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We study the scattering of polaritons in a semiconductor microcavity in the strong-coupling regime between
a quantum well exciton and a cavity photon. The scattering resonance due to the biexcitonic bound state is
analyzed in detail. We point out its signatures in the parametric interaction strength, the mean-field shifts, and
the orientation of the linear polarization of parametric luminescence.
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I. INTRODUCTION

Scattering resonances play a prominent role in the ma-
nipulation of interactions in quantum many-body systems. In
ultracold atomic gases, for example, magnetic Feshbach
resonances1,2 have been very successfully employed to tune
the interactions between atoms and applied to observe a con-
trolled collapse and subsequent explosion of a Bose-Einstein
condensate3 �BEC� as well as the BEC-BCS crossover in a
two-component Fermi gas.4

Scattering in semiconductor microcavities in the strong-
coupling regime between cavity photons and quantum well
excitons has recently attracted a good deal of interest.5 In the
strong exciton photon coupling regime, the quasiparticles are
polaritons, a coherent superposition of photon and exciton,
from which the excitonic content is responsible for the inter-
action among the polaritons. In the channel of opposite cir-
cular polarization, the polaritons can form a bound state, the
bipolariton, whose energy is close to the biexciton energy.7

The first experimental evidence for the bipolariton was ob-
tained by Saba et al.6 in pump-probe reflection measure-
ments. A more detailed theoretical and experimental analysis
of the bipolariton in microcavities was reported in Ref. 8.

Because the biexciton binding energy is of the same order
as the Rabi splitting between the upper and lower polariton
branches, it is possible to tune the bipolariton energy close to
the scattering continuum, in which case the polariton-
polariton interactions are resonantly enhanced. Tartakovskii
et al. have invoked this mechanism to explain their experi-
mental observations.9 They found that a linearly polarized
pump gave rise to a stronger parametric emission as com-
pared to a circularly polarized pump. The connection with
the bipolariton is readily made, because only when both up
and down circular polarizations of the polaritonic field are
excited, the bipolaritonic state can play a role in the paramet-
ric scattering process. A quantitative theoretical treatment of
polariton scattering close to the bipolariton has, however, not
been performed yet. Moreover, in Ref. 10 it was argued that
the bipolariton cannot play an important role in the polariton
scattering, because it is mainly built up with high-momentum
exciton states, whereas the parametric scattering experiments
are carried out at low wave vectors.

It is the purpose of this paper to analyze the resonant
polariton scattering in more detail within a contact interac-
tion model for the exciton-exciton interaction, in the pres-
ence of both a biexcitonic state and strong light-matter cou-

pling. We will only focus on the interactions between
polaritons in the lower branch which is better protected from
losses and calculate the nonlinear coupling constant—i.e.,
the prefactor of the nonlinear term in the Gross-Pitaevskii
equation. It was pointed out by Kwong and co-workers that
the optical nonlinearity is given by the T matrix,11,12 which
will be the primary quantity of interest in this paper.

We start in Sec. II with a model calculation of the exci-
tonic T matrix and then generalize it to the polaritonic T
matrix. In Sec. III, we discuss the consequences of the bipo-
laritonic scattering resonance on the parametric oscillation in
microcavities, and in Sec. IV, we put forward other experi-
mental signatures of the bipolaritonic scattering resonance,
related to the change of sign of the coupling constant. This
change of sign affects both the direction of the mean-field
energy shifts and the orientation of linear polarization of
parametric luminescence.

II. NONLINEAR COUPLING CONSTANT
AND THE T MATRIX

If the interactions are sufficiently weak �to be quantified
later�, the dynamics of a resonantly pumped microcavity
with strong coupling between a quantum well exciton and a
cavity photon �effective two-dimensional �2D� system� can
be described by a Gross-Pitaevskii equation for the lower
polariton C-number fields �LP,�, which for a finite square of
length L with periodic boundary conditions reads in Fourier
space

i�
d

dt
�LP��k� = ���k� − i

�

2
��LP��k� + Fp��k�e−i�pt

+
1

L2 �
K,q,�

gK,k,q
�� �LP�

* �K−k��LP��K − q��LP��q� ,

�1�

where ��k� and � are, respectively, the lower polariton dis-
persion and lifetime. The second term represents the coher-
ent driving by an external laser source with frequency �p
whose wave vector and polarization profile is determined by
Fp��k�. Interactions between polaritons are modeled by the
last nonlinear term. The nonlinear coupling constant equals

gK,k,q
�� �E� = L−2�Kk;��	TE	Kq��
 , �2�

where the T matrix is defined in terms of the interaction
potential V and the full two-body Green function GE as

PHYSICAL REVIEW B 76, 045319 �2007�

1098-0121/2007/76�4�/045319�8� ©2007 The American Physical Society045319-1

http://dx.doi.org/10.1103/PhysRevB.76.045319


TE = V + VGEV . �3�

The ket 	Kq ;��
 represents here a normalized two-particle
state of momenta q and K−q with spin projections on the
growth axis � and �, respectively. The dependence of the
interaction term in Eq. �1� on the spin degrees of freedom
was simplified by using the rotational invariance of the mi-
crocavity and the s-wave exciton states.

In fact, low-energy scattering in two dimensions shows
the peculiar behavior13,14

�00	TE→0	00
 =
4	�2

m�ln�Eb/E� + i	�
�4�

for particles with mass m, and for strictly zero scattering
energy, the T matrix vanishes. In practice, however, this
property does not often play an important role for the de-
scription of the many-body Bose gas. For example, in ther-
modynamical equilibrium, the many-body physics fixes the
chemical potential 
=gn as the relevant energy scale and the
correct way to obtain the coupling constant from the T ma-
trix is to a first approximation15

g = �00	T−
	00
 , �5�

where 
=gn has to be determined self-consistently. For suf-
ficiently weak interactions, the exact value of 
 substituted
in the above formula is not crucial, because the chemical
potential only enters in the logarithm and it is sufficient to
put a number with the correct order of magnitude, at least as
long as 
 /Eb is not close to 1. Because E=−Eb is a pole of
the T matrix �4�, there is a two-particle bound state at this
energy. The condition 
�Eb implies that this bound state
plays an important role in the many-body physics, a situation
where mean-field theories typically fail and more compli-
cated approaches have to be worked out �see, e.g., Ref. 16
for the 3D Bose gas with a low-lying bound state�.

In general, the mean-field description �1� can only be used
when the interaction energy is sufficiently weak with respect
to the kinetic energy. The quantity to set a scale for the
kinetic energy is the interparticle distance so that for a two-
dimensional system of particles with mass m and density n
the condition of weak interactions is gn��2n /m or, equiva-
lently, g=4	�2t /m with dimensionless parameter t�1.

A. Model

Strong coupling between the excitonic transition and the
cavity photon in semiconductor microcavities is typically
only achieved for wave vectors within a range of a few in-
verse microns around k=0: a polaritonic wave packet that is
distorted on a length scale of less than 1 
m exits the strong-
coupling regime. The excitonic interactions, on the other
hand, take place on a much smaller length scale, roughly
given by the inverse of the exciton radius, which is about
10 nm. This implies that for physics in the strong-coupling
regime, the exciton-exciton interactions can be replaced by a
zero-range contact interaction. Because we consider a two-
dimensional system, such a contact interaction needs a
proper regularization. For this purpose, we formulate the
problem on a lattice and only let the lattice spacing a tend to

infinity at the end of the calculations. In our model, the ex-
citonic and photonic kinetic energies are modeled by a tun-
neling energy ti,j

C,X for hopping between sites i and j, chosen
to reproduce the true dispersions of the cavity photons and
excitons at long wavelengths �
a.

Our model Hamiltonian reads then in terms of the cavity
photon and exciton field operators �C and �X

H = �
ij

�
�

��C�i,j + ti,j
C ��C�

† �i��C��j� + �
ij

��X�i,j + ti,j
X �

��X�
† �i��X��j� + �

i
�R��C�

† �i��X��i� + �X�
† �i��C��i��

+ �
i��

g0
��

2
�X�

† �i��X�
† �i��X��i��X��i� . �6�

We will consider the case of small detuning between cavity
photonic level �C and the excitonic transition energy �X. The
radiative and nonradiative loss processes as well as the lon-
gitudinal transverse splitting of the exciton polarization
states17 have been neglected, because they involve energy
scales small as compared to the Rabi frequency �R, so that
the exciton-photon coupling is the major effect to renormal-
ize the quasiparticle scattering.

B. Exciton-exciton scattering

Let us first consider a case without coupling between ex-
ctions and photons; i.e., we let the exciton-photon detuning
be very large as compared to the Rabi frequency 	�C−�X 	

�R, or equivalently we set �R=0. The two-particle scat-
tering problem is solved by calculating the T matrix �3�. Its
matrix elements between the two-particle states 	K ,k
 can be
calculated by using the method presented in Ref. 18, yielding

�K,k;��	TE
XX	K,k�;��
XX =

L2

1

g0
�� − GE

Xo�K�
, �7�

where GE
Xo�K� is the sum over the relative momentum of the

noninteracting two-exciton Green function:

GE
Xo�K� =

1

L2�
k

1

E − �X�K

2
+ k
 − �X�K

2
− k
 , �8�

where k takes the values k=0, ±2	 /L , ±4	 /L , . . . , ±	 /a.
Formula �7� can be used to relate the parameters g0 and a

of our simple contact interaction model to the actual exci-
tonic T matrix. This T matrix should be determined from a
full solution of the two-exciton problem, starting from the
Coulomb interactions between the constituent electrons and
holes. An accurate calculation of the excitonic T matrix is a
highly nontrivial task, and so far calculations based on the
Born approximation,19 the dynamics-controlled truncation
scheme,11,12 and diffusion Monte Carlo calculations20 are
available for excitons in quantum wells.

We will not try to calculate the excitonic T matrix here,
but rather investigate its relation to the polaritonic T matrix
in the regime of strong exciton-photon coupling. If the
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exciton-exciton scattering mainly involves momentum states
k for which the excitonic dispersion �X�k� is quadratic with
an effective mass mX, the center-of-mass �c.m.� and relative
motion can be separated. The center-of-mass motion then
merely gives a shift of the total energy, and all the informa-
tion is contained in the K=0 matrix element of Eq. �7�. The
momenta k and k� of interest here will be much smaller than
the excitonic interaction range and can be set to zero in Eq.
�7�, yielding simply

1

g0
�� =

1

tE
XX,�� + GE

Xo�0� , �9�

where tE
XX=L−2�0,0	TE	0,0
, relating together with Eq. �8�

explicitly the model parameters g0
�� and a to the physical T

matrix.
It is worth mentioning in passing that Eqs. �7� and �8� are

in fact a justification of the nonlinear term in Eq. �2�. The T
matrix contains all the information on the two-body physics.
For two models to be physically equivalent, it is necessary
and sufficient that they reproduce the same T matrix in the
relevant energy and momentum ranges. As a bosonic mean-
field theory neglects the momentum states different from the
condensate momentum, the sum is in Eq. �8� restricted to a
single wave vector k=0 and it vanishes in the large-area limit
L2→�, so that Eq. �2� follows from Eq. �9�.

The discussion below Eq. �5� has shown that it is natural
to express the coupling constant tE

XX,�� as gXX��

=4	�2�E
�� /mX. We now have to make a distinction between

the collision of two excitons that are circularly polarized in
the same or opposite directions. For cocircular polarization,
no biexciton bound state exists so that the T matrix has to be
a slowly varying function of the energy �see Ref. 12�. Using
the theoretical estimate23 for GaAs, gXX↑↑=0.015 meV 
m2,
one obtains with mX=0.4me the value �E

↑↑=6.
For opposite polarizations, on the other hand, the biexci-

tonic state leads to a resonance in the T matrix. This is easily
seen from Eq. �3�. A bound biexcitonic state 	b
 manifests
itself as a pole in GE at the biexcitonic energy Eb. Expanding
GE for E�Eb,

GE = G̃ +
	b
�b	
E − Eb

, �10�

with 	b
 the biexciton bound state, tE
XX↑↓ can be rewritten as

tE
XX↑↓ � tnr

XX↑↓ +
4	�2

mX

�

E − Eb
, �11�

where the resonance strength is defined as

� =
mX

4	�2 	�0,0	V	b
	2. �12�

The resonant structure �11� of the T matrix can also be rec-
ognized in Figs. 7 and 8 of Ref. 12. � is conveniently rewrit-
ten by noting that �0,0 	V 	b
= �0,0 	�2 /2mX+V 	b
, thanks to
the zero-momentum state in the bra. Using the fact that 	b
 is
a solution of the Schrödinger equation with energy Eb, one
obtains

� =
mX�Eb − 2�X�2

4	�2 	�0,0	b
	2. �13�

In a first approximation, the exciton-exciton interaction
can be modeled by a deuteron potential21 V�r�= −27�2

4mXa2 e−r/a,
where a satisfies Eb−2�X=−2�2 / �mXa2�. A variational calcu-
lation with the model relative wave function ��r�
=�2/	�2exp�−r /�� yields the lowest energy for �=a, so
that �0,0 	b
=16	 / �2�X−Eb� and the resonance width equals
�=4�2�X−Eb�. With the binding energy of a biexciton in
GaAs of about 2 meV, we estimate ��8 meV, which is
large as compared to the excitonic and photonic damping
rates and of the same order as the Rabi splitting. This large
value of the resonance width � is favorable for the experi-
mental observability of the biexcitonic resonance in the
polariton-polariton scattering. Because the result �=4�2�X

−Eb� is based on a rather crude model of the exciton-exciton
interactions, it is instructive to compare with another model
calculation. A potential for which the bound state can be
calculated exactly is the zero range pseudopotential.22 The
coupling strength � equals within this model �=2�X−Eb.
The fact that it evaluates within the pseudopotential model to
a smaller value as compared to the deuteron potential calcu-
lation �=Eb−2�x is not unexpected, because in the pseudo-
potential model, the interactions only take place for zero
relative distances. Therefore, the matrix element �, which is
an overlap of the interaction potential with the bound and
scattering wave functions, is smaller. From this reasoning,
the pseudopotential calculation is expected to give a lower
bound for the value of �.

C. Polariton-polariton scattering

Let us now include the exciton-photon coupling in the T
matrix. The single-particle eigenstates then form polariton
branches, coherent superpositions of excitons and photons.
They can be expressed in the exciton-photon basis as

	k,J�
 = �
�=X,C

Hk
�J	k,��
, J = LP,UP, �14�

where the Hopfield coefficients H quantify the excitonic and
photonic content of the polariton, whose dispersion will be
denoted by �J�k� �see Fig. 1�. The T matrix can again be
evaluated using the techniques of Ref. 18. The matrix ele-
ment for two particles in the LP branch is

gKkk�
�� �E� = �K,k;��	TE	K,k�;��
11

=
1

L2

HK/2+q
X1 HK/2−q

X1 HK/2+q�
X1 HK/2−q�

X1

�TE�−1 − DE�K�
, �15�

where

DE�K� =
1

L2 �
k,J,J�

� �HK/2+k
XJ �2�HK/2−k

XJ� �2

E − �J�K/2 + k� − �J��K/2 − k�

−
1

E − �2k2/mX

 , �16�

and Eq. �9� has been used. Because the summation in Eq.
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�16� converges on the ultraviolet side, we can now safely let
the model lattice spacing a tend to zero.

Equations �15� and �16� are central to this paper. They
show how the polariton interactions are related to the exci-
tonic ones. The numerator of Eq. �15� contains the usual
Hopfield coefficients that take the excitonic content of the
polariton into account.24,25 The term DE�K� in Eq. �16� is not
trivial. It takes into account the renormalization of the inter-
actions due to the fact that also the intermediate states in the
scattering process are polaritons instead of pure excitons.
Note that, as a consequence of the momentum-independent
exciton-exciton interactions in our model Hamiltonian �6�,
the denominator of Eq. �15� only depends on the c.m. wave
vector and not on the relative momenta in the initial and final
states. With respect to the model of Ivanov and co-workers,21

our model is simplified, because the momentum dependence
of the excitonic interactions is neglected from the beginning.
As argued above, the good separation in the length scales of
the strong light-matter coupling physics on the one hand and
the excitonic scattering on the other hand ensures that this is
a well-controlled approximation.

The effect of the renormalization term is expected to be
usually small. The reason can be traced back to the large
ratio of the excitonic over the polaritonic mass. From a di-
mensional analysis, it follows that DE�K�=�E�K�mLP /�2,
with �E dimensionless. The summand in Eq. �16� is effec-
tively cut off at wave vectors where the strong exciton-
photon coupling is lost, so that it is expected that �E�K� is of
order 1. This is confirmed by numerical calculations. The
quantity TE in Eq. �15� on the other hand is inversely pro-
portional to the excitonic mass �see Eq. �11��. Therefore,
barring excitonic resonances �where tE

−1 is small� and
“anomalously” large values of �E�K�, the renormalization of
the excitonic interactions due to the strong coupling with the
cavity photons is negligible.

III. PARAMETRIC INTERACTION STRENGTH CLOSE
TO BIPOLARITON RESONANCE

One of the most dramatic effects of interactions in reso-
nantly pumped microcavities is the parametric scattering.26

Two polaritons of the pumped mode with wave vector kp and
frequency �p scatter to form a “signal” and “idler” polariton:
2kp=ks+ki and 2�p=�s+�i. As already put forward in Ref.
9, the bipolaritonic scattering resonance can enhance this
parametric process. The threshold pump intensity above
which the occupation of the modes at ks and ki becomes
macroscopic is inversely proportional to the modulus of the
the coupling constant27 	g2kp,ks,kp↑↓�2�p�	.

Close to the scattering resonance resonance, the back-
ground coupling constant tbg

XX in Eq. �11� can be neglected. At
this point, also loss mechanisms that are not present in our
simplified treatment can be included by introducing a phe-
nomenological background line width for the biexciton reso-
nance in Eq. �11�: Eb→Eb+ i�b.

For a quantitative analysis, we write the coupling constant
as g2kp,ks,kp↑↓= 4	�2

mX
H4t2kp↑↓, where H4 schematically repre-

sents the product of four Hopfield coefficients in Eq. �15�.
Figure 2 shows a plot of 	g2kp,↑↓�2�p�	 as a function of the
scattering energy 2�p and pump wave vector kp. The solid
line shows the free dispersion of two polaritons in the
pumped mode. At small kp, the free polariton dispersion
stays far from the biexcitonic state and a strong resonance
peak is observed at E=Eb, which is almost not shifted with
respect to the biexcitonic state. The reason for the weak
renormalization is the large ratio of the excitonic mass with
respect to the polaritonic one as explained below Eq. �16�.

For larger values of kp, two valleys develop in the the
coupling constant 	t2kp↑↓�2�p�	. The physical reason is the
efficient dissociation of the bipolariton into kp±k pairs. Fig-
ure 3 illustrates the scenario. It shows the detuning Eb
−�J�kp+kex�−�J��kp−kex�, which is the energy difference
between the biexciton state and two outgoing polaritons with
c.m. momentum 2kp and relative momentum k in the x di-
rection. Due to the nonparabolicity of the polariton disper-

FIG. 1. The dispersions of the uncoupled excitonic �X� and cav-
ity photonic dispersions �C� are shown together with the dispersions
of the hybridized lower polariton �LP� and upper polariton �UP�.
The Rabi frequency was taken �R=5 meV and the cavity frequency
�1

C=1.4 meV. FIG. 2. �Color online� 	t2kp↑↓�2�p�	 as a function of the pump
angle and pump energy. The solid line shows twice the polariton
dispersion 2���kp�−��0�� and the dashed line shows the maximum
in the density of states for k�0 �see Fig. 3�. The cavity detuning is
�C−�X=2 meV. The resonance width is taken �=8 meV �see text�,
the background biexciton damping �b=0.2 meV, and the other cav-
ity parameters are as in Fig. 1.
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sion, this detuning shows a nontrivial dependence on the
relative momentum k. Where this function is flat, the density
of dissociated states is the largest and their effect on the
bipolariton the most pronounced. One maximum is always
present at k=0, resulting in the logarithmic dependence of
the scattering amplitude on the scattering energy close to the
free polariton dispersion �see the solid line in Fig. 2�. An
additional maximum in the density of states develops for
sufficiently large kp and k�0. Its location is shown with the
dashed line in Fig. 2. Only close to the energy and c.m. wave
vector where resonant dissociation of the bipolariton into
free polaritons with a large density of states occurs is the
renormalization of the scattering amplitude substantial.

From a quantitative point of view, two points are worth
discussing. First, Fig. 2 shows that the suppression of the
resonance due to the dissociation in free polaritons is not
dramatic. For the experimentally realistic parameters that we
have used, the maximal value of the coupling constant is for
fixed kp suppressed by a factor of 2 at most. Second, Fig. 2
shows that for the chosen parameters, the dimensionless
parametric coupling constant t can become as large as t
�40. This value of t has to be compared with the typical
values t�6, estimated for the scattering of cocircular polari-
tons �see Sec. II B�. Our theoretical analysis thus confirms
the experimental observation that it is possible to enhance
the parametric interactions in the countercircularly polarized
channel with respect to the cocircular one by tuning the scat-
tering energy close to the biexcitonic state.9 Note that the
maximal magnitude of the coupling constant depends much
on the quality of the sample as it is inversely proportional to
the background bipolaritonic lifetime �b.

Such large interactions could raise concern about the va-
lidity of mean-field theory, but even though in this form the
interactions �for both the cocircularly and countercircularly
polarized� polaritons are large �t�1�, the relevant mass scale
to be considered is not the exciton mass mX, but rather the
lower polariton mass mLP= �d2�LP�k� /dk2��10−3mX. In the
form g= 4	�2

mLP
H4t�, with t�= tmLP /mX�1, it is apparent that

the interactions are actually weak. Because the polariton
mass is so much smaller than the excitonic mass, it is in fact
extremely difficult to create a strongly interacting polariton

gas, in the sense that t�
1. This “weak-interaction feature”
is directly related to the key advantages of the polaritonic
system with respect to the excitonic one: it is also the small
polaritonic mass that ensures a large Bose-Einstein conden-
sation temperature28 ��mLP

−1� and a dominance of the kinetic
energy over the disorder potential �motional narrowing29�.

As a final point, it is also interesting that the resonances in
Fig. 2 correspond to the bipolariton, which can be measured
alternatively by a four-wave mixing experiment such as, e.g.,
in Ref. 8. This investigation was restricted to the zero c.m.
wave vector of the bipolariton. For comparison with the kp
�0 situation, we have also calculated the bipolariton reso-
nance �via the parametric scattering amplitude� for zero c.m.
wave vector in Fig. 4. With respect to the finite-kp case, the
renormalization is weaker, because there is only a large den-
sity of dissociated states with zero relative wave vector �see
Fig. 3 for kp=0�. The bipolariton resonance energy is in both
Figs. 3 and 4 shifted by about 0.1 meV with respect to the
excitonic resonance. This small value of the shift is in quali-
tative agreement with the experiments of Ref. 8. The experi-
ments of Ref. 6 on the other hand observed a much larger
shift of the resonance energy �about 0.6 meV�. This could be
an indication that the density of polaritons was in the latter
experiment too high for a two-particle description of the
polariton-polariton interactions to be valid.

IV. SIGNATURES SENSITIVE TO THE SIGN
OF THE INTERACTIONS

The above discussion was mainly focused on the strength
of the parametric interaction and we have shown how the
interactions between countercircularly polarized polaritons
can be strongly enhanced by carefully adjusting the cavity
detuning, pump angle, and pump energy. The possibility to
enhance the interactions is, however, only one feature of a
scattering resonance. In an OPO experiment, the scattering
resonance then leads to a decrease of the threshold, but due

FIG. 3. The detuning between the bipolariton and two free po-
laritons with c.m. momentum 2kp as a function of their relative
momentum in the x direction k for several values of kp.

FIG. 4. �Color online� 	t2kp,0,ks−kp↑↓��p�	 as a function of the
cavity photon-exciton detuning and pump energy. The solid line
shows twice the polariton dispersion 2���0�−Eb�. The other param-
eters are the same as in Fig. 2.
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to the complicated phenomenology of the OPO process itself
�see, e.g., Ref. 27�, other experimental investigations are nec-
essary for a clear understanding of the scattering resonance.
We propose two such alternatives in the present section: the
mean-field shifts and the direction of the linear polarization
of parametric luminescence below the threshold. These quan-
tities are sensitive to the sign of the interactions between the
countercircularly polarized polaritons, which can be varied
by crossing the resonance.30

A. Mean-field shifts

In a cavity pumped with circularly ↑-polarized resonant
laser light, the density of polaritons in the pump mode np
shifts the single-polariton dispersion.24 The direction of the
shift of the spin-down polaritons depends on the sign of g↑↓.
Equations �11� and �15� show that the sign of the interactions
close to the resonance is positive �repulsive� for scattering
energies above the bi-polariton state, whereas they are nega-
tive �attractive� for scattering energies below the resonance.
The dispersion of the polaritons can be experimentally deter-
mined from transmission measurements with a weak coun-
terpolarized probe beam such as, e.g., in Ref. 6.

The theoretical prediction for the ↓-polarized probe trans-
mittivity is in linear response theory

T�k,E� �
1

	E − ���k� − i�/2 + gkp+k,k−kp,k−kp↑↓��p + E�np�	
,

�17�

where � is the width of the polariton luminescence at the
linear regime. The prediction �17� for the transmittivity is
plotted in Fig. 5 for a microcavity resonantly pumped at k
=1 
m−1 �below the magic angle to avoid parametric oscil-
lation�.

The mean-field shift of a polariton with energy higher
�lower� than the bipolariton is positive �negative�, giving rise
to the upper �lower� branch of luminescence. For the lumi-
nescence wave vectors k where the polariton dispersion is
close to the bipolariton resonance, both branches of lumines-
cence are present. The peculiar behavior of the mean-field
shifts shown in Fig. 5 can be seen as a fingerprint of the
resonance. Its shape can be easily understood. A polariton
with a wave vector that is close to satisfy the resonance
condition ��k�+��kp�=Eb is shifted upwards when its energy
is larger than Eb−�p, leading self-consistently to a maximum
above the bare polariton branch. It is on the other hand
shifted downwards when its energy is below Eb−�p, so that
also a self-consistent maximum of the luminescence below
the bare polariton branch exists.

The proposed configuration where the biexciton energy is
higher than the bottom of the lower polariton branch should
be more favorable to probe the resonant behavior of mean-
field shifts as compared to the configuration of Ref. 6 where
the biexciton resonance was below the minimum of the
lower polariton branch and only a blueshift was observed.

B. Orientation of the linear polarization of
parametric luminescence

A second way to study the sign change of the interactions
is to analyze the polarization properties of the parametric
emission. The discussion in Sec. III focused on the modulus
of the interactions, and the relation to the threshold of para-
metric oscillation was pointed out. A microcavity pumped
with linearly polarized light below the threshold for OPO
shows a linear polarization of the signal emission that is31 �i�
aligned with the linear polarization of the pump light if
Re�g↑↑g↑↓��0 and �ii� rotated by 90° with respect to the
linear polarization of the pump light if Re�g↑↑g↑↓��0. Be-
cause g↑↑ is shown to be positive, the measurement of the
polarization directly gives information on the sign of g↑↓. By
varying the detuning, it is possible to have the energy of two
pump polaritons both above and below the bipolariton en-
ergy so that both orientations can be observed, again serving
as a clear signature of the scattering resonance. In addition,
the possibility to change the polarization direction of the
parametric emission could have technological applications in
the framework of spin-dependent optoelectronic devices.34

V. CONCLUSIONS

We have studied the interactions between polaritons in
microcavities and their renormalization due to strong light-
matter coupling. A distinction has to be made between cocir-
cularly and countercircularly polarized polaritons. In the first
configuration, the polaritonic interactions are simply related
to the excitonic ones via the Hopfield coefficients, whereas

FIG. 5. �Color online� The spin ↓-probe transmittivity of the
microcavity as a function of the wave vector and energy, for a
↑-pump polariton density of 2�108 cm−2, and a resonant pump
laser at kp=1 
m−1 �shown with a black circle�. For low �high�
wave vectors, the mean-field shifts are in the red �blue� direction.
The polariton linewidth is taken to be �=0.2 meV. The polariton
dispersion in the absence of the pump is shown with a black line.
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in the second configuration, nontrivial renormalization ef-
fects take place close to the bipolariton scattering resonance.
The width of the resonance was estimated within a deuteron
potential approach for the exciton-exciton interactions, and it
was shown that, taking a realistic width for the bipolariton,
the polaritonic interaction strength in the ↑↓ channel can be-
come larger than the one in the ↑↑ channel. The energy de-
pendence of the parametric scattering was analyzed, and the
resonant dissociation of the bipolariton into free polaritons
with a large density of states was shown to suppress the
interaction strength.

We have also shown that the mean-field shifts have a
particular energy and wave vector dependence, with both
redshifts and blueshifts, which serve as a fingerprint for the
bipolaritonic resonance. In addition, it was pointed out that

the linear polarization orientation of the parametric lumines-
cence can be changed by making use of the scattering reso-
nance.
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