
†�p�bl��p − k̂�f l,l�

0 �k�e−�i/4	�k̂x�2py−k̂y�,

�2.10�

where f l,l�
0 �k�= �f l�eik·��f l�� �see Appendix C� and k̂

= �rskx ,ky /rs�.
For a strong magnetic field, in which the energy differ-

ence between the nearest LLs, �c, is much larger than the
typical order of the Coulomb interaction, e2 /4	�lB, where �
is the dielectric constant and lB=�1/eB is the magnetic
length, the LL mixing effects can be neglected. In this case,
the Hamiltonian is projected to the uppermost partially filled
LL, and the kinetic term is quenched. The Hamiltonian in
this system is given by the projected Coulomb interaction,

Hint
�l� =

1

2
� d2k

�2	�2 :�l�k�V�k��l�− k�: ,

V�k� =
2	q2

k
�k � 0,q2 =

e2

4	�
�, V�0� = 0. �2.11�

In Eq. �2.11�, the colons represent a normal ordering with
respect to creation and annihilation operators, l denotes the
uppermost partially filled LL index, and �l�k� is given by

�l�k� = f l,l
0 �k��̄l�k� ,

f l,l
0 �k� = e−k2/8	Ll

0� k2

4	
� ,
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�̄l�k� = �
BZ

d2p

�2	�2bl
†�p�bl�p − k̂�e−�i/4	�k̂x�2py−k̂y�,

�2.12�

where �̄l�k� is a projected density operator and Ll
0 is a La-

guerre polynomial.
Hint is expressed in the HF approximation as �Appendix

A�30,31

HHF
�l� = HHF

�l� −
1

2
�HHF

�l� � , �2.13�

where

HHF
�l� =� d2k

�2	�2vl
HF�k̃���̄l�− k̃���̄l�k̃� , �2.14�

vl
HF�k� = vl�k� −� d2k�

�2	�2vl�k��e�i/2	��kx�ky−ky�kx�,

vl�k� = V�k��f l,l
0 �k��2, k̃ = � kx

rs
,rsky� . �2.15�

This HF Hamiltonian has been diagonalized self-
consistently, and various ground states have been obtained.
In the present paper, we concentrate on the striped Hall state
and the ACDW state at half-filled higher LLs. These states
are constructed using the vNL base in the following subsec-
tions.

B. Striped Hall state

We consider the case of the filling factor �= l+�*, with
�*=1/2. The present formalism is valid for the arbitrary �*

�0��*�1�. The striped Hall state is a unidirectional charge
density wave state which has the following unidirectional
density �Fig. 1�:

��l�x��stripe = �
Nx

�l�Nx�f l,l
0 �2	Nx

r0
,0�ei�2	Nx/r0�x,

�2.16�

where r0 is the period of the density in the x direction, �l�Nx�
is an order parameter determined self-consistently, and

�l�0�=�*. We call the uniform direction stripe direction and
the other direction perpendicular direction in this paper.
Equation �2.16� gives the following form of ��̄l�k��:

��̄l�k��stripe = �
Nx

�l�Nx��2	�2��kx +
2	Nx

r0
���ky� .

�2.17�

The HF Hamiltonian of the striped Hall state is easily diago-
nalized on the vNL by taking the asymmetry parameter rs
=r0. Substituting Eq. �2.17� into the HF Hamiltonian and
using rs=r0, the HF Hamiltonian of the striped Hall state is
written by

HHF stripe
�l� = �

BZ

d2p

�2	�2�l�p�bl
†�p�bl�p� , �2.18�

where �l�p� is a one-particle energy given by

�l�p� = �0 + �
Nx�0

�l�Nx�vl
HF�2	Nx

rs
,0��− 1�Nxe−iNxpy .

�2.19�

In Eq. �2.19�, �0 is a uniform Fock energy given by �*vl
HF�0�.

From Eq. �2.18�, the two-point function of the operator
bl�p� is given by20,21

�bl
†�p�bl��p���stripe = �

N
�l,l����F − �l�p���2	�2�2�p − p�

− 2	N�e−i�p,N�, �2.20�

where �F is a Fermi energy and � is a step function. The
self-consistent equation for �l�Nx� is obtained by substituting
Eq. �2.20� into the left hand side of Eq. �2.17�. �l�Nx�
= �−1�Nx sin��*	Nx� /	Nx is a solution of the self-consistent
equation. This solution has the Fermi sea, �py��	�* �shown
in Fig. 2� and gives the one-particle energy as �Fig. 3�
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FIG. 1. Density of the l=2 striped Hall state at half-filling. The
uniform part �0=�* is subtracted. The density of the striped Hall
state is uniform in the y direction �stripe direction� and periodic
with a period rs in the x direction �perpendicular direction�.

Px

Py
π

-π

π/2

-π/2

0
-π π

FIG. 2. Fermi sea of the striped Hall state at half-filling. The
occupied state is represented by the dark region. When the stripe
direction faces the y direction, the px direction of the Brillouin zone
is fully occupied. In this case, the Fermi sea has the inter-LL energy
gap in the px direction and is gapless in the py direction.
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�l�p� = �0 + �
Nx�0

vl
HF�2	Nx

rs
,0� sin��*	Nx�

	Nx
e−iNxpy .

�2.21�

The HF energy per particle is given as a function of rs by

Estripe
�l� �rs� =

�HHF
�l� �stripe

Ne
�l� =

1

2
�0 +

1

2 �
Nx�0

�*vl
HF�2	Nx

rs
,0�

�� sin��*	Nx�
�*	Nx

�2

, �2.22�

where Ne
�l� is the total number of particles within the lth LL.

The optimal value of rs is determined by minimizing Estripe
�l�

��rs�. The optimal value of rs and the minimum energy at
each LL are shown in Table I.21

The striped Hall state has the anisotropic Fermi surface
shown in Fig. 2, which has an inter-LL energy gap in the px
direction and is gapless in the py direction. This would cause
the anisotropic longitudinal resistivities.

C. Anisotropic charge density wave state

We consider the ACDW state with the following rectan-
gular charge density wave �Fig. 4�:22

��l�x��ACDW = �
N

�l�QN�f l,l
�l��QN�e−iQN·x, �2.23�

where QN= �2	Nx /r0x ,2	Ny /r0y� �r0x and r0y are the periods
of the density in the x direction and the y direction, respec-
tively�, �l�QN� is an order parameter determined self-
consistently, and �l�0�=�*. We call the direction with a
shorter period of the density ACDW direction in this paper.

Equation �2.23� gives the following form of ��̄l�k��:

��̄l�k��ACDW = �
N

�l�QN��2	�2�2�k − QN� . �2.24�

The number of ACDW unit cells NCDW= �area� /r0xr0y is
equal to the number of electrons within the lth LL, while the
number of vNL unit cells NvNL= �area� /a2 is equal to the
number of states in one LL. Here, we write the vNL constant
a explicitly. Hence, the filing factor �* is expressed as

�* =
NCDW

NvNL
=

a2

r0xr0y
. �2.25�

Using the dimensionless lattice parameter r0 defined as r0x
=ar0, QN is written as

QN = �2	Nx

ar0
,
2	Ny�

*r0

a
� �2.26�

and ��̄l�k��ACDW is rewritten as

��̄l�k��ACDW = �
N

�l�2	Nx

r0
,2	Ny�

*r0��2	�2

���kx −
2	Nx

r0
���ky − 2	Ny�

*r0� ,

�2.27�

where we set a=1 again.
The HF Hamiltonian of the ACDW state is easily diago-

nalized using the vNL base. We concentrate on the case of
�*=1/2. In this case, the ACDW unit cell is just twice as
large as the vNL unit cell �Fig. 5�. When we take rs=r0 and
divide Ny in the right hand side of Eq. �2.27� into even and
odd, the mean value of the projected density operator is re-
written as

��̄l�k̃��ACDW = �
N
��l�2	Nx

rs
,2	Nyrs��2	�2�2�k − 2	N�

+ �l�2	Nx

rs
,	�2Ny + 1�rs��2	�2

��kx − 2	Nx���ky − 	�2Ny + 1��� . �2.28�

π0
-π

px
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0
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py

-0.3
-0.2
-0.1

0
0.1
0.2
0.3

ε(p)/(q2/lB)

FIG. 3. One-particle energy of the l=2 striped Hall state at
half-filling. The uniform Fock energy is subtracted. When the stripe
direction faces the y direction, the one-particle energy is uniform in
the px direction.

TABLE I. Minimum energy and corresponding parameter rs of
the striped Hall states at �= l+1/2.

l rs
stripe Estripe / �q2 / lB�

0 1.636 −0.4331

1 2.021 −0.3490

2 2.474 −0.3074

3 2.875 −0.2800
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0.25

-2 -1 0 1 2x -2 -1 0 1 2
y

-0.2

-0.1
0

0.1

0.2

ρ(x)

FIG. 4. Density of the l=2 ACDW state at half-filling. The
uniform part �0=�* is subtracted. The density of the ACDW state is
periodic in the both directions. The y direction is referred to as the
ACDW direction in this figure.
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Substituting this expression into Eq. �2.14�, the HF Hamil-
tonian of the ACDW state is obtained by

HHF ACDW
�l� = �0Ne

�l� + �
BZ

d2p

�2	�2 �A�p�bl
†�p�bl�p�

+ B�p�bl
†�p�bl�px,py + 	�� , �2.29�

A�p� = �
N�0

vl
HF�2	Nx

rs
,2	Nyrs��l�2	Nx

rs
,2	Nyrs�

�ei	�Nx+Ny+NxNy�−ipxNy+ipyNx,

B�p� = �
N

vl
HF�2	Nx

rs
,	�2Ny + 1�rs�

��l�2	Nx

rs
,	�2Ny + 1�rs�

�ei	�Nx+Ny+Nx�Ny+1/2��−ipxNy+ipyNx. �2.30�

In this Hamiltonian, momentum is not conserved since bl
†�p�

is coupled with bl�px , py +	�. However, using the boundary
condition for bl�p�, the HF Hamiltonian is rewritten as

HHF ACDW
�l� = �0Ne

�l� + �
RBZ

d2p

�2	�2bl
†�p�Dl�p�bl�p� ,

�2.31�

bl�p� = � bl�px,py�
bl�px,py + 	�

� ,

Dl�p� = � A�p� B�p�
B*�p� A�px,py + 	�

� , �2.32�

where the momentum integration is performed over the re-
duced Brillouin zone �RBZ�, �px��	 and �py��	 /2, and
Dl�p� is a 2�2 Hermite matrix. The Hamiltonian expressed
by Eq. �2.31� can be diagonalized at each momentum just by
unitary transforming the field operator bl�p�. In the present
case of �*=1/2, the Brillouin zone is reduced to the half size
of the original domain, and two energy bands are formed
�Fig. 6�. Dl�p� is diagonalized using the unitary matrix U�p�
as

U†�p�Dl�p�U�p� = ��+�p� 0

0 �−�p�
� , �2.33�

where �+�p� and �−�p� represent the upper energy band and
the lower energy band, respectively. �±�p� and U�p� are
given in Appendix B. Using the base cl�p�=U†�p�bl�p�, the
HF Hamiltonian of the ACDW state is obtained by

HHF ACDW
�l� = �0Ne

�l� + �
RBZ

d2p

�2	�2cl
†�p���+�p� 0

0 �−�p�
�cl�p� ,

�2.34�

where

cl�p� = �c+�p�
c−�p�

� . �2.35�

�l�QN� is determined by solving the self-consistent equation
numerically �see Appendix B�.

As in the case of the striped Hall state, the HF energy of
the ACDW state also depends on the asymmetry parameter
rs. The optimal value of rs, the HF energy per particle, and
the magnitude of the energy gap are given in Table II, in
which there are two values of rs at each LL due to the
	 /2-rotational symmetry. The magnitude of the energy gap
is estimated to be of the order of 10 K for a few tesla. Ex-
periments for the anisotropic states have shown the ex-
tremely anisotropic longitudinal resistivities and the unquan-
tized Hall resistivities at tens of milliKelvin. It is difficult to
explain the experiments with the ACDW state. On the other
hand, the HF energy of the ACDW state is slightly lower
than that of the striped Hall state at each LL, as seen in
Tables I and II. This was one of the remaining issues for the

y

x
rs r=

rs
1

0

FIG. 5. vNL unit cell and ACDW unit cell. The black circles
represent the location of electrons and the thin lines represent the
vNL. The ACDW unit cell represented by the bold lines is just
twice as large as the vNL unit cell in the case of �*=1/2.

π0-π px
π/20-π/2 py

-0.3
-0.2
-0.1

0
0.1
0.2
0.3

ε(p)/(q2/lB)

FIG. 6. One-particle energy of the l=2 ACDW state at half-
filling. The uniform Fock energy is subtracted. Two bands are
formed and the lower band is completely filled.

TABLE II. Minimum energy and corresponding parameter rs of
the ACDW states at �= l+1/2. �gap is a magnitude of the energy
gap.

l rs
ACDW EACDW/ �q2 / lB� �gap/ �q2 / lB�

0 �2 −0.4436 0.3292

1 1.02, 1.96 −0.3583 0.3077

2 0.82, 2.44 −0.3097 0.2470

3 0.70, 2.86 −0.2814 0.1967
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anisotropic states. In Sec. IV, we study the total energy of the
present two HF states in the system with injected currents to
answer this issue.

III. RESPONSE FUNCTIONS

In this section, the electromagnetic response functions of
the HF states are calculated in the long wavelength limit. We
consider the quantum Hall system with the infinitesimal ex-
ternal gauge field a��x�= �a0�x� ,−a�x�� and calculate the re-
sponse functions of the striped Hall state first and the ACDW
state next.

A. Response function of the striped Hall state

The Hamiltonian in the quantum Hall system with a��x�
is given by

H =� d2x�†�x�� �p + eA�x� + ea�x��2

2m
− ea0�x����x�

+
1

2
� d2xd2x�:��x�V�x − x����x��: , �3.1�

where V�x�=q2 / �x�. We project the Coulomb interaction part
to each LL and apply the HF approximation to the projected
Coulomb interaction. Then, using the vNL base, the Hamil-
tonian in the HF approximation is given by

H = �
l

El�
BZ

d2p

�2	�2bl
†�p�bl�p� −� d2k

�2	�2�
l,l�

efl,l�
� �k̃�a��k̃�

��
BZ

d2p

�2	�2bl
†�p�bl��p − k�e−�i/4	�kx�2py−ky�

+� d2kd2k�

�2	�4 �
l,l�

e2�c

4	
a�k̃�� · a�k̃�f l,l�

0 �k̃ + k̃��

��
BZ

d2p

�2	�2bl
†�p�bl��p − k − k��e−�i/4	��kx

+kx���2py−ky−ky�� + �
l
� d2k

�2	�2vl
HF�k���̄l�− k̃���̄l�k̃� , �3.2�

where f l1,l2
� �k� is defined by �see Appendix C�

f l1,l2
� �k� = �f l1

� 1
2 	v�,eik·�
�f l2

� , �3.3�

in which v�= �1,−�c� ,�c�� is the electron velocity. Re-
peated Greek indices � and � are summed in this paper. The
action is given by

S�a,b,b†� =� dt��
BZ

d2p

�2	�2bl
†�p,t��i�t + �F�bl�p,t� − H�t�� ,

�3.4�

where H�t� is the Heisenberg representation of H.

Let us concentrate on the striped Hall state at half filling.
Substituting Eq. �2.17� into Eq. �3.4�, the action of the
striped Hall state is given by

SHF�a,b,b†� = �
l,l�
�

BZ

d3pd3p�

�2	�6 bl
†�p�	�p0 − �l�p��

��l,l��2	�3�3�p − p��

− Ua1

�l,l���p,p�� − Ua2

�l,l���p,p��
bl��p�� ,

�3.5�

where

Ua1

�l,l���p,p�� = − �
N

efl,l�
� �p̃ − p̃� − 2	Ñ�h�p + p�,N�a��p̃ − p̃�

− 2	Ñ,p0 − p0��e
−�i � 4	��px−px���py+py��,

Ua2

�l,l���p,p�� = �
N
� d3k

�2	�3

e2�c

4	
f l,l�

0 �p̃ − p̃� − 2	Ñ�h�p

+ p�,N�a�k̃,k0� · a�p̃ − p̃� − k̃ − 2	Ñ, p0 − p0�

− k0�e−�i � 4	��px−px���py+py��,

h�p,N� � �− 1�Nx+Ny+NxNye−�i/2�pxNy+�i/2�pyNx. �3.6�

Here, p denotes �p , p0�, �l�p�=El+�l�p�−�F, and Ua1
and

Ua2
are the first order term and the second order term with

respect to a�, respectively.
The partition function Z�a� is calculated using path inte-

grals by

Z�a� =� Db†DbeiSHF�a,b,b†� =� Db†Dbe−�−i��b†�g−11−Ua1
−Ua2

�b

= eTr log��−i�g−1�eTr log�1−gUa1
−gUa2

�, �3.7�

where the power of the exponent is expressed in the matrix
representation in the momentum space and Tr denotes the
trace of the momentum indices and the LL indices. gl is the
Green’s function given by

gl�p� =
���l�p��

p0 − �l�p� + i�
+

��− �l�p��
p0 − �l�p� − i�

, �3.8�

where � is an infinitesimal positive constant. The effective
action Seff is defined as Seff�a�=−i log Z�a�. It consists of the
nonperturbed part S0=−i Tr log��−i�g−1� and the correction
part due to the external gauge field �Seff�a�. �Seff�a� is given
by �Fig. 7�,

�Seff�a� = �S1�a� + �S2�a� + �S3�a� + O�a3� , �3.9�

where

�S1�a� = i Tr�gUa1
� = i�

l
�

BZ

d3p

�2	�3gl�p�Ua1

�l,l��p,p� ,

�S2�a� = i Tr�gUa2
� = i�

l
�

BZ

d3p

�2	�3gl�p�Ua2

�l,l��p,p� ,

TSUDA, MAEDA, AND ISHIKAWA PHYSICAL REVIEW B 76, 045334 �2007�

045334-6



�S3�a� =
i

2
Tr�gUa1

gUa1
� =

i

2�
l,l�
�

BZ

d3pd3p�

�2	�6 gl�p�

�Ua1

�l,l���p,p��gl��p��Ua1

�l�,l��p�,p� . �3.10�

Substituting the expressions for g, Ua1, and Ua2 into Eq.
�3.10�, �Seff�a� is given by

�Seff�a� = �el0�a0�0� + �
Nx

efl0,l0
� �− 2	Ñx,0�

sin�pFNx�
	Nx

�ei	Nxa��− 2	Ñx,0� −
1

2
� d3p

�2	�3�
N

a��p,p0�

�K���p,N�a��− p − 2	Ñ,− p0� , �3.11�

where l0 represents the uppermost partially filled LL.
K���p ,N� is a response function given by

K���p,N� = �
l,l�

e2f l,l�
� �p�f l�,l

� �− p − 2	Ñ�Il,l��p0,p̂,N�h�p̂,N�

+
e2

2	
�c�

N
�l0�N,0 + f l0,l0

0 �− 2	Ñ�

��− 1�Nx
sin�	Nx/2�

	Nx
�Ny,0����,1��,1 + ��,2��,2� ,

�3.12�

where Il,l��p0 ,p ,N� is the loop integral in Fig. 7�c�, which is
given by

Il,l��p0,p,N� = �
BZ

d2p�

�2	�2� ���l�p + p�����− �l��p���

p0 + �l��p�� − �l�p + p�� + i�

−
��− �l�p + p������l��p���

p0 + �l��p�� − �l�p + p�� − i��e−ipx�Ny+ipy�Nx,

�3.13�

in which the p0� integral has been performed. In Eq. �3.12�,
the first term and the second term come from �S3�a� and
�S2�a�, respectively, and the second term is cancelled with
the p=0 part of the first term, as expected from gauge invari-
ance. Hence, Ki,i�p=0,N�=0 for i=1,2.

In the long wavelength limit, the largest contribution in
the response function comes from the N=0 part. In the case
of p0= py =0 and px→0, which is used in the next section,
the largest contribution comes from the lowest order term in
K0

���px��K���px ,0� with respect to px. By expanding
K0

���px� up to the lowest order, the response functions in the
long wavelength limit are given as

K0
00�px� = −

�xy
���

�c
px

2,

K0
0y�px� = − i�xy

���px,

K0
y0�px� = i�xy

���px,

K0
yy�px� = �K�cpx

2, �3.14�

where �xy
���=e2� /2	 and �K=e2�c�l0

2+2l0�*+�*� /4	2. �xy
��� is

identified as the Hall conductance since if we consider a
static homogeneous electric field in the x direction generated
by the gauge field a0

ex�x�=xEx, then the electric current in the
y direction jy�x� is given in the long wavelength limit by
�jy�x��=��Seff /�ay�x�=K0

y0��x�a0�x�=−�xy
���Ex, where the re-

sponse function transformed in the coordinate space is used.
The longitudinal resistivity becomes zero in the present cal-
culation since the impurity potential is not included. If im-
purities are added, it is expected that the longitudinal resis-
tivity becomes zero in one direction and finite in the other
direction due to the anisotropic Fermi surface.

B. Response function of the anisotropic
charge density wave state

The action of the ACDW state at half-filling is given by

SHF�a,c,c†� = �
l,l�
�

RBZ

d3pd3p�

�2	�6 cl
†�p��Gl

−1�p��l,l��2	�3�3�p − p�� − Va1

�l,l���p;p�� − Va2

�l,l���p;p���cl��p�� , �3.15�

where Vaj
�j=1,2� is a 2�2 matrix given by

Vaj

�l,l���p,p�� = U†�p�Uaj

�l,l���p,p��U�p� ,

Uaj

�l,l���p;p�� = � Uaj

�l,l���p;p�� Uaj

�l,l���p;px�,py� + 	,p0��

Uaj

�l,l���px,py + 	,p0;p�� Uaj

�l,l���px,py + 	,p0;px�,py� + 	,p0��
� , �3.16�

(a) (b)

(c)

FIG. 7. �a�, �b�, and �c� are Feynman diagrams for �S1, �S2, and
�S3, respectively.
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and Gl is a 2�2 matrix Green’s function given by

Gl�p� =��
gl

+�p� 0

0 gl
−�p�

� for l = l0

gl
−�p�1 for l � l0

gl
+�p�1 for l � l0

� . �3.17�

In Eq. �3.17�, gl
±�p�=1/ �p0−�l

±�p�± i�� is a one-particle
Green’s function for the upper or lower band, 1 is a 2�2
unit matrix, and �l

±�p�=El0
+�±

�l0��p�−�F.
The partition function Z�a� is calculated using path inte-

grals by

Z�a� =� Dc†DceiSHF�a,c,c†� = eTr log��−i�G−1�eTr log�1−GVa1
−GVa2

�.

�3.18�

The correction part of the effective action �Seff�a� is given
by

�Seff�a� = �S1�a� + �S2�a� + �S3�a� + O�a3� , �3.19�

where

�S1�a� = i Tr�GVa1
� = i�

l
�

RBZ

d3p

�2	�3Tr2�2

��Gl�p�Va1

�l,l��p,p�� ,

�S2�a� = i Tr�GVa2
� = i�

l
�

RBZ

d3p

�2	�3Tr2�2

��Gl�p�Va2

�l,l��p,p�� ,

�S3�a� =
i

2
Tr�GVa1

GVa1
� =

i

2�
l,l�
�

RBZ

d3pd3p�

�2	�6 Tr2�2�Gl�p�

�Va1

�l,l���p,p��Gl��p��Va1

�l�,l��p�,p�� . �3.20�

Here, Tr denotes the trace with respect to the momentum
indices, the LL indices, and the 2�2 matrix indices, and
Tr2�2 denotes the trace with respect to only the 2�2 matrix
indices. Substituting the expressions for G ,Va1

,Va2
into Eq.

�3.20�, we obtain the following expression for the N=0 part
of �Seff as in the case of the striped Hall state:

�Seff�a� = e�l0 +
1

2
�a0�0� −

1

2
� d3p

�2	�3a��p,p0�

�K0
���p�a��− p,− p0� , �3.21�

where K0
�� is given by

K0
���p� = − �

l�l0

�
l��l0

e2

�c�l� − l�
�f l,l�

� �p�f l�,l
� �− p� + f l�,l

� �p�f l,l�
� �− p�� +

1

2�− �
l�l0

+ �
l�l0

� e2

�c�l0 − l�
�f l,l0

� �p�f l0,l
� �− p� + f l0,l

� �p�f l,l0
� �− p��

+ �
RBZ

d2p�

�2	�2

1

p0 − ���p�� + ��p̂ + p���
�1 −

A�p̂ + p��A�p�� + Re�B�p̂ + p��B*�p��e−�i/2�p̂x�
��p̂ + p����p��

�e2f l0,l0
� �p�f l0,l0

� �− p�

+ �l0 +
1

2
� e2

2	
�c���,1��,1 + ��,2��,2� , �3.22�

up to O���p� /�C�. In Eq. �3.22�, the last term is cancelled
with the p=0 term of the second term, as expected from
gauge invariance again. Hence, K0

i,i�0�=0 for i=1,2.
In the long wavelength limit p0= py =0 and px→0, the

largest contribution in the response function comes from the
lowest order term with respect to px. The expressions of K0

0y

and K0
y0 become the same as in the case of the striped Hall

state. The expression of K0
00 becomes slightly different by the

correction from the intra-LL effect at the uppermost partially
filled LL. For the striped Hall state, the one-particle energy
shown in Fig. 3 has the inter-LL energy gap in the px direc-
tion, and the inter-LL effect gives the response functions
given in Eq. �3.12�. For the ACDW state, the one-particle
energy shown in Fig. 6 has the intra-LL energy gap in the px
direction as well as the inter-LL energy gap. While the
inter-LL effect gives the same expression of the response
function as that of the striped Hall state, the intra-LL effect
causes some corrections to the response function. Including

these corrections, K0
00 of the ACDW state in the long wave-

length limit is given by �see Appendix D�

K0
00�px� = − �1 +

�B

�

��xy

���

�c
px

2, �3.23�

where a=�2	 /eB is used explicitly in order to compare the
theoretical results with experimental data. The value of 
 at
each LL is shown in Table III. Note that the unit of 
 is
�tesla�−1/2. The Hall conductance is given by �xy

���, as in the
case of the striped Hall state. The longitudinal resistivity
becomes zero in the present calculation since the impurity
potential is not included. However, it is expected that the
longitudinal resistivity remains zero even in the system with
impurities because of the energy gaps.
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IV. ENERGY CORRECTIONS DUE TO FINITE
ELECTRIC CURRENTS

In this section, we consider the quantum Hall system with
an injected electric current and investigate the current effect
on the striped Hall state and the ACDW state. Effects of
impurities and metallic contacts are ignored in our calcula-
tions. For the striped Hall state, we only consider the current
parallel to the stripe direction since in this case, the current
effect can be estimated with no ambiguity even in the system
with impurities. When the current flows in the stripe direc-
tion, charges accumulate around both edges of the sample in
the perpendicular direction, as we will see later, and the elec-
tric field generates in the perpendicular direction. In this
case, the impurity effect is negligible since the Fermi surface
has the inter-LL energy gap in the perpendicular direction.
On the other hand, when the current flows in the perpendicu-
lar direction, the impurity effect becomes relevant since the
electric field generates in the stripe direction while the Fermi
surface is gapless in this direction. The current effect in this
case is nontrivial and will be studied in future work.

In the system with an injected current, it is naively ex-
pected that the current flow causes the plus and minus charge
accumulation at both edges of the sample with the opposite
sign, as expected from the classical Hall effect. MacDonald
et al. have studied the injected current effect on the integer
quantum Hall system about two decades ago.23 They have
calculated the current and charge distributions and found that
the charge accumulation occurs in the integer quantum Hall
system. The charge accumulation causes the energy correc-
tion via the Coulomb interaction between the accumulated
charges. It is expected that the same type of the energy cor-
rection exists even in the present highly correlated quantum
Hall states. However, it has not been studied as far as the
present authors know. In the following, we first derive the
current and charge distributions in the striped Hall state and
the ACDW state using the effective action. Then, we esti-
mate the current dependence of the energy corrections of the
two HF states. It is shown that the energy of the ACDW state
increases faster than that of the striped Hall state as the in-
jected current increases.

A. Current and charge distributions

We study current and charge distributions of the striped
Hall state and the ACDW state. We denote the two-point
function in the HF theory with no injected current

��†�x , t���x� , t��I=0 as F�x ,x�� for both states. In the system
with a finite electric current, electromagnetic fields and the
two-point function deviate from their original values. These
deviations are taken into account in the calculation of the
total energy. We define these deviations by

a�x,t� = A�x,t� − Aex�x� ,

���x,x�,t� = ��†�x,t���x�,t�� − F�x,x�� , �4.1�

where a and �� are unspecified for the moment and will be
determined later. The total action in the Coulomb gauge
� ·A�x�=0 is given as

Stot�A,�†,�� =� dtd3x� �

2
Ȧ2�x,t� −

1

2�
�� � A�x,t��2�

+� dtd3x�†�x,t��i�t −
�p + eA�x,t��2

2m
�

���x,t���z�

−
1

2
� dtd3xd3x��†�x,t��†�x�,t�V�x

− x����x�,t���x,t���z���z�� , �4.2�

where � is the magnetic constant and the dot means the time
derivative. This total action consists of the three-dimensional
electromagnetic field term and the two-dimensional electron
field term. In the Coulomb gauge, the interaction between
electric fields is expressed by the Coulomb interaction. Ap-
plying the HF approximation to the Coulomb interaction part
and substituting Eq. �4.1�, the total action is rewritten by

Stot�a,��,�†,�� = SEM�a� + SHF�a,��,�†,�� , �4.3�

where

SEM�a� =� dtd3x� �

2
ȧ2�x,t� −

1

2�
�� � a�x,t��2� ,

SHF�a,��,�†,�� =� dtd3x�†�x,t��i�t

−
�p + eAex�x� + ea�x,t��2

2m
���x,t���z�

−� dtd3xd3x�	�F�x,x� + ���x,x,t��

�V�x − x���†�x�,t���x�,t� − �F�x,x��

+ ���x,x�,t��V�x − x���†�x�,t�

���x,t�
��z���z�� . �4.4�

In the expression of SEM, the term of the uniform external
magnetic field is dropped since it gives only the same energy
constant to the two HF states. In Eq. �4.4�, the term including
���x ,x , t� and the term including ���x ,x� , t� are the Hartree
term and the Fock term, respectively. As seen in Appendix A,
the Fock term becomes negligible compared to the Hartree
term in the long wavelength limit since in the momentum
space, the Hartree term is proportional to the Coulomb po-

TABLE III. The value of 
 at each LL. “Parallel” is the case in
which the ACDW direction faces the y direction. “Perpendicular” is
the case in which the ACDW direction faces the x direction. The
unit of 
 is T−1/2.

l Parallel Perpendicular

0 0.497 0.497

1 0.386 0.824

2 0.472 1.044

3 0.581 1.171
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tential V�k�, which is O�1/k�, and gives a larger contribution
than the Fock term for the small momentum k. In the follow-
ing calculation, the deviation of the Fock term is dropped. If
we introduce the potential generated by the electron density
deviation as

a0�x,t� � � d3x�
�− e����x�,x�,t�

4	��x − x��
��z�� , �4.5�

SHF is rewritten as

SHF�a,a0,�†,�� =� dtd3x�†�x,t��i�t + ea0�x,t�

−
�p + eAex�x� + ea�x,t��2

2m
���x,t���z�

−� dtd3xd3x��F�x,x�V�x − x��

��†�x�,t���x�,t� − F�x,x��V�x − x��

��†�x�,t���x,t����z���z�� . �4.6�

The same form of the action is obtained from the Hamil-
tonian in the system with the infinitesimal external gauge
field shown in Eq. �3.1� when the Coulomb interaction part is
approximated in the HF approximation. The important dif-
ference is that a� in the present case represents the finite
gauge field induced by the current flow. Although the mean-
ing of a� is different, the effective action obtained in the
previous section is applicable as long as a� is small.

The partition function is given by

Z =� Da� D�†D�eiSEM�a�+iSHF�a,a0,�†,��. �4.7�

Integrating out electron fields and expanding the results up to
second order of a and a0, we obtain the effective action Seff
as

Z =� DaeiSEM�a�+iS0+i�Seff�a,a0�. �4.8�

The functional derivative of �SEM+S0+�Seff� with respect to
a�x , t� gives the Maxwell’s equation for a�x , t�,

���t
2 −

1

�
�2�a�x,t� = �j�x,t��a��z� , �4.9�

where j�x , t� is a current operator and �Ô�x��a means an ex-

pectation value of an operator Ô�x� for the system with finite
a�. The solution of this equation gives the stationary point of
the action with respect to a�. We use the action into which
the solution of Eq. �4.9� is substituted as the effective action.
�j�x , t��a and ���x , t�����x ,x , t� are calculated from the ef-
fective action by

��Seff�a,a0�
�a�x,t�

= �j�x,t��a��z� ,

−
��Seff�a,a0�

�a0�x,t�
= �− e���0�x� + ���x,t����z� , �4.10�

where the �0�x� is the expectation value of the density op-
erator in the system with no injected current. Equations �4.5�,
�4.9�, and �4.10� determine a0�x , t� and a�x , t�, or ���x , t�
and �j�x , t��a, self-consistently.

We concentrate on the finite system with the static in-
jected current flowing in the y direction and depending only
on x. The lengths of the 2D electron system in the x direction
and the y direction are Lx and Ly, respectively �Fig. 8�. In this
case, the electron density also depends only on x, and Eqs.
�4.5� and �4.9� give the following solutions at z=0:

a0�x� = −
1

2	�
�

−Lx/2

Lx/2

dx� ln�x − x���− e����x�� ,

ay�x� =
�

2	
�

−Lx/2

Lx/2

dx� ln�x − x���jy�x���a. �4.11�

As shown in the previous section, the effective action can be
divided into the nonperturbed part and the correction part
due to currents, and in the long wavelength limit, the correc-
tion part �Seff is given as

�Seff�a,a0� = − TLy�
−Lx/2

Lx/2

dx�− e��̄0a0�x�

−
TLy

2
�

−Lx/2

Lx/2

dxa��x�K0
����x�a��x� ,

�4.12�

where �̄0 is a uniform part of the density and T is the total
time. K0

����x� is the Fourier transformed form of the response
function obtained in the previous section. Substituting Eq.
�4.12� into Eq. �4.10�, ���x� and �jy�x��a are given as

�− e����x� = K0
00��x�a0�x� − K0

0y��x�ay�x� ,

�jy�x��a = K0
y0��x�a0�x� − K0

yy��x�ay�x� . �4.13�

Equations �4.11� and �4.13� determine the current and charge
density distributions up to an overall constant. The overall

-Lx/2 Lx/2

Ly/2

-Ly/2

0 x

y

j (x)y

B

2DES

FIG. 8. Schematic view of the 2D electron system in a magnetic
field with the injected current. The current flows in the y direction
and has only the x-coordinate dependence.
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constant is determined by requiring the following con-
straints:

�
−Lx/2

Lx/2

dxjy�x� = I, �
−Lx/2

Lx/2

dx���x� = 0, �4.14�

where I is a total current. Using the explicit form of the
response functions derived in Sec. III, we obtain the integral
equations to determine the current and charge distributions.

The same type of the integral equations has already been
solved for the integer quantum Hall state.23–26 Their results
are summarized as follows: �i� In Eq. �4.13�, the terms in-
cluding the vector potential ay�x� give a very small effect in
the integral equations compared to the terms including the
scalar potential a0�x�, and the vector potential terms are neg-
ligible in a good approximation. �ii� The analytical solution
of the integral equation without the vector potential term is
obtained by means of the Wiener-Hopf technique. �iii�
a0�x�=const� ln��x−Lx /2� / �x+Lx /2�� is the good approxi-
mate form of the analytical solution except near the edge,
and the constant coefficient is determined from the constraint
for the total current. The same results hold in our case.

The integral equation for the potential is given as

a0�x� = − ��
−Lx/2

Lx/2

dx� ln�x − x���x�
2 a0�x�� , �4.15�

where �= �1+
�B /���xy
��� /2	��c �
=0 for the striped Hall

state�. � has the dimension of length and is very small for the
magnetic fields of the order of several tesla in the quantum
Hall regime. For example, if �=13�0, m=0.067me �these are
parameters in GaAs�, and 
=0, then � is of the order of
10−8 m. The current and charge distributions are obtained
from a0�x� as

�− e����x� = 2	���x
2a0�x�, �jy�x��a = − �xy

����xa0�x� .

�4.16�

The approximate solution of Eq. �4.15� is given by �Fig. 9�

a0�x� = � ln x − Lx/2

x + Lx/2
 for �x� �

Lx

2
− � , �4.17�

with a linear extrapolation of a0 to ±IRH /2 in the interval
within � from the edge, where �= IRH /2�1+ln�Lx /��� and

RH=1/�xy
��� is the Hall resistivity. One may verify that Eq.

�4.17� is indeed the approximate solution of the integral
equation �Eq. �4.15�� by substituting Eq. �4.17� into Eq.
�4.15� and performing one partial integration.

B. Energy corrections

The energy correction due to the injected current per unit
space-time volume is calculated from the effective action by
�SEM+�Seff� /TLxLy. Since in the present case of �*=1/2, the
area occupied by one particle at the uppermost partially filled
LL is 2a2 �here, the vNL constant a is written explicitly�, the
energy correction per particle �E is given by ��SEM

+�Seff� /TLxLy�2a2. Substituting Eqs. �4.11� and �4.13� into
this expression, the energy correction per particle is given by

�E�I� = −
e2

2	�Lx
�

−Lx/2

Lx/2

dxdx����x�ln�x − x�����x�� .

�4.18�

Substituting Eq. �4.16� into Eq. �4.18� and using Eq. �4.15�,
the energy correction is written by

�E�I� =
��xy

����2

2	��Lx�c
2�

−Lx/2

Lx/2

dxa0�x��x
2a0�x� . �4.19�

The final result is obtained by substituting Eq. �4.17� into
this expression and performing the x integral,

�E�I� =
	�

Lx��xy
����2

ln�2/b� − 1

�ln�2/b� + 1�2 I2, �4.20�

where b is a dimensionless constant given by b=� / �Lx /2�
��1�. This expression depends on the filling factor, the mag-
netic field strength, and experimental parameters. Since the
actual filling factor includes the spin degree of freedom, we
use �ex=2l0+�* for lower spin bands and �ex= �2l0+1�+�*

for upper spin bands instead of �. The magnetic field strength
is related to the filling factor by B=hne /e�ex �ne is an elec-
tron density�. For example, if ne=2.67�1015 m−2, then the
magnetic field strengths are 4.42 T ��ex=5/2�, 3.15 T ��ex

=7/2�, 2.45 T ��ex=9/2�, 2.01 T ��ex=11/2�, 1.70 T ��ex

=13/2�, and so on. We use �=13�0, m=0.067me, ne=2.67
�1015 m, and Lx=5�10−3 m in order to estimate the values
of energy corrections, which are the parameters used in the
experiment by Lilly et al.6 Then, the energy correction is
given by �E�I�=CI2�q2 / lB�, with the coefficient C shown in
Table IV.

As shown in Sec. II, in the system with no injected cur-
rent, the energy of the ACDW state is slightly lower than that
of the striped Hall state. The differences of energy per par-
ticle �E0 are 9.3�10−3 �l0=1�, 2.3�10−3 �l0=2�, 1.4
�10−3 �l0=3�, and so on in units of q2 / lB. When the finite
current is injected, charges are accumulated in both edges
with the opposite sign. The accumulated charges give the
energy corrections �E�I�, which depend on the value of cur-
rent I. Including these corrections, the energy difference
between the striped Hall state and the ACDW state �E�I�
=−�E0+ ��EACDW�I�−�Estripe�I�� varies depending on I. The
current dependence of �E�I� is shown in Fig. 10. In Fig. 10,
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FIG. 9. Potential distribution a0�x�. The first derivative of a0�x�
gives the current distribution and the second derivative gives the
charge distribution.
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only the parallel case is plotted for the ACDW states since it
has a weaker current dependence than the perpendicular case
does. The signs of the energy differences change at the criti-
cal values of current Ic. The critical values are shown in
Table IV. The critical values are about 0.04–0.07 nA. The
current used in the experiments6,7 is above 1 nA and is much
larger than the critical value. At 1 nA, the energy differences
���I� become 5.6 ��=5/2�, 1.4 ��=9/2�, and 0.63 ��
=13/2� in units of q2 / lB, which are much larger than the
original energy differences at a zero injected current. Hence,
the striped Hall state becomes the lower energy state and
should be realized in the experiments.

V. SUMMARY

In this paper, we have investigated the effect of the finite
electric current on the striped Hall state and the ACDW state
in the system with no impurities and no metallic contacts
using the effective action. We calculated the electromagnetic
response functions and obtained the effective action. For the
striped Hall state, the current parallel to the stripe direction
was investigated. In this case, the current effect can be esti-
mated with no ambiguity even in the system with impurities.
The current and charge distributions were determined for
both states in the system with the injected current. It is found
that the charge accumulation occurs around both edges with
the opposite sign, just as in the case of the integer quantum
Hall state studied by MacDonald et al. and other
authors.23–26 We hope that current and charge distributions
will be observed in experiments for anisotropic states. The

charge accumulation results in the energy enhancement via
the Coulomb interaction between the accumulated charges.
The energy enhancement was estimated from the current and
charge distributions. It is found that the energy of the ACDW
state increases faster than that of the striped Hall state does
as the injected current increases. In the system with no in-
jected current, the energy of the ACDW state is lower than
that of the striped Hall state. Hence, the striped Hall state
becomes the lower energy state when the current exceeds the
critical value. The critical value is estimated at about
0.04–0.07 nA. The current used in the experiments for the
anisotropic states6,7 is above 1 nA. This result suggests that
the striped Hall state is realized in the experiments. In addi-
tion, the striped Hall state has the anisotropic Fermi surface,
which naively explains the experimental features of the an-
isotropic states, i.e., the anisotropic longitudinal resistivities
and the unquantized Hall resistivities. Hence, we conclude
that the striped Hall state is realized in the experiment rather
than the ACDW state and predict that the ACDW state is
realized if the experiment is done with the current smaller
than the critical value.

ACKNOWLEDGMENTS

This work was partially supported by the special Grant-
in-Aid for Promotion of Education and Science in Hokkaido
University, a Grant-in-Aid for Scientific Research on Priority
Area �Dynamics of Superstrings and Field Theories, Grant
No. 13135201�, and �Progress in Elementary Particle Physics
of the 21st Century through Discoveries of Higgs Boson and
Supersymmetry, Grant No. 16081201�, provided by the Min-
istry of Education, Culture, Sports, Science, and Technology,
Japan.

APPENDIX A: HARTREE-FOCK HAMILTONIAN

Let us consider the quantum Hall system and concentrate
on the Coulomb interaction part of the Hamiltonian. The
Coulomb interaction part is given by

Hint =
1

2
� d2k

�2	�2 :��k�V�k���− k�: , �A1�

where ��k� and V�k� are given in Eqs. �2.10� and �2.11�,
respectively. The HF approximated form of Hint is written
using the vNL base by HHF=HHF− �HHF� /2, where

HHF = �
l1,l2,l3,l4

� d2k

�2	�2vl1,l2,l3,l4
HF �k̃���̄l1,l2

�− k̃���̄l3,l4
�k̃� ,

�̄l1,l2
�k� = �

BZ

d2p

�2	�2bl1
† �p�bl2

�p − k̂�e−�i/4	�k̂x�2py−k̂y�,

vl1,l2,l3,l4
HF �k� = V�k�f l1,l2

0 �− k�f l3,l4
0 �k� −� d2k�

�2	�2V�k��

�f l1,l4
0 �− k��f l3,l2

0 �k��e−�i/2	��kx�ky−ky�kx�. �A2�

f l1,l2
0 �k� is given in Appendix C. In the definition of the HF

potential vl1,l2,l3,l4
HF �k�, the first term and the second term in the

TABLE IV. Values of the coefficient C in units of nA−2 and the
critical current Ic in units of nA. “Parallel” is the case in which the
ACDW direction is parallel to the current. “Perpendicular” is the
case in which the ACDW direction is perpendicular to the current.

�ex Stripe Parallel Perpendicular Ic

5/2 325.0 330.6 335.6 0.041

7/2 204.4 206.6 209.0 0.065

9/2 144.7 146.1 147.6 0.040

11/2 109.9 110.7 111.6 0.053

13/2 87.44 88.08 88.68 0.047
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FIG. 10. Energy differences �E�I� between the striped Hall state
and the ACDW state. The results at �=5/2, 9 /2, 13/2 are shown.
When ���I� is positive, the striped Hall state has a lower energy.
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right hand side are the Hartree term and the Fock term, re-
spectively. The LL projected Hamiltonian �Eq. �2.14�� is ob-
tained by projecting HHF into the lth LL.

In Sec. IV, the deviations of the magnetic field and the
two-point function are taken into account in the long wave-
length limit in order to consider the current effect on the HF
states. The deviation of the two-point function is caused by

the deviation of ��̄l1,l2
�−k̃��. We only consider the deviation

at the partially filled LL l0 since it would give the largest

contribution in our calculation and denote it as ��̄l0
�−k̃�.

Then, the deviation of HHF is given by

�HHF = �
l3,l4

� d2k

�2	�2vl0,l0,l3,l4
HF �k̃���̄l0

�− k̃��̄l3,l4
�k̃� .

�A3�

In the long wavelength limit, ��̄l0
�−k̃� is relevant only for the

small momentum. When we expand vl1,l2,l3,l4
HF �k̃� with respect

to k, the largest contribution comes from the lowest order
term with respect to k. For each set of the LLs �l3 , l4�, the
Hartree term of the HF potential gives the lower order term
with respect to k since the Hartree term has V�k�, which is
O�1/k�. Hence, the Hartree term gives the main contribution,
and the Fock term is negligible in the long wavelength limit.

APPENDIX B: SELF-CONSISTENT EQUATION
FOR THE ANISOTROPIC CHARGE

DENSITY WAVE STATE

The ACDW state at �*=1/2 is constructed using the mean
value of the projected density operator given by Eq. �2.28�.
From Eq. �2.28�, the two-point function of the operator bl�p�
is obtained by

�bl
†�p�bl��p���ACDW = �l,l��

N
e−i�p,N��F0�p��2	�2�2�p − p�

− 2	N� + F1�p��2	�2��px − px�

− 2	Nx��„py − py� − 	�2Ny + 1�…� ,

�B1�

where

F0�p� = �
N

�l�2	Nx

rs
,2	Nyrs�e−ipxNy+ipyNx−i	�Nx+Ny+NxNy�,

F1�p� = �
N

�l�2	Nx

rs
,	�2Ny + 1�rs�

�e−ipxNy+ipyNx−i	�Nx+Ny+Nx�Ny+1/2��. �B2�

The HF Hamiltonian of the ACDW state is given by Eq.
�2.31�, and the ground state is the state in which the lower
energy band at the uppermost partially filled LL l is fully
occupied. The ground state is expressed in terms of the field
operator c−�p� by ���=Nc�p�RBZc−

†�p��0�, where Nc is a nor-
malization constant and �0� is a vacuum state in which the
�l−1�th and lower Landau levels are fully occupied. The

self-consisntent equation for �l�QN� is obtained by calculat-
ing the the left hand side of Eq. �B1� for this ground state.

Assuming the x- and y-inversion symmetries for the
density, the order parameters become real and have the prop-
erty �l�Qx ,Qy�=�l�Qx ,−Qy�=�l�−Qx ,Qy�. The self-
consistent solution is available only when the two energy
bands are symmetric with respect to the energy gap i.e.,
�+�p�=−�−�p����p�, as expected from the particle-hole
symmetry of the original Hamiltonian. This gives
Tr2�2 Dl�p�=0, where Tr2�2 denotes the trace with respect to
the 2�2 matrix indices, and A�px , py +	�=−A�p�. In this
case, U�p� and ��p� are given by

U�p� =�
B�p�
N+�p�

B�p�
N−�p�

�+�p� − A�p�
N+�p�

�−�p� − A�p�
N−�p�

� ,

��p� = ��A�p��2 + �B�p��2, �B3�

where N±�p�=2�±�p���±�p�−A�p��.

APPENDIX C: LANDAU LEVEL MATRIX ELEMENTS

The matrix elements �l1�eiq·��l2� are given as follows:

�l1�eiq·��l2�

=�
� l1!

l2!�qx + iqy

�4	
�l2−l1

e−q2/8	Ll1

l2−l1� q2

4	
� for l2 � l1

� l2!

l1!�qx − iqy

�4	
�l1−l2

e−q2/8	Ll2

l1−l2� q2

4	
� for l1 � l2

e−q2/8	Ll1� q2

4	
� for l2 = l1.

�
�C1�

From Eq. �C1�, we obtain f l1,l2
� �q� defined by Eq. �3.3� as

f l1,l2
0 �q�= �l1�eiq·��l2�, f l1,l2

x �q�= i�c�qy
�l1�eiq·��l2�, and f l1,l2

y �q�
=−i�c�qx

�l1�eiq·��l2�. Note that 	f l1,l2
� �−k�
*= f l2,l1

� �k� holds fol-
lowing from its definition. The values of f l1,l2

� �0� and its de-
rivatives are given as

f l1,l2
0 �0� = �l1,l2

,

f l1,l2
x �0� = i�c

�f l1,l2
0 �q�

�qy


q=0

=�− �c� l1 + 1

4	
�l2,l1+1 for l2 � l1

�c� l1

4	
�l1,l2+1 for l1 � l2

0 for l1 = l2,
� �C2�
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f l1,l2
y �0� =  − i�c

�f l1,l2
0 �q�

�qx


q=0

=�− i�c� l1 + 1

4	
�l2,l1+1 for l2 � l1

− i�c� l1

4	
�l1,l2+1 for l1 � l2

0 for l1 = l2,
� �C3�

 �f l1,l2
x �q�

�qy


q=0

=�
− i

�c

4	
��l1 + 1��l1 + 2��l2,l1+2 for l2 � l1

− i
�c

4	
�l1�l1 − 1��l1,l2+2 for l1 � l2

− i
�c

4	
�l1 +

1

2
� for l1 = l2,

�
�C4�

 �f l1,l2
y �q�

�qx


q=0

=�
− i

�c

4	
��l1 + 1��l1 + 2��l2,l1+2 for l2 � l1

− i
�c

4	
�l1�l1 − 1��l1,l2+2 for l1 � l2

i
�c

4	
�l1 +

1

2
� for l1 = l2.

�
�C5�

APPENDIX D: CALCULATION OF K00

FOR THE ANISOTROPY CHARGE
DENSITY WAVE STATE

When p0= py =0 and px→0, the response function K0
00�px�

is Taylor expanded with respect to px as

K0
00�px� = K0

00�0� + px�px
K0

00�0� +
px

2

2
�px

2 K0
00�0� + ¯ .

�D1�

The first and second terms become zero. The third term in-
cludes the corrections from the inter-LL term and the
intra-LL term. The inter-LL term gives the same expression
for K0

00 as that in the striped Hall state. The intra-LL term
gives the extra correction �K0

00�px� given by

�K0
00�px� = �px

2, �D2�

where � is given by

� =
e2

2
�

RBZ

d2p�

�2	�2

1

2��p��
�px

2 
��A�p̂ + p��A�p�� + Re�B�p̂ + p��B*�p��e−�i/2�p̂x�

��p̂ + p����p��
�

px=0

.

�D3�


 in Eq. �3.23� is defined by 
�−���c /�xy
����B. The finite �

is the result of the band formation at the partiall filled LL,
while the band structure is generated by the density modula-
tion of the ACDW state in both directions. Hence, it may be
considered that the finite � reflects the remaining density
modulation effect of the ACDW state in the long wavelength
limit.
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